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An isolated domain wall is analyzed in the model of an infinite uniaxial ferromagnet. Analytic 
solutions describing new types of 1D domain walls are derived in the limits of large and 
small values of the quality factor. These walls consist of a core and two branches. The analysis 
is based on an equation for the trajectory of the magnetization in configuration space and 
an equation for the evolution of the trajectory in ordinary space. The method proposed here is quite 
general. It can be used to analyze a wide range of nonlinear problems. O 1995 American 
Institute of Physics. 

1. INTRODUCTION where the subscripts 1 and 2 specify the domains. 
We solve the problem with the help of angle variables. 

The static structure of domain walls of a uniaxial ferro- To avoid restricting the generality of our results, we will not 
magnet was first described by Landau and ~ i f sh i t z . "~  Do- specify the dependence of the unit vector m on the angle 
main walls with the Landau-Lifshitz structure ("Bloch variables and at this point, but we do assume that once 
walls") have become the basis for interpreting experimental these variables have been introduced the energy of the ferro- 
data. The method proposed by Landau and Lifshitz for solv- magnet is given by 
ing the problem is the basis for the theory of domain 

In this paper we derive general solutions of the Landau- 
Lifshitz problem in the limits of large and small values of the 
quality factor. In contrast with Bloch walls, in which the 
magnetization vector rotates in a fixed plane as we move 
from one domain to another, we find domain walls for which 
the plane in which the magnetization vector rotates is not 
fixed. 

Our analysis is based on an equation for the trajectory of 
the magnetization in configuration space and an equation for 
the evolution of the trajectory in ordinary space. We accord- 
ingly first find an appropriate variational principle and then 
derive the necessary equations. In the sections of the paper 
which follow, these equations are used to determine the mag- 
netization distribution in a domain wall of ferromagnets with 
large and small values of the quality factor. 

2. VARIATIONAL PRINCIPLE 

This analysis of 1D domain walls of a uniaxial ferro- 
magnet is conducted within the framework of the problem 
proposed by Landau and ~ifshi tz . ' ,~  We assume an infinite 
uniaxial ferromagnet in which the z axis is the easy axis, and 
the x axis is normal to the surface of the domain wall. We 
write the energy in the form 

where A and K(>O) are the constants of nonuniform ex- 
change and uniaxial anisotropy, m=M/M, M is the magne- 
tization vector, and M is the saturation magnetization. The 
last term is the energy of the magnetic-dipole interaction. 

Within domains, the magnetization vector is uniform and 
is directed either parallel or antiparallel to the easy axis:"2 

e =  1 ~ X ( T  u), (3) 

We see that the nonuniform part of the magnetic energy 
is represented by the quantity T, while the uniform part is 
equal to minus U. The quantity U depends only on the angle 
variables. 

The boundary conditions are determined by assumption 
(2)-that the magnetization is uniform within the  domain^.',^ 
The nonuniform part of the magnetic energy is thus zero, and 
the quantity U is stationary. We thus find the following re- 
sults inside the domains: 

where 6 is the variational derivative. 
The magnetic energy does not depend explicitly on the 

spatial variable, so we have the integral 

in this problem (U,, is a constant of integration), and instead 
of using the variational principle 

we can describe the system by means of the variational prin- 
ciple 

M,,2=M(O,O,? I ) ,  (2 )  where u is the surface energy density of the domain wall. 
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The variational principle (8) can be used to find the tra- 
jectory of the magnetization in configuration space. (The 
transformation from (7) to (8) can be found in Refs. 6-8, 
among other places.) The evolution of the trajectory in ordi- 
nary space is found with the help of integral (6), with T and 
U from (4). 

We treat a as an element of length in configuration 
space. From the geometric standpoint our problem thus re- 
duces to one of determining geodesic lines between points in 
the space with a deformed spherical metric specified by 
means of (8). It is useful to note the relationship between the 
length of a line in configuration space and the energy of the 
domain wall. 

Our solution is based on (8). The boundary conditions on 
0 and cp are found from (5b). The derivative d q l d 0  (or do/  
d q )  is undetermined, as follows from (5a). 

The particular cases O=const and cp=const have already 
been analyzed,',3 so we will look at the general case. We will 
derive an equation for extrema of (8) of the form 6=B(cp) or 
CP=CP(~). 

3. EQUATION OF THE TRAJECTORY 

A variational equation corresponding to (8) can be writ- 
ten 

where a = 1 /sin2 6 and V= ( U o  - u)sin2 0. 
At this point we transform Eq. (9) to an equation more 

convenient for analysis. For this purpose we first multiply 
the entire equation by doldcp. We then add to and subtract 
from the resulting equation a term ( 1  + ~ ( d 6 l d c p ) ~ ) d v l d q .  

