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Small-angle multiple scattering of unpolarized light in a random medium with large-scale 
irregularities is considered. The intensity and degree of polarization of the scattered radiation are 
calculated. Their sensitivity to the angular dependence of the cross section for an individual 
scattering event are studied. For the case of a scattering phase function that falls off according to 
the power law du ld i lm  y-", where y is the individual scattering angle, it is shown that 
both the angular distribution of the radiation as a whole and the degree of polarization at relatively 
small scattering angles depend substantially on the index a. This dependence is analyzed 
both in the case of purely elastic scattering and for strongly absorbent media. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

One has to deal with small-angle multiple scattering of 
different kinds of radiation (light, electrons, neutrons, etc.) in 
many physical problems,'-5 and these have been studied in 
considerable detail in scalar theo~-~ . '*~- '~  In the case of scat- 
tering of electromagnetic radiation, however, the scalar 
approximation1~7~9-'4 is inadequate, since it does not take into 
account the vector nature of the waves. 

Up until now the polarization of multiply scattered light 
has been analyzed, generally speaking, for the case of pho- 
tons undergoing spatial diffusion, when the angular spectrum 
of the radiation is essentially isotropic (see, e.g., Refs. 15- 
17). At the present time there are essentially no solutions to 
the problem of the polarization properties associated with 
small-angle scattering of electromagnetic waves. The results 
currently available on this relate only to certain 
limiting cases and do not enable one to draw any sort of 
general conclusion about the magnitude of the polarization 
of multiply scattered radiation in media with large-scale ir- 
regularities. 

Note that knowledge of light polarization in connection 
with small-angle multiple scattering is of interest for many 
problems: optical studies of random systems with long-range 
correlations in the dielectric fluctuation~,4'~~ analysis of co- 
herent inverse ~ c a t t e r i n ~ , ~ ~ - ~ ~  and fluctuations of the 
polarization28 of multiply scattered light in materials with 
large-scale irregularities. 

Estimates reveal that the depolarization associated with 
propagation of initially polarized light through a medium 
with large-scale scatterers is an effect of higher order than 
the polarization of an initially unpolarized beam. The inten- 
sity of the cross-polarized component of a polarized beam is 
proportional to the fourth power $ of the scattering 

while the degree of polarization P of an initially 
unpolarized beam only goes as the square of the scattering 
angle ( P K  82). 

Below we will generalize the results of Refs. 6-14 and 
consider small-angle multiple scattering of an unpolarized 
light beam in a random medium with large-scale irregulari- 
ties (we will not treat the propagation of light in optically 

anisotropic media). We will calculate the intensity and de- 
gree of polarization of the scattered radiation and study their 
sensitivity to the angular dependence of the cross section for 
single scattering. The propagation of light will be studied in 
detail both for the case of purely elastic scattering and when 
absorption in the medium takes place. The calculations are 
performed for cross sections that fall off with scattering 
angle y according to a power law y-". It is shown that both 
the angular distribution of the radiation as a whole and the 
degree of polarization at relatively small scattering angles 
depend sensitively on the index a. Moreover, we find a num- 
ber of qualitative features in the behavior of the degree of 
polarization as the inhomogeneity scale increases and when 
the Born approximation for single scattering is inapplicable. 

These results may prove useful for optical studies of 
random media with large scatterers or long-range correla- 
tions of fluctuations in the dielectric f u n ~ t i o n . ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~  

2. SMALL-ANGLE TRANSPORT EQUATION 

Assume that a broad beam of unpolarized light is inci- 
dent normally on a layer of thickness L ( O < z < L )  consist- 
ing of large spherical irregularities (dimension a much larger 
than the wavelength A, a9A) .  We assume that the mean free 
path 1 is much longer than the wavelength A and the charac- 
teristic size a of the irregularities, 

We assume initially that the phase shift A+ of a wave 
undergoing a single scattering is small: 

where n is the index of refraction of a scattering particle and 
ko= 2.rrlA. Expression (2) enables us to describe an indi- 
'vidual collision using the Born approximation.31 

Under these conditions it follows from azimuthal sym- 
metry that the third Stokes parameter U vanishes. The fourth 
Stokes parameter V, corresponding to the elliptically polar- 
ized component, also vanishes, since the incident beam is 
unpolarized and the medium is assumed to be optically iso- 
tropic. The occurrence of electrical polarization is related to 
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higher orders of in the single-scattering amplitude, the z axis and the direction in which the photons are propa- 
i.e., it lies outside the Born approximation. However, even in gating, while the vector e, is perpendicular to the scattering 
that case there will be no elliptical polarization as long as the plane]. In this case I  and Q obey the following system of 
scattering geometry has azimuthal symmetry. Thus, for a equations:' 
complete description of the polarization properties of light 
undergoing multiple scattering it suffices to calculate the in- 
tensity I and the second Stokes parameter Q [here I = Ill + I ,  , z + Q(z,,u) 

Q = Ill- I ,  , where Ill and I ,  are the intensities of the com- 
I a I ( 1 

ponents polarized in the directions of the unit vectors = ( dn '9 (nn r )P (nn r )  
e, =(-sin cp,cos cp,O) and ell = (COS 8 cos cp,cos 0 sin cp, 

(;:$)I) 

-sin 0); the vector ell lies in the scattering plane formed by where $= $(O)+ P(')+ P ( ~ ) ,  with 

$2) = l ( 
(1-,u2)(1-,Lr2) -(I-,u2)(1+,ur2) 

COS 2* 
- 1  + , L 2 1 - , u 2  (1+,u2)(1+,u12) i ' 

The quantity a,,, in Eq. (3) is the total attenuation coef- 
ficient ut,,=u+ua, where u and ua are the scattering and 
absorption coefficients. 