After some manipulations, the variational equation can 
be written 

Multiplying (10) by dcp, integrating the resulting expres- 
sion along the magnetization trajectory L ,  carrying out some 
simple manipulations, and using the integral (6), we can 
write an equation for the trajectory along with an equation 
for the spatial evolution of the trajectory. As a result the 
system of equations becomes 

d V Vie" = ( dV= ( dO+ L)V d q )  , (12) 
81 ,PI ( L )  (L ) dcp 

which allows us to avoid distinguishing any one of the vari- 
ables. The lower limit in (12) corresponds to the state of the 
domain (for definiteness, we are using a domain specified by 
the coordinates O= 0, and cp=cpl as a reference point), while 
the upper limit is the instantaneous point of the trajectory. 
The limits in (11) are equivalent to those in (12). 

Equations (11) constitute the fundamental system of 
equations in the method being proposed here for analyzing 
nonlinear problems. The first equation is the equation of the 
trajectory; the second is the equation of the spatial evolution 
of the trajectory. We will not carry out a general analysis of 
these equations in the present paper. For convenience in un- 
derstanding these equations we suggest drawing on an anal- 
ogy between mechanical problems and problems involving 
static structures of a domain wa11.l'~ 

We accordingly assume that e in (3) is the action of the 
mechanical system, that 0 and q are generalized coordinates, 
and that T and U are kinetic and potential energies. The 
variable x plays the role of time. The integral (6) is then an 
energy integral, and the switch to a description of a mechani- 
cal system by means of (8) corresponds to a switch to a 
description of this system by means of an "abbreviated" ac- 
tion. Principle (8) itself is called the "Maupertuis 
principle"7's or, after Ref. 6, the "Jacobi principle." 

If we take the sin2 0 outside the parentheses in (8) and 
introduce the new variable d K = d O/sin 0, then we can dis- 
cuss yet another analogous mechanical system, characterized 
by the generalized coordinates K and cp. In contrast with the 
Ocp mechanical analog, the potential energy of the ~ c p  analog 
is equal to V, and the mass coefficients are constants. The Ocp 
and ~ c p  analogs have identical trajectories and differ only in 
the time evolution of the trajectory. The procedure for deriv- 
ing the trajectory equation in the form in (11) is considerably 
simpler for the ~q analog: This equation can be derived in a 
trivial way from the Euler-Lagrange equations for the ~q 
system. 

In mechanics, equations similar to Eqs. (11) can describe 
systems which are characterized by two dynamic variables 
and which are moving in a potential well, e.g., a 2D oscilla- 
tor with initial conditions corresponding to a turning point. 
The quantity V is the potential energy formed by the external 
fields (the terms depend on only a single variable) and by the 
interaction fields (the terms depend on both variables). The 
integral over d 6 is then the change in the potential energy of 
the 0 subsystem, while the integral over d q  is correspond- 
ingly the change in the potential energy of the cp subsystem. 
We will make use of this analogy in solving system (11). 

4. STRUCTURE OF A DOMAIN WALL IN THE CASE OF A 
LARGE QUALITY FACTOR 

In this section of the paper we find the static structure of 
ID domain walls of a uniaxial ferromagnet in the limit of 
large values of the quality factor. 

We assume a unit vector 

In deriving (11) we used the identity m= (sin 0 cos cp, sin 0 sin q ,  cos 0). (13) 
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FIG. 1. Magnetization trajectory in a domain wall of a uniaxial ferromagnet 
in the limit QS 1 .  The configuration space is a sphere with the metric given 
by expression (8). The angles 8 and 9 are defined in (13). This figure shows 
the projection of the "eastern" hemisphere onto a great circle. At point A we 
have the value 8=0, while at B we have 8 = ~ .  Lines ACE and ADB 
represent domain walls with the Landau-Lifshitz structure (i.e., Bloch 
walls). On line ACE we have (p=-~12,  while on ADB we have (p=?r/2. 
Line A OB represents a N6el wall (cp=O). Lines A 1 0 2 8  and A 403B corre- 
spond to a domain wall of type I, while linesA 1 0 3 8  and 4 0 2 8  correspond 
to a domain wall of type 11. The magnetic-dipole barrier is at a maximum 
along line AOB, while it is zero along A CB and ADB. Domain walls of 
type I "hang down" on one side of this barrier and can, accordingly, convert 
into Landau-Lifshitz domain walls, but the domain walls of type I1 lie on 
different slopes of the barrier and cannot convert into a Bloch state. 

The energy of the ferromagnet is then given by (3) with 

U = K  cos2 8 - ~ I T M ~  sin2 8 cos2 cp. (14) 

Using (5b), we find that the angle 8 in the domains has 
the values 

The angle Q is undetermined. The value of cp in the domains 
is undetermined because of the metric being used for the 
configuration space and because of the definition of the angle 
variables in (13). 

We first consider two particular cases. 
a) @=const. The solutions describe uniformly magne- 

tized states and are the same as the boundary conditions on 
the problem. 

b) cp=const. The solutions describe Bloch and Niel 
walls. In both such walls the magnetization vector rotates in 
a given plane as we cross from one domain into another, but 
in Bloch walls the rotation occurs in the plane of the domain 
wall, while in Niel walls it occurs in a plane perpendicular to 
the surface of the domain The functional dependence 
of the angle 8 is specified by the Landau-Lifshitz solution 
(the spatial positions of the domains are fixed), 

8(x) = 2 arctan ex'*, A = a, 
but in a Bloch wall the angle which specifies the rotation 
plane is 

while that in a Niel wall is 

In configuration space (Fig. 1) the magnetization trajec- 

tory corresponding to these domains walls consists of the 
following lines: Domain walls with the Landau-Lifshitz 
structure are shown by lines A CB (cp= - 1~12) and ADB (cp 
=77/2), while a Niel wall is shown by line AOB (cp=O). 
Figure 1 shows a projection of the spherical configuration 
space onto the surface of a great circle. (Only the "eastern" 
hemisphere has been projected; the projection of the "west- 
ern" hemisphere has a similar shape, but the central line 
AOB corresponds to a Niel wall with cp=.rr.) 

We turn now to the general case. We wish to find ex- 
trema of (8) of the form 8= 8(q) or cp=q(8). We will first 
take a qualitative look at this question. The domains are rep- 
resented by the points A and B. The 1D domain walls in 
which we are interested are represented by certain curves 
which connect domain states. It is clear just from geometric 
considerations that there exist curves of a general type which 
connect these points; accordingly, 1D domain walls with 
8=8(cp) also exist. From the physical standpoint, the exist- 
ence of domain walls with t9=8(9) is associated with a 
magnetic-dipole barrier. 

The energy of the magnetic-dipole interaction is zero 
along ACB and ADB, which represent Bloch walls. This 
energy is at a maximum for each fixed 8 along line AOB, 
i.e., along a Niel extremum. There is accordingly a "ridge" 
along AOB on the surface of the magnetic-dipole energy. As 
we descend from this ridge, the magnetic-dipole energy de- 
creases monotonically, vanishing on ACB and ADB. At 
point 0 the energy of the magnetic-dipole interaction is sta- 
tionary, as is the entire uniform part of the magnetic energy 
of the ferromagnet. 

This shape of the magnetic-dipole barrier separating two 
Bloch states is such that two topologically nonequivalent tra- 
jectories with 8= qcp) can exist. A magnetization trajectory 
which begins at, say, point A may, as it moves to point B, 
either run entirely on one side of the ridge (as shown by 
curves such as A 102B and A403B in Fig. 1) or lie on both 
sides of the ridge (as shown by curves such as A 103B and 
A402B in Fig. 1). 

Understandably, domain walls of the first type may be 
topologically unstable with respect to a Landau-Lifshitz 
transition, since they can simply "slide down" the slope to- 
ward the base of the magnetic-dipole barrier and thus trans- 
form into Bloch walls. Domain walls of the second type are 
topologically stable with respect to a transition with the 
Landau-Lifshitz structure, since the curve corresponding to 
these walls simultaneously tends to slide down into the ra- 
vines running along the opposite slopes of the magnetic- 
dipole barrier. Because of the tendency of a domain wall of 
the second type to have a minimum energy (or a minimum 
length) and to be at equilibrium, the function 8= Hcp) for 
them becomes antisymmetric: B(cp)= - 8(- 9). The opposite 
parts of a wall will then "hang over" from the slopes of the 
magnetic-dipole barrier to an identical extent. 

We wish to repeat that the existence of 1D domain walls 
in uniaxial ferromagnets within which both angles vary is a 
consequence of the magnetic dipole interaction. If this inter- 
action were turned off, the shape of the potential barrier 
would permit the existence of domain walls only with the 
Landau-Lifshitz structure. 
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We now wish to derive an analytic solution of the prob- 
lem. In our case we have 

 sin^ sin^ 8 = K ( 1 + ~  cos2 cp) sin4 8, 

so Eqs. (11) become 

de2  

wherexr=xlA, A = m, and E = ~ ~ Q = ~ I T M ~ I K .  
We assume &<l (this is the case of large values of the 

quality factor). We can then ignore the contribution of the 
"interaction" energy to the energy of the 8 subsystem (this 
contribution is on the order of E,  and the energy of this 
subsystem in an external field is of order unity). The change 
in the energy of the cp subsystem can be assumed equal to the 
total change in the interaction energy of the entire system 
(i.e., we add to the term of order E one more term of order E, 
thereby turning the integrand into a total differential). In 
other words, in our approximation, because of the weak cor- 
relation between the variables 8 and cp, we are assuming that 
the functional dependence 8= B(x) is determined without 
the involvement of cp, which in turn simply "adjusts" by 
means of the interaction potential to accommodate the corre- 
sponding value of 8= 8(x) at each point x. 