The boundary condition for Eq. (3) when the incident 
light has unit intensity takes the form 

For the case of discrete s~atterers ' .~~ the function 9 is 
equal to 

where JV is the number of scatterers per unit volume and 
~ ( r )  = n2 is the dielectric function of the scattering particle. 
The integration is performed over the volume of the scat- 
terer. For a continuous random medium 5 is determined 
byl,32 

where B,(lr-rr l)=((e(r)-(&))(&(rr)-(E))) is the correlation 
function of the fluctuations in the dielectric function. The 
scattering coefficient a is related to B(nnr)  by 

When radiation propagates in a medium with fine-scale 
(A 9 a)  irregularities the function 9 does not depend on the 
angle, and Eq. (3) describes multiple Rayleigh scattering.'*15 

For the case of scattering by large weakly refracting ir- 
regularities (A @a,  In - 1 14 1)  the photon changes its direc- 

tion of motion by a small amount in a single scattering; the 
characteristic deflection angle is yo<l (Ref. 31). As for the 
spread in the directions that results from multiple scattering, 
it is determined both by the thickness of the scattering layer 
and by the absorption properties of the medium. If the ab- 
sorption in the medium is weak (the absorption length 
la=u;' is longer than the transport length l , , = u ~ ' ,  where 
ut,=a(l-(cos y)) is the momentum transfer scattering coef- 
ficient and (cos y) is the mean value of the cosine of the 
angle for a single scattering), then the radiation passes 
through relatively thin (L<l,,) scattering layers the small- 
angle propagation regime also In thick (L >1,,) 
layers at depth z greater than the transport length I,, ( z~ l , , ) ,  
the beam isotropizes and a regime in which the radiation 
undergoes spatial diffusion sets in.1.3,8 In strongly absorbing 
media (la<l,), by virtue of the preferential absorption of 
photons deflected through large angles, isotropization in gen- 
eral does not take place and the small-angle propagation re- 
gime obtains at all In what follows we will con- 
sistently assume that the conditions for the applicability of 
the small-angle approximation always holds. 

We expand the terms appearing in Eq. (3) to terms of 
order 82, or2. As a result, to leading order in the small pa- 
rameter 0,<1 (0, is the characteristic angle for multiple 
scattering at depth z) we find the following system: 

where we have written i' =I exp(ug), Q = Q exp(u&); 
O={0 cos cp, 0 sin cp) is a two-dimensional vector, and 
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where X( y) = D( y)P1 y)/u is the scattering phase func- 
tion for single scattering. For Born scatterers [cf. Eq. (2)] we 
have 

If the phase shift associated with single scattering cannot 
be regarded as small and Eq. (2) does not hold, Eqs. (8)-(10) 
still remain correct; only the relation (11) changes (for more 
detail see below, Sec. 6). 

In connection with the transition from Eq. (3) to Eq. (7) 
it is necessary to take into account the following circum- 
stance. From the energy conservation law it follows that the 
total contribution from the second Stokes parameter to the 
transport of the intensity should vanish identically, 

Condition (12) is exact and should hold to all orders in the 
small-angle expansion of the corresponding term on the 
right-hand side of Eq. (3). Direct calculations show that the 
right-hand side of Eq. (7) satisfies the identity (12) (see Ap- 
pendix A). 

The system of equations (7) can be reduced to differen- 
tial form if we carry out a Bessel transformation with the 
function Jo(w9) in the equation for and in the equation for 
Q transform with J2(w6). As a result we obtain the follow- 
ing system of differential equations (cf. Appendix B): 

where 

The boundary conditions for Eqs. (13) and (14) take the 
form 

By virtue of the condition (15) a nonzero value for the 
polarization Q arises only due to the "source term" on the 
right-hand side of Eq. (14). This source is determined by the 
intensity I. In turn, the quantity on the right-hand side of Eq. 
(13) is the source of polarization corrections to the intensity. 
If we neglect this quantity, Eq. (13) reduces to a scalar small- 
angle transport equation written so as to include the effect of 
absorption on the angular distribution of the radiation (this 
effect corresponds to the term u , ~ j / 2 )  (Ref. 10). 

Before going on to solve Eqs. (13) and (14) we specify 
the form of the single-scattering scattering phase function 
~ ( y ) .  We consider scattering phase functions of algebraic 
form33 

where yo signifies the characteristic angle for single scatter- 
ing, y o 4 ;  xo is a normalization constant [we have 
x0=(a-2) /2~  for a-2>[ln(2/ yo)]-', and 
,yo=[2~ln(2/yo)]-1 for la-21<[ln(2/y0)]-'1. 