In our approximation, Eqs. (16) become the system of 
equations 

Solving Eqs. (17), we find the magnetization trajectory to be 

while the spatial evolution of the trajectory is described by 

where x; and R (>0) are constants. 
Note that the magnetization trajectory is determined 

more accurately than to within terms on the order of E .  The 
reason is that "global" approximation for an arbitrary part of 
the trajectory which is determined by the estimated value of 
the integral is refined even further locally, since we are solv- 
ing a differential equation. The spatial evolution of the tra- 

jectory is determined within terms of zeroth order in E, but 
by using trajectory (18) we can refine the accuracy of the 
solution where necessary. 

The set of equations (18), (19) thus constitutes a general 
solution which describes domain walls with 8= O(cp). (Ac- 
cordingly, when we take the particular cases O=const and 
cp=const into account, we find a complete solution of the 
Landau-Lifshitz problem for large values of the quality fac- 
tor.) The boundary conditions are not sufficient for determin- 
ing the constants x,', and R.  The constant x,', characterizes the 
position of the center of the wall, and in the static case it is 
customary to assume xA = 0,  i.e., to assume that the center 
of the wall is at the origin of coordinates. The simplest way 
to determine the constant R is to use the results of a qualita- 
tive analysis of the problem, from which it follows that we 
have B(cp)=-B(-cp) for domain walls of the second type, 
and the magnetization trajectory necessarily passes through 
the point 8=?r/2, q=8. Using this fact and (18), we find 
R = 1. There is yet another way to determine R: substitute 
(18) into (8) and minimize a with respect to this parameter. 

A unit value for the parameter R implies that the centers 
of the spatial distribution coincide for the two angle variables 
and, correspondingly, for all components of the magnetiza- 
tion vector. This is a natural result in the static case; in the 
dynamic case, the centers of the distribution may undergo a 
relative shift, so the parameter R or some function of it 
would characterize the dynamic response of the domain wall. 
A detailed examination of that topic goes beyond the scope 
of the present paper. 

We are now in a position to write the final expressions 
for the magnetization trajectory, 

I tan ' "= 1 tan(; + r) 1, 
and for the spatial evolution of the trajectory, 

In (20) we have written the entire sheaf of geodesic lines 
of 8= Hcp) emerging from the point 8=0 or the point 8 = ~ .  
We recall that in determining the trajectory we used only a 
single domain state. Noting that geodesic lines connecting 
the singular points 8=0 and 8=7r correspond to a domain 
wall, and using (20), we can determine the magnetization 
trajectory in a domain wall with 8= B(cp). The spatial evolu- 
tion for each type of trajectory is given by (21). 

Figure 1 shows a magnetization trajectory. Here we see 
both domain walls of the first type (DWIs) and domain walls 
of the second type (DWIIs). The qualitative analysis carried 
out above shows that the DWIs may be unstable against con- 
version into a domain wall with the Landau-Lifshitz struc- 
ture. Domain walls of the second type are, according to the 
structure of the potential barrier, topologically stable against 
conversion into Bloch walls. 

We wish to stress that these conclusions regarding the 
stability of DWIs and DWIIs are only qualitative. A system- 
atic study of the stability of the micromagnetic solution de- 
rived here with respect to nonuniform perturbations runs into 
serious mathematical difficulties, because of the nonlocal na- 
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ture of the magnetic-dipole interaction. We will not go into 
such an analysis in the present paper. We should, on the other 
hand, point out that a magnetization trajectory in either a 
DWI or a DWII passes through the point 0, at which the 
uniform part of the magnetic energy is stationary. In the me- 
chanical sense, the resultant force acting on the trajectory at 
this point is zero. This point is thus immobile. Since the 
point 0 is immobile, we cannot draw an unambiguous con- 
clusion regarding the topological instability of DWIs against 
conversion into Bloch walls (one point of the trajectory can- 
not slide down into the ravine). Both types of domain walls 
may thus be stable. 

In the symmetry classification of the domain walls of a 
uniaxial ferromagnetic which was carried out by Bar'yakhtar 
et aL9 the DWIIs fall in class G("). The components of the 
magnetization vector in this symmetry class have the follow- 
ing transformation properties: 

The DWIs belong to class G(lO), and from the symmetry 
standpoint they differ from the domain walls of class G(") 
in the symmetry of the function M,=M,(x) (the transfor- 
mation properties of other magnetization components are un- 
changed). 

Using expressions (20) and (21), we can write functional 
dependences for the angle variables for DWIs and DWIIs. 
We begin with the DWIIs. The structure of these walls is 
described by the following pairs of functions: 

IT 7 l 

a) O= 2 arctan ex', cp = - - + 2 arctan e 3EX ; 
2 

3%- 
c) 8 = 2  arctan ex', cp= - - + 2  arctan edSx'; 

2 

377 r 1 

d) O= 2 arctan ex', cp= - - + 2 arctan e-""" . 
2 

At the center of domain walls described by expressions a) 
and b), we have a vector m=(1,0,0); at the center of domain 
walls described by c) and d) we instead have m=(-1,0,0). 
In the expression for the DWIIs, the positions of the domains 
were fixed. 

The structure of a DWI for fixed positions of the do- 
mains is also specified by four pairs of functions, but here we 
will write out only a single pair. It is simple to construct the 
other pairs by comparison with the preceding case: 

a) 0=2 arctan ex', 

At the center of a DWI, the derivative dpldx is discontinu- 
ous. 

We see that the new domain walls consist of a core and 
two branches. The angle q changes sharply in the branches, 
while the angle 0 remains essentially constant. Accordingly, 
it is primarily the components mx and my which change in 
the branches. In the central part there is a sharp change in the 
angle 0, which changes all components of the magnetization 
vector. At the center of the DWIs and DWIIs the magnetiza- 
tion vector is directed perpendicular to the surface of the 
domain wall. In other word, the central part of the new do- 
main walls is similar in structure to Niel walls. 

The existence of this structure for the new walls is a 
consequence of the different scales of the typical changes in 
the angles 0 and cp, as follows from the magnetization trajec- 
tory (20) and from the spatial evolution of this trajectory in 
(21). Using (20), (21), (3), and (8), we can find both the 
typical sizes of the constituent "parts" of the domain wall 
and the surface energy density of the wall. We will not actu- 
ally go through this procedure in the present paper. We 
should point out, on the other hand, that the energy of the 
new walls is greater than the energy of Bloch walls but lower 
than the energy of Niel walls, as is easily seen from (8). 

It is currently believed that a Bloch wall in a magnetic 
field directed perpendicular to the easy axis converts into a 
Niel wall at certain values of the f i e l ~ i . ~ ? ~  It can be seen from 
Fig. 1 that the trajectory of a Niel wall is completely blocked 
by the trajectory of the new walls. As the magnetic field 
increases from zero, a Bloch wall thus necessarily converts 
into one of the new domain walls. This new wall is favored 
over a Niel wall from the energy standpoint because the 
functional in (8) reaches a maximum on a Niel extremum. 
The new wall (which is one of the DWIs) vanishes in fields 
on the order of the uniaxial anisotropy, at which points A and 
B (i.e., domain states) merge to form a single point at 0,  and 
the ferromagnet goes into a uniformly magnetized state. 
When the magnetic field is varied in the opposite direction, 
we may find a situation in which DWIIs are nucleated, and, 
because of their topology, these walls cannot convert into 
Bloch walls in a zero field. The presence of the new walls 
thus suggests a hysteresis in the evolution of the system in a 
magnetic field. There is a hysteresis in the average value of 
the component Mx as a function of the magnetic field Hx  . 

It is believed that, in the absence of a magnetic field, the 
static structure of cylindrical magnetic domains (magnetic 
bubbles) with Bloch lines consists of Bloch segments sepa- 
rated by Niel regions4 The existence of the new domain 
walls requires a modification of that model. Since their en- 
ergy is smaller than the energy of Niel walls, it is preferable 
from the energy standpoint that the regions separating the 
Bloch segments have the structure of the new domain walls. 
If a hysteresis is possible in the domain walls, the model of 
Bloch lines requires qualitative changes. 

5. DOMAIN WALLS FOR SMALL VALUES OF THE QUALITY 
FACTOR 

In this section of the paper we find the static structure of 
1D domain walls of a uniaxial ferromagnetic in the limit of 
small values of the quality factor. 
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types of new domains walls. Figure 2 shows the projection of 
the "southern" hemisphere of configuration space onto a 
great circle. The other Ndel wall is found by projecting the 
"northern" hemisphere. 

We now wish to derive analytic expressions for extrema 
of the form 8=B(cp) or cp=cp(O). 

In this case we have 

X sin2 8(cos2 8+ E sin2 8 sin2 cp), 

so Eqs. (11) can be written 

do2 

FIG. 2. Magnetization trajectory in a domain wall of a uniaxial ferromagnet 
in the limit Q9 1. The configuration space is a sphere with the metric given 
by expression (8). The angles Band cp are defined in (22). This figure shows 
the projection of the "southern" hemisphere onto a great circle. The lines of 
B=const are concentric circles centered on point 0. We have B=0 at point 
0 and B= 7r/2 on circle ADBCA. The angle cp has the values cp,=O, 
cpc=7r/2, cp,=n, and (pD=3n/2 at points B, C, A ,  and D ,  respectively. 
Lines ACE and ADB represent Bloch walls. Line AOB is a Niel wall. 
Lines A 1 0 2 8  and A403B correspond to domain walls of type I, while lines 
A 103B and A402B correspond to domain walls of type 11. The magnetic- 
dipole barrier is at a maximum along AOB, while it is zero along ACE and 
ADB. Domain walls of type I "hang down" on one side of this barrier and 
can accordingly convert into Landau-Lifshitz domain walls, but the domain 
walls of type I1 lie on different slopes of the barrier and cannot convert into 
a Bloch state. 