For the scattering phase function (16) the momentum- 
transfer scattering coefficient utr introduced above is equal to 

whence we obtain 

I 2 ~ ( y ~ / ~ ) ~ - ~ ( a - 2 ) 1 ( 4 -  a ) ,  2 < a < 4 ,  

The algebraic scattering phase functions (16) with index 
a=2-4 describe realistic small-angle scattering in different 
media with large i1re~u1arities.l'~'~ In particular, the index 
a=11/3 corresponds to light scattering in a turbulent me- 
dium (the Kolmogorov-Obukhov ~ ~ e c t r u m ) , ' ~ ~ ' ~ ~  while for 
a = 3  Eq. (16) determines the Henyey-Grinstein scattering 
phase function, which is often used to describe light scatter- 
ing in aerosols and an aqueous medium.lJ3 When light is 
scattered in material near phase-transition points, the index a 
is equal to a=2-  ?J, where 7 3 0  (see, e.g., Refs. 4 and 29). 
In the case of fractal media a coincides with the fractal di- 
mensionality and, depending upon the conditions of forma- 
tion, the properties of the subparticles, etc., can be either 
larger or smaller than a = 2  (Refs. 23, 30, 34). 

The most interesting case is that of light scattering at 
depth z>l,  where multiple scattering plays an important role 
and the effective deflection angles 8 are greater than the 
characteristic angle yo for single scattering, 0 >yo. 
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In this range of angles the values of the Stokes param- 
eters i(z, w) and ~ ( z ,  w) entering into Eqs. (13) and (14) are 
determined by the behavior of the function ~ ( w )  for rela- 
tively small values of w, l<w<ll  yo. For these values of w 
the function ~ ( w )  can be written as a power series. Then in 
the general case for scattering phase functions of the form 
(16) it is necessary to retain four terms in the expansion of 
x ( 4 :  

where 

the constant io for a > 2  is equal to unity, while near the 
value a = 2  it is necessary to use for ,io the more accurate 
expression io = (1  - ( yo/2)"-2) - '; here r (x )  is the gamma 
function.35 For a>4 the magnitude 1 a is proportional to the 
mean square of the single-scattering angle, 1 a,[ = (?)/4, 
where (9) = 2?rJ; yd y g X (  y). Accordingly, for a>6 the 
magnitude Ical is proportional to the fourth moment 
lcaJ = (y4)/64 of the scattering phase function, where 
(r4)=2~SomYdYY4x(Y). 

Two factors are involved in the need to treat all the 
terms1) in (17). First, for a close to values a-2n (n 
= 1,2,3), the terms in the expansion (17) proportional to 
w2("-') and wa-2 are of the same order and should be re- 
tained together. Secondly, as can easily be seen by direct 
differentiation, the first two terms in (17) yield a vanishing 
contribution to the derivatives of the function n(w) defined 
in (11) on the right-hand sides of Eqs. (13) and (14). 

3. SOLUTION OF THE TRANSPORT EQUATION; GENERAL 
RELATIONS 

For small-angle light scattering in weakly absorbent 
(1,>1,) media the effect of the absorption on the angular and 
spatial divergence of the radiation can be neglected and in 
Eqs. (13) and (14) we can set ua=O. Under these conditions 
Eqs. (13) and (14) admit an exact solution for a single- 
scattering phase function of arbitrary form: 

For small-angle scattering the argument of the hyperbolic 
functions in Eqs. (18) and (19) is small. Expanding the hy- 
perbolic functions in power series we find 

Relations (18)-(21) are an immediate generalization of the 
results for scalar small-angle multiple-scattering 
theory.l,6-8,12-14 

The first term on the right-hand side of (20) is identical 
with the familiar result of the scalar approach.',6-8,12-'4 The 
second term in (20) describes the polarization correction 
Si,, to the intensity. This correction is determined by the 
term in the right-hand side of Eq. (13) containing the second 
Stokes parameter Q. The ratio of (21) to (20) yields the 
degree of polarization P = Q / ~  of the scattered radiation. 
Since the quantity &, is small, S ~ , , / ~ 4  1, the correction 
~i,, in (20) can be neglected to lowest order in calculating 
the degree of polarization. 

In strongly absorbent (1,<1,,) media, beginning at some 
depth z,  it is no longer permissible to neglect the effect of 
absorption on the angular divergence of the beam. It is sig- 
nificant that this occurs while still in the small-angle regime 
of multiple scattering (i.e., for z<l,,). Absorption suppresses 
the contribution of the photons scattered through relatively 
large angles and enables the small-angle light propagation 
regime to persist at all For 1,<1,, the asymptotic 
value of the mean square angle for multiple scattering is 
always small, (@),<I (Refs. 9-11; see also the numerical 
calculations presented in Refs. 36 and 37). In this connection 
Eqs. (13) and (14) can be used2) to describe light propagation 
at arbitrary values of z. For small z, so long as absorption 
does not effect the angular distribution of the radiation, ex- 
pressions (20) and (21) for i and Q follow from (13) and 
(14). At larger depths Eqs. (13) and (14) must now be solved 
including terms proportional to ma, which begin to be of the 
same order as the other terms of these equations. 