We assume a unit vector 

m= (cos 8, sin 8 sin cp7sin 8 cos cp). (22) 

The energy is then given by expression (4) with U in the 
form 

Minimizing the uniform part of the magnetic energy, we 
find that the angles 8 and cp in the domains take on the values 

Let us find an analytic solution of the problem. As 
above, we first consider two particular cases. 

a) @=const. The solutions in this case describe a domain 
wall with the Landau-Lifshitz str~cture.'.~ These domain 
walls were described in detail in the preceding section of this 
paper. However, we should recall that in the present section 
of the paper the angle variables are determined in a way 
different from that of the preceding section. 

b) cp=const. In this case the solutions describe Ndel 
walls. The structure of these domain walls was also de- 
scribed in detail in the preceding section of the paper. Under 
the condition K> 0,  the solutions correspond to states of the 
system with the maximum energy. 

The potential barrier separating Bloch states is charac- 
terized as in the case Q+ 1.  The existence of domain walls 
with 8=8(cp) is again a consequence of the structure of the 
potential barrier, which again allows the existence of two 

where x f  =xlA, A = J A / ( K + ~ T M ~ ) ,  &=Q/ ( l  +Q),  and 
Q = K / ~ ~ T M ~ .  

We assume &<l (this is the case of small values of the 
quality factor). As above, we assume that the change in the 
"potential" energy of the 8 subsystem is due to "external 
fields" alone, while the change in the "potential" energy of 
the cp subsystem is equal to the total change in the "interac- 
tion" energy of the entire 8cp system. It follows from the 
form of the potential V that for the 6 subsystem this parti- 
tioning of the potential energy may not be correct near do- 
main states, since the energy in the external field may be on 
the order of the interaction energy, and (strictly speaking) we 
cannot ignore this term in the energy of the 8 subsystem. 

In our method, the trajectory is constructed from the 
point which corresponds to the state of the domain, so an 
error may begin to build up even in the initial stage in our 
case. We will come back to a more concrete discussion of the 
validity of this method when we derive solutions. 

In our approximation, Eqs. (26) become the following 
system of equations: 

Solving (27), we find that the trajectory of the magnetization 
is 

while the spatial evolution of the trajectory is described by 

7(xf-x;))=ln tan -+ -  I (28  :)I 
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where xh and R (>0) are constants. 
In deriving solutions (28) and (29) we assumed that the 

interaction does not greatly perturb the 0 subsystem. Is this 
assumption valid along the trajectories which have been 
found? 

A direct calculation shows that for our trajectories, and 
at small values of E, the interaction energy of the 8 sub- 
system near a domain state is on the order of the energy of 
the subsystem in the external field. For these domain walls, 
our method thus yields only the qualitative behavior of the 
trajectory near the entrance into a domain. Although an error 
is introduced in the trajectory by the initial region of the 
trajectory, the error does not build up, and we have derived 
the solution expected on the basis of physical considerations 
(the curve connects domain states). The part of the trajectory 
outside the initial region is determined, as in the preceding 
case, at an accuracy better than to within terms of order E. 

We should also point out that the entrance into the domain 
(at point A ,  for example) occurs directly in accordance with 
the requirements of the problem. In order to determine the 
behavior of the trajectory near the domain more accurately, 
we would need to solve Eqs. (26), using the trajectory (28) as 
an initial approximation. We will not go through that proce- 
dure in the present paper. 

Note that the trajectory does not simply enter a domain 
randomly. This behavior is embodied in the method used. 
Specifically, the "global" approximation regarding the shape 
of the trajectory presupposes that the change in the square of 
the velocity of motion along a selected trajectory is equal to 
the value of V. On the parts of the trajectory on which we 
have V+O, the absolute value of the velocity also tends 
toward zero. The absolute value of the velocity along the 
actual trajectories also tends toward zero in these regions. [In 
both cases, the reason is the conservation of integral (6).] 
The small value of V near domain states shows that a trial 
trajectory in this region must differ slightly from the actual 
trajectory (to the extent that V is small) and that the trial and 
actual trajectories coincide in the case V= 0, i.e., at the point 
corresponding to the domain. 

The set of relations in (28) and (29) thus constitutes a 
general solution which describes domain walls with 8= q p )  
at small values of the quality factor. Proceeding as in the 
case Q B 1,  we can show that we have xh = 0 and R = 1.  