There is no difficulty in transforming Eqs. (13) and (14) 
together with the boundary conditions (15) into two indepen- 
dent equations for i and (5 separately: 
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where we have written ~(o )=uo(d /do ) [ ( l l o ) (dn (w) ldw) ] ,  
I'i and T o  are the Green's functions of Eqs. (13) and (14) 
respectively, i.e., the solutions of the equations which follow 
from (13) and (14) if we replace the terms on their right-hand 
sides by sources of the form 6 ( z , w ) =  S ( z ) S ( o -  o r ) / w ,  
and the function f(O)(z, w )  is the solution of the scalar trans- 
port equation in the small-angle approximation, 

with the boundary condition (15). 
It is easy to see by direct substitution that the functions 

I'i and are the zeroth and second harmonics in the azi- 
muthal angle of the solution ri(zl  o,ol) of the scalar trans- 
port equation (24) with the boundary condition r i ( z  
= 0 1 o , o 1 ) =  S ( o - o r ) ,  

where w o 1 = o w '  cos l. 
Under small-angle scattering conditions ( 0 4 1 , ~ - 1 1  

e l )  analysis shows that the estimate I E l - ~ - ( l - ~ ) / w ~  
holds. Ultimately the quantity o-4 enters in Eqs. (22) and 
(23) as a small parameter and they can be solved by iteration. 
In particular, if the functions Ti and are calculated ne- 
glecting absorption, then from (22) and (23) we immediately 
obtain expressions (20) and (21). But in the general case the 
problem of calculating the polarization properties of an ini- 
tially unpolarized beam reduces to solving the scalar trans- 
port equation (24) in the small-angle approximation. 

Equation (24) cannot be solved analytically for an arbi- 
trary scattering phase function. The only case in which Eq. 
(24) can be solved explicitly is that in which the function 
~ ( y )  falls off rapidly [as in Eq. (17) with a>4] ,  for which 
~ ( w )  can be approximated by X(w)=1-($)02/4.  In this ap- 
proximation Eq. (24) is equivalent to the diffusive transport 
equation in the small-angle approximation9310 

I d  d -  
( z ,  e )  = D - - e - rco) (~ ,  e ) ,  (26) e d e  d e  

in which the quantity 

is the photon angular diffusion coefficient D=o;d2. Using 
the results of Refs. 9 and 10 we find 
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where I,(x) is the modified Bessel function of order n;35 the 
expression for TQ differs from (29) only in the replacement 
of I. by 1 2 .  The functions which appear in Eqs. (28) and (29) 
are defined by 

For this case we have ( e2 ) ,  = 2 4 m .  From (30) it 
follows that the distance I d  over which the effect of absorp- 
tion on the angular divergence of the radiation flux becomes 
significant is determined as 1~' (~~(82) , /2_>- ' .  

Substituting the resulting quantities I('), T i  and T o  in 
(22) and (23), we can obtain expressions analogous to (20) 
and (21) for the intensity and the second Stokes parameter in 
an absorbing medium. For Q, for example, in the first non- 
vanishing approximation in 82 we find 

dz' o d o  

The range of applicability of the results (28)-(31) is dis- 
cussed in detail in the next section. There we also show how 
to generalize these results to the case of smaller values a 6 4  
of the decay index of the phase function. 

4. ANGULAR SPECTRUM FOR MULTIPLE SCATTERING OF 
RADIATION 

We begin by considering how the angular spectrum for 
multiple scattering of light depends on the decay index a. 
This analysis is of interest even though similar studies have 
already been carried out in Refs. 8, 14, and 38. First of all, 
Refs. 8, 14, and 38 did not consider how the angular spec- 
trum is restructured in the neighborhoods of the "critical" 
values a = 2  and a=4;  secondly, the question of the effect 
absorption has on the angular divergence of the beam was 
not raised at all. 

We carry out our treatment for fixed values of the char- 
acteristic single-scattering angle yo and momentum-transfer 
cross section a,,. For the sake of clarity, Fig. 1 shows a 
diagram illustrating the change in the angular dependence of 
the intensity as a function of a. 

In the angular spectrum for multiple light scattering we 
can distinguish a bulge, the range of angles near the maxi- 
mum intensity for @< 8, and "wings" for @> @,. In the re- 
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FIG. 1. Diagram illustrating the behavior of the angular spectrum 
i ( z ,  8) as a function of the index a .  Trace I describes the behavior 
of 8= yo exp[lla-21, trace I1 that of @,(a), trace I11 that of 
8= yo exp[l/4-a], trace IV that of 8= yo exp[l/a-41; 
a,=2+ln (u,,z)/ln yo, a,,,=4~2/ln(u,,zl$). 

gion a>4+2/ln(at,.z/4) (regions 3 and 3a in Fig. 1) we have As a decreases further (a<4-2/ln(atT/4), regions 1 
0, - 6. Retaining the first two terms in the expansion and l a  in Fig. 1) the third term begins to play the dominant 
(17) and substituting the resulting expression in Eq. (20), for role in expression (17). In this situation the characteristic 
8< 8, we find the intensity multiple scattering angle 0, varies as B , ~ ( U ~ ~ ) ~ / " - ~ ,  and the 

following expressions hold for the intensity: 
1 e2 

Idif(.?, 0)- - 
2 P ~ t &  

(32) i (z ,  0) 

In the bulge region the spectrum has a Gaussian form and d a e 4  e,, 
results from photon diffusion in angle.8,38 The wings of the 2 7 r ( u , , ~ ) ~ / ( ~ - ~ )  ' 

(36) 

spectrum are formed by photons which have undergone mul- 4 - a  
tiple deflections to small angles (8< 8,) and a single scatter- 2"-3 - 

2 ~ ( a - 2 )  
e+ e, , ea ' (37) 

ing through a relatively large angle O> 8,. We can establish 
the validity of this interpretation by estimating the optimum where da= ( a -  2)(4-a)/(a-2)[r(a/2)/r(3 - ( r / 2 ) 1 ~ / ( ~ - ~ ) .  
thickness of the layer with respect to scattering through In the case a=3,  which corresponds to the Henyey- 
angles 8> 8, ; it turns out to be much less than unity. The Grinstein phase f u n ~ t i o n , " ~ ~ - ~ ~  the quantity i(z,  0) is equal 
behavior of the intensity for O* 8, is determined by the first to 
terms not equal to w2" in the expansion (17). In the wings 

- - 

i(z,  8) is equal to 

In a small neighborhood of the value a = 4  (more pre- 
cisely, in regions 2 and 2a in Fig. 1) the multiple scattering 
process, strictly speaking, can no longer be regarded as a 
diffusion in angle. However, in the angular spectrum, just as 
for larger values of a ,  we can distinguish regions corre- 
sponding to the bulge and the wings. Now, retaining the third 
term in the expansion (17) of ~ ( w )  along with the second we 
find that in regions 2 and 2a of the diagram (Fig. 1) the 

It is easy to see that expression (38) goes over to Eqs. (36) 
and (37) with a = 3  in the corresponding limiting cases. 

As a approaches a=2, Eq. (37) is correct beginning at 
0 >[ut&/(a-2)1 O,, i.e., the regions of the bulge 
and wings in the spectrum are found to be distinct. 

Near a=a,=2+ln (at,z)/ln yo the width 8, of the bulge 
decreases, becoming on the order of the single-scattering 
angle yo. Under these conditions for KO, 
=yo exp [l/(a-2)] (region l b  in Fig. I), for the intensity 
i(z,  8) we find from (20) 

intensity behaves as follows: 
vlexp(v2) 1 

In ( 2 1 ~ 0 )  i(z,  e) - +- 
2 ~ e ~ - ~ l  47~0: 

i(z,  e) - 
Put6  In ( ~ t F l  Y;) 

e s e , ;  (34) x ieXp(- 2 [ ( 6) a-2- I ]  ] - e:1 exp( v2)),  

(39) 

(35) where 
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In the small neighborhood a<2+[ln(2/yo)]-' the second 
term in (39) can be omitted and we find for the intensity 

For the case in which a = 2  holds exactly Eq. (40) was 
derived in Refs. 6, 8, and 12-14. 

For a<2-[ln(2/yo)]-' the ratio atda which character- 
izes the single-scattering angular anisotropy no longer con- 
tains the small parameter yo, i.e., we have a , J ~ 2 - a .  
Hence for a<2  the small-angle multiple scattering regime 
exists only in the small neighborhood 2-a41. For smaller 
values of the exponent a the light flux isotropizes after a 
small number of collisions, and the small-angle approxima- 
tion is inadequate to describe multiple scattering. 

Up until now we have ignored the effect of absorption 
on the shape of the angular spectrum of the radiation. For the 
case of weak absorption in the medium (1,>1,,) this effect 
starts to be important for zPl,,, when the angular distribu- 
tion has isotropized considerably. Absorption in this case re- 
sults only in a small anisotropy of the angular 
On the other hand, for strong absorption (l,<l,,) the angular 
spectrum always remains extended in the direction of small 
scattering angles.9-'1,36,37 The asymptotic ("deep") regime 
of propagation, in which the shape of the angular spectrum 
and the attenuation rate of the total flux remain unchanged, 
sets in for strong absorption at z<  I,, . Hence the small-angle 
propagation regime remains correct for arbitrary z. 

In the asymptotic regime the radiation intensity i(z,B) 
can be represented as a product of two functions, one of 
which depends only on the depth z and the other only on the 
scattering angle 0 (Ref. 36). The z dependence is exponen- 
tial, and the attenuation rate is determined by the lowest 
eigenvalue corresponding to Eq. (24) for the "stationary" 
problem. The angular dependence of the scattered light in- 
tensity is described by the corresponding eigenfunction. The 
absorption changes the shape of the angular spectrum notice- 
ably, but it continues to depend on the decay index a of the 
phase function. 

The spectrum can be calculated most easily in the region 
of the wings. For this it suffices to find the form of the 
expansion of i(z,w) for small w. Substituting the expansion 
of i(z, w) in a power series in o in Eq. (24) and equating the 
coefficients of powers of w, we find 

where ~ ( z )  =i(z, w = 0) = $ d ~ J ( z ,  0) is the radiation flux at 
depth z. 

The series (41) corresponds to the following asymptotic 
form of i(z,  0): 

2"-3(4- a )  a,, E(z) 
I(z,  e) = 2. 

1 - (21 y0)a-4 Za en+ 
Thus, owing to the increase in the probability of absorption 
of strongly deflected photons, the intensity rate of decay 
i o : O - a  at large z becomes jm8-a-2. This change in the 
asymptotic decay law for the intensity was demonstrated in 
Ref. 39 for the case of an exactly soluble scattering model in 
a two-dimensional medium. 