We can now write final expressions for the magnetiza- 
tion trajectory, 

and the spatial evolution of the trajectory, 

7x1= ln  tan -+ -  . I ( 2 8  :)I 
In (30) we have written out all possible types of trajectories 
in the case Q< 1. More precisely, we have written here (as 
above) all the geodesic lines on which t?=q(p) holds which 
pass through domain states. 

Figure 2 shows the magnetization trajectory. The general 
characteristics of the properties of the domain walls for small 
values of the quality factor are completely analogous to the 

corresponding characteristics at large values of the quality 
factor. Accordingly, we can, as above, introduce two types of 
walls: DWI and DWII. We recall that from the symmetry 
standpoint these two types of walls differ in the transforma- 
tion properties of they component of the magnetization vec- 
tor. 

We now consider a mapping of the trajectory, and we 
write equations expressing the functional dependence of the 
angle variables for each type of wall. We begin with DWI. 
The magnetization trajectory in these walls is represented by 
lines A 1028  and A 403B in Fig. 2. The analytic expressions 
for the angle variables as a function of the spatial coordinate 
in a DWI, for fixed positions of the domains, are given by 
pairs of the types 

(p= -2  arctan eGX', 

( + 2 arctan e-", x'<O, 

(p=2 arctan eGx', 

The derivative deldx has a discontinuity at the center of a 
DWI. 

The magnetization trajectory in the DWII in Fig. 2 is 
represented by the curves A 1038 and A402B. The depen- 
dence of the angle variables on the spatial coordinate in a 
DWII for fixed positions of the domains is represented by 
pairs of the type 

a) e= 
+ 2  arctan ex', ~ ' 3 0 ,  

2arctaneCx', xl<O, 

ZIT-2 arctan eGx', ~ ' 2 0 ,  
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- 2 arctan eGx', x r < 0 ,  

- 2 a + 2  arctan e&xf, ~ ' 3 0 ,  

[!-2 arctan x r  <O, 

c) t9= 
-- 2arctaneX1, ~ ' 3 0 ,  

2 arctan eGX', x r < 0 ,  .=( 
21r-2 arctan eGx', x r s O ,  

[ 7- 2 arctan e-", x'<O, 

In a DWII, the functions t9= 6(x) and cp= cp(x) are continu- 
ous, as are their derivatives. 

We see that the new domain walls also consists of a core 
and two branches in the case Q e l .  In the branches, the 
angle cp changes sharply, while 6 remains essentially con- 
stant. It is thus the components my and m, which undergo the 
basic changes in the branches. In the central region, there is 
a sharp change in the angle 6, which causes a change in all 
the components of the magnetization vector. The structure of 
the new walls in this region is similar to that of Ndel walls. 
Comparing the results found for the cases Q S  1 and Q e l ,  
we can assert that the branches in the new domain walls are 
restructured when the quality factor changes. 

The existence of such a structure in the new walls for 
small values of the quality factor is again due to the different 
scales of the typical changes in the angles t9 and cp, as follows 
from magnetization trajectory (30) and the spatial evolution 
of the trajectory, (31). Using (30), (31), (3), and (8), we 
could find both the typical sizes of the constituent parts of a 
domain wall and the surface energy density of the wall. We 
will not actually do that in the present paper. We do wish to 
point out that the properties of the new domain walls de- 
scribed at the end of the preceding section of this paper are 
exactly the same as the properties of the new domains walls 
again the case Q G 1. 

6. CONCLUSION 

A result found here is that a trajectory which begins at a 
branch point of the solution (in a domain state) necessarily 
passes through all the nearest branch points, some of which 
are domain states with oppositely directed magnetization 
vectors (opposite with respect to that of the original state). 
The other branch points, as we will see below, in a study of 

the evolution of domain walls in arbitrary magnetic points, 
serve as "custodians" of information about the system: Each 
of these points is a nucleating region from which all allowed 
state of the system can develop under the appropriate condi- 
tions. The use of a branch point as an information "storage 
place" is quite natural, since the limiting case of the trajec- 
tory is a branch point. The fixed positions of the branch 
points on the trajectory and the nature of the behavior of the 
trajectory at these points also make it possible to draw a 
qualitative picture of the trajectory for an arbitrary form of 
the uniform part of the magnetic energy. This capability is 
important for numerical calculations. 

The existence in ferromagnetic samples of domain walls 
with a structure differing from that of Bloch walls was pre- 
dicted by Niel, who showed that surface scattering fields 
strongly influence domain walls in thin ferromagnetic films 
(see Ref. 3 and the papers cited in that book). We accord- 
ingly note that the domain walls described in the present 
paper differ qualitatively from the walls predicted by Nbel, 
since they can exist even in bulk ferromagnets. 