As for the region where the angle 8 is relatively small 
(i.e., the bulge in the spectrum), here the dependence of the 
intensity on a becomes less marked as z increases. 

For (~>4+2[ln(e~/$)]-' the bulge in the spectrum, as in 
the case when absorption is present, forms as a result of 
photon angular diffusion. In this case in the expansion for 
X(w) we can retain just the quadratic term. The solution of 
Eq. (24) with this function X(w) is determined by the expres- 
sion (28), which leads to the following simple formula for 
the intensity: 

where 

is the mean square multiple-scattering angle at depth z. From 
(43) for z < Id = we obtain the previous result (32), 
while for z+ld the radiation distribution in the asymptotic 
regime is 

where ( 1 9 ~ ) ~  = 2 Jla/lt, is the asymptotic value of the mean 
square multiple-scattering angle. For strong absorption, 
when Eq. (45) holds, we have (d2),<1. 

For a<4  + 2(ln( 8:/ A)) -' the above approximation for 
X(o) fails, and these results become inapplicable. In this case 
we can use the self-consistent diffusion approximation40 to 
calculate i (z ,  0) in the region of the bulge. The essential idea 
of this approximation is as follows. We assume that a layer 
of the medium of a given thickness z is characterized by a 
certain value of the diffusion coefficient D,. Then the inten- 
sity i(z,  0) of the radiation passing through the layer can be 
described by the Gaussian distribution (43). In determining 
the diffusion coefficient D, we assume that the main contri- 
bution to D, comes from photons deflected through angles 
less than the typical multiple-scattering angle in the layer, 
i.e., m, and we set 

In the case a>4  the integral in (46) for + yo is 
independent of the upper limit and the definition (45) is the 
same as the usual definition of the diffusion coefficient [cf. 
Eq. (27)l. For a s 4  Eqs. (44) and (46) constitute a self- 
consistent prescription for calculating the intensity i of the 
radiation. The usual diffusion approximation for ( ~ s 4  is in- 
applicable, since the integral (27) diverges at the upper limit. 
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The numerical constant p which enters into (46) is de- 
termined by comparing the value of i found in the self- 
consistent approximation and the result of solving the trans- 
port equation without treating absorption [cf. Eqs. (34), (36), 
and (39)]. For a phase function of the form (16) we find 
77=[r(3-~2)]11(4-a), 2 ~ ~ ~ 4 .  

Note that this method for calculating the angular distri- 
bution was used for the first time in the work of williams4' 
(see also Refs. 5 and 42) to describe multiple electron scat- 
tering (where a = 4  holds). 

Close to the value a = 4  (where a = 4  
(Ia-4l<[ln((@),l$j)1-~) holds) the value of D, is related 
to the mean square multiple-scattering angle (e2), through 
the following system of equations: 

According to (47) and (48), at moderate depths 241, we 
have D,--1/4uyi In uz, and we come back to the result 
(34). In the asymptotic regime (z>ld) we have 
Dm = 1/4uyi  In ((@),J&) and 

In the region 2<a<4 the diffusion coefficient satisfies 

and (e2), continues to be given by expression (48). Substi- 
tuting (49) in (48) we find a simple equation for the quantity 
A = D,/D,,, : 

(50) 

where 

(51) 

Equation (50) for 5 4 1 implies A(() = 514-a)1(a-2), and 
we obtain (36). For 6 B1 the function A(@ is equal to unity 
and for i(z,8) expression (45) continued to hold for 6 
=S m; here the quantity (@), is now defined using Eq. 
(51). 

Close to a = 2  (i.e., for a = 2  (la-21<[ln(2/y0)]-') the 
quantity D, is expressed in terms of (@), using 

which together with (48) leads to the equation 

m= tanh[ t m 1 ,  (53) 

where (82),=ulu, ln (2/yo). Equation (53) has a nontrivial 
solution only for 5 >1. This results from the following con- 
sideration. 

For values of a lying close to a = 2  it makes sense to talk 
about a bulge in the angular distribution only for a depth 
z>  1,. At smaller depths z<  ld , as shown above [cf. Eq. (39)] 
the multiple-scattering angular spectrum has no bulge [i.e., 
the quantity i(z,8-+0) in question is undefined]. Note that 
this change in the shape of the angular spectrum as the depth 
increases is due to the effect of absorption in the medium. 

For small-angle multiple scattering the relative size of 
the polarization correction c9iPI to the intensity at arbitrary 
values of a is small compared with unity. Specifically, at 
small depths (z41d the second term in (20) yields 

(54) 
3 s a .  

Accordingly, in the asymptotic regime ( ~ $ 1 ~ )  we find for 
arbitrary a directly from Eqs. (13) and (14) 

In Eqs. (54) and (55) the values of (e2), and (@), for each a 
are determined by the relations given above. 

One further remark is needed regarding 8iPI. From the 
energy conservation law (12) it follows that the right-hand 
side of Eq. (13) should vanish at w=O. On the other hand, 
Eq. (21) implies that the second Stokes parameter varies as 
~ a w " - ~  close to the value w=O. Consequently, the right- 
hand side of Eq. (13) for small w-0 is proportional to w2a-6 
and for a s 3  it does not vanish at the point w=O. This con- 
tradiction is not real; it is associated with the inapplicability 
of Eqs. (7) for 8>1 and that of Eqs. (13) and (14) for very 
small w-1/%1. 

5. DEGREE OF POLARIZATION OF MULTIPLY SCATTERED 
RADIATION 

5.1. Weakly absorbing media 

To analyze the degree of polarization we break up the 
range of variation of a into several subregions a>6; 
la-6/<[ln (uz)]-'; 4<a<6; la-41<[ln (uz)]-'; 2<a<4; 
la-2141. In each of these the formulas for the polarization 
properties of light are quite different. 

In the case of rapidly decaying phase functions (a>6) it 
follows from (20) and (21) together with the expansion (17) 
that the degree of polarization near the bulge in the angular 
spectrum ( 0 < 8,, 6, - 6) is equal to 

For small values of a ,  (4<a<6) the degree of polariza- 
tion in the region of the bulge falls off with depth more 
slowly than is implied by (56), 

where 
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In the transition regions la-41, Ia-61<[ln (uz)]-' the quan- 

tity P for 8< 8, [where 8, - holds for a-4 

(Ref. 31) and 8, - 6 holds for a-61 contains the loga- 
rithmic factor 

p= - 
e2 

la-4(<[ln (uz)]-'; 
4 In ( uz) ' (59) 

In the region a,<a<4, to lowest nonvanishing order in 
yd8 61 ,  we find that in the region of the bulge of the angu- 
lar spectrum (8< 8,-(~~,z) ' /("-~)) the degree of polariza- 
tion is independent of depth: 

In the wings of the spectrum (8> 8,) the degree of po- 
larization for all a>a, is equal to 

For a<a, in the range of angles K8, we find for the 
degree of polarization 

82 p= - - 
2 

As a decreases further, (~<2+[ln(2/~,)]-', the angular 
spectrum in the whole range of angles 8 > yo falls off with 
increasing 8 algebraically [cf. Eq. (40)] and the degree of 
polarization is determined by expression (62). 

Note that for the Henyey-Grinstein phase function 
(a=3) the degree of polarization can be described by a single 
general formula over the whole range of variation of angles 
(Fig. 2) 

Expression (63) for 8 <u,,.z and 8 9ut,.z goes over to (61) 
and (62) respectively. 

As can be seen from the above results, for relatively 
large angles 8, where the intensity falls off as Zm F a ,  the 
quantity P is the same as the degree of polarization for sin- 
gly scattered radiati~n."~' This behavior holds in general. It 
is related to the following fact. The number of collisions N  in 
a layer of thickness z, as a result of which a photon is de- 
flected through an angle B>[ut,z/(a- 2)1"("-~)> 0, , is 
equal to the product of the total number of collisions N -  uz 
by the probability of deflection through an angle 
8>[~~/(a-2)]"("-~)  in a single scattering event. A simple 
estimate shows that the quantity N  is of order unity. Conse- 

FIG. 2. Characteristics of multiple scattering of light for the Henyey- 
Grinstein phase function (a=3). 1) Angular spectrum (arbitrary index); 2) 
the function p ( a =  3,z) = 1 ~ 1 1 0 ~ ;  the broken trace represents the value 
p ( a , z ) =  112 corresponding to single scattering of light. 

quently, the radiation intensity in this range of angles devel- 
ops as a result of many scattering events through angles 
~ [u~ ,z / ( a -2 ) ]~ ' ( " -~ )  and a single scattering through a rela- 
tively large angle 8>[ut,z/(a- 2)] '/(a-2). It is just this latter 
process which has the greatest eEect on the polarization 
properties of the radiation and determines the magnitude 
of P. 

Expression (62) determines the main contribution to the 
value of P for relatively large angles 8. On the other hand, 
the deviation SP in the degree of polarization from the value 
determined by Eq. (62) ( P  = - e2/2 + SP) increases as a 
function of 8. It follows from (20) and (21) that for 8> 8, the 
quantity SP behaves for as $-" when 8 increases. This is 
clearly discernible also in the case of the Henyey-Grinstein 
phase function [Eq. (63)], for which SPx 8 holds. 

5.2. Strongly absorbing media 

Absorption not only changes the angular distribution of 
multiply scattered radiation, it can also have a major effect 
on the dependence of the degree of polarization on the depth 
z. Let us analyze the behavior of P in strongly absorbing 
(1,<1,,) media. 

For a phase function ~ ( y )  that falls off with increasing y 
more rapidly than y-4 we find from expressions (31) and 
(43) 

we2 
P= - -A dz' 

32  
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Like (43), expression (64) is applicable in describing the 
propagation of radiation in the region of small deflection 
angles 8G 8, (i.e., in the region of the bulge in the angular 
spectrum. For phase functions with a decay index a>6 ex- 
pression (64) leads to the following result: 

where (r4)=8yddl(a-4)(a-6), vd= l i l=  1/2ua(#),, and the 
function f(5) is equal to 

At relatively small depths z41d,  when the effect of absorp- 
tion on the angular distribution of the radiation is negligible, 
expression (65) goes over to (56). As z increases the degree 
of polarization drops off monotonically, and in the asymp- 
totic regime zBld  it approaches its limiting value 

In the vicinity of a = 6  (la-61<[ln((@),/d)1-~) the de- 
gree of polarization is determined by 

where the function f differs from (66) by the logarithmic 
factor 

cosh 5' 
f ( ~ l a = 6 ) = 2 ( ~ ~ d * ' ( ~ )  

For z41d relations (68) and (69) go over to (60). In the 
asymptotic regime we find from (68) and (69) 

In (70) the analog of (9) is the quantity y: ln((@)2yi) and 
we have ($)=A. 