The existence of features of the Bloch-line type in the 
new domains walls is favored energetically. When the degree 
of degeneracy of these domain walls is taken into account, 
the features have quite diverse structures, which require a 
separate study. We note in this connection that the Slonczew- 
ski model,4 which is widely used in research on Bloch lines, 
cannot be used in the case at hand. A formal indication of 
this situation is the existence of a relationship between the 
angle variables. 

In analyzing the problem of this paper we adhered to the 
formulation of the problem proposed by Landau and Lifshitz, 
but we see that that formulation is overly detailed for our 
approach. For our purposes, in a study of isolated domain 
walls, it is quite sufficient to define a domain as a state in 
which the nonuniform part of the magnetic energy is zero. 
Knowing the state of only one domain (i.e., knowing the 
initial "velocities" and "coordinates"), we are in a position 
to study the extrema, which describe both uniformly magne- 
tized ferromagnets and ferromagnets with a domain struc- 
ture. We discuss periodic domain structures when we are 
dealing with the complete magnetization equation (in the 
case at hand, we are working on a  co con st surface). Just 
which extremum is realized under certain conditions or oth- 
ers depends on the magnetic history of the magnetic mate- 
rial. 

The solutions derived here also describe extrema for 
which the initial and final states are the same (e.g., the curves 
A 104A and B203B in Fig. 1). We are not concerned with 
those solutions, since they correspond to "pure" soliton 
s~lutions, '~ which go beyond the scope of the present paper. 
Using the expressions for the trajectory and for the spatial 
evolution of the trajectory, we can also, and easily, find de- 
scriptions of those solutions. Those solutions also pass 
through point 0, so we cannot say for sure whether these 
curves shrink to a point on the basis of qualitative consider- 
ations. Resolving this question will require a systematic 
study of the stability of these solitons. In contrast with the 
soliton solutions described in Ref. 10, our solitons are static. 

It would be a bit premature to attempt to use the results 
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derived here for comparisons with experimental data, but we 
believe that the existence of Bloch lines and the structure of 
the domain walls in real magnetic materials (a dense central 
part and widely spaced branches)3y4 are evidence that the 
new domain walls are realized in practical situations. 

Clearly, our approach is a general method for studying 
nonlinear equations of certain class of variational problems. 
We will broaden this class of problems in the future, but even 
at this point we see that the method is fairly general, since 
functionals like (1) often arise in physical problems. For an 
analytic solution of the problem, of course, the canonical 
version of a quadratic form in the gradients of generalized 
coordinates is not the only important point; the vanishing of 
this quadratic form under the initial conditions is also impor- 
tant. 

In conclusion we would like to stress that we used dif- 
ferent configuration spaces (i.e., different coordinate sys- 
tems) in studying the limiting case Q+ 1 and QG 1. It is 
necessary to change the coordinate system when the interac- 
tion constants change because of the very existence of a tra- 
jectory equation which, in certain limiting cases, becomes 
the condition for a relationship between configuration vari- 
ables. The existence of a relationship in a system is equiva- 
lent to a reduction of the dimensionality of the configuration 
space or to a decrease in the number of degrees of freedom 
of the system. The latter change requires a change in the 
method used to describe the system; a redefinition of the 
configuration space makes it possible to avoid this difficulty: 
We simply retain the 2D nature of the configuration space. 
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Stefanovskii for a discussion of these results, and S. N. 
Lukin for assistance and friendly support in the final stage of 
this study. 

'L. D. Landau, Electrodynamics of Continuous Media (Pergamon, Oxford, 
1984). 

2 ~ .  D. Landau, Collected Works [in Russian] (Nauka, Moscow, 1969), p. 
128. 

'A. Hubert, Theory of Domain Walls in Ordered Media [Russian transla- 
tion] (Mir, Moscow, 1977). 

4 ~ .  P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in 
Bubble Materials (Applied Solid State Science, Supplement I) (Academic 
Press, New York, 1979). 

'v. G. Bar'yakhtar, N. B. Bogdanov, and D. A. Yablonskii, Usp. Fiz. Nauk 
156, 47 (1988) [Sov. Phys. Usp. 31, 810 (1988)l. 

'C. Lanczos, Variational Principles in Mechanics [Russian translation] 
(Mir, Moscow, 1965). 

'L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, New York, 
1976). 

*D. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in 
Russian] (Nauka, Moscow, 1979). 
'v. G. Bar'yakhtar, V. A. L'vov, and D. A. Yablonskii, "Magnetic symme- 

try and electrical polarization of domain walls in magnetically ordered 
crystals" [in Russian], Preprint ITF-84-41P, ITF, Ukrainian Academy of 
Sciences, Kiev, 1984. 

''A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetiza- 
tion Waves: Dynamic and Topological Solitons [in Russian] (Naukova 
Dumka, Kiev, 1983). 

Translated by D. Parsons 

316 JETP 80 (2), February 1995 P. P. Shatskii 316 