In the range 4<a<6 Eq. (64) yields 

where 

COSh 51 (a-2)/2 

f ( ( Ia<6)=2 d5'[cosh(5- c ' ) ] ( " -~ ) /~  - I,' ( sinh ) 

The result (57), (58) follows from (71), (72) for z41d,  and in 
the "deep" regime we have 

According to (73), the degree of polarization P, increases as 
the index a decreases. 

For a<4+2[ln((@),l d ) ]  -' we should use the functions 
A.  and A  calculated in the self-consistent diffusion approxi- 
mation in relation (64). The values of these functions Ai(zr),  
A  i(z - z '), i = 0, 1 in a layer of thickness z are calculated 
assuming (see Sec. 4 above) that the layer is characterized by 
its own value of the diffusion coefficient D,. The above 
remarks imply that the degree of polarization near a = 4  
(la-4l<[ln((@),l yi)]-l)  is given by 

f ( t I a = 4 ) = 2 ( 5  coth 5-ln cosh 0 ,  (74) 

where D, is determined by the system of equations (47), 
(48). 

At smaller depths z41d,  expression (74) goes over to 
(59), while for z%ld it approaches a limit 

As a decreases further (2<(u<4) the value of the degree 
of polarization continues to increase: 

(76) 
where the ratio DJD, is found from Eq. (50). 

For z41d we find Eq. (61) from (76). As regards the 
limiting value P, of the degree of polarization, it is found to 
be smaller than the quantity (61), 

The a dependence of P, is monotonic: in the range of values 
2<a<4, P, varies from P , ( a = 2 ) = - 0 ~ / 4  to 
P,(a= 4) = - e2/2[1n 2/ln(2a/uad)]. 

The above results (67), (70), (73), (75), and (77) imply 
that the asymptotic value P, of the degree of polarization 
can be written in the form 
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where * , (x)  is some function. Thus, P ,  depends on the 
optical properties of the medium only through the combina- 
tion a,&u. Physically, the quantity ua&a is proportional to 
the difference in the probabilities of absorption of unscat- 
tered and singly scattered photons over the mean free path 1. 
Since $41 holds and in realistic situations we have a,/u<l, 
the parameter aa&a is generally small. 

The value of the degree of polarization in the wings of 
the distribution (8> 8,) does not depend on the optical prop- 
erties of the medium and agrees with the result that follows 
from the single-scattering law. For the case z e l d  this was 
shown in the previous section. It is also quite simple to prove 
this assertion for large depths. 

Substituting the expansion (41) into Eq. (14) and follow- 
ing the same procedure as in the derivation of Eq. (41) itself, 
we find for ~ ( z , w )  an expansion in small w. After inverting 
the Bessel transformation for the second Stokes parameter 
we find 

=-  
Zap4(4- a )  a,, E(z) -- +... . 

l - ( 2 1 y o ) a 4  a 8'" (79) 

As in (42), Eq. (79) holds for 8 S m. The ratio of (79) 
to (42) yields P =  - e2/2. 

6. MULTIPLE SCAlTERlNG FROM LARGE PARTICLES: 
CORRECTIONS TO THE BORN APPROXIMATION 

k,a Im n 4  I),  when the Born approximation is inapplicable. 
This situation occurs quite frequently in various experiments 
on multiple scattering of light.3,20,U-25 

In the range of angles y greater than the diffraction angle 
( y S h l a )  the phase function for single scattering averaged 
over the range of angles A y> Ala can be represented as an 
expansion in the number of collisions of rays with a surface 
~catterer:~' 

The expansion (80) is obtained neglecting interference be- 
tween waves which undergo different numbers of reflections. 

The quantities X(l), k2) ,  and X(3) result respectively from 
rays deflected as a result of specular reflection from the sur- 
face, passing through the scatterer, and also from having ex- 
perienced one additional internal reflection from the surface 
of the sphere. At scattering angles y 4 the second 
term in (80) dominates. In the range of angles hla  * y 
6 dm it is determined by expression (16) with a=4,  
xo=1/2.rr, and yo=21n-11, while for y 3 2 it 
vanishes i d e n t i ~ a l l ~ . ~ ~ ? ~ ~  It is just this term which makes the 
principal contribution to the total scattering cross section 
a=2.rra2. The first and third terms in (80) are important for 
y > dm. In this range of angles they are all equal to 
lowest order in In - 11. Their total contribution to (80) is 
given by the asymptotic formula (16) at large angles (yZ> yo) 
with a=4, xo= l/4.rr, and yo = 2 1 n - 11. The relative magni- 
tude of the contribution of X(l) and k3) to the total cross 
section is small, 1 n - 1 1 e 1. 

Using the expansion (17) for a = 4  we find for the quan- 
tity 1 - ~ ( w )  in the range w< l /  yo- In - 11 -' of interest to 
US 

Now we consider propagation of light in a medium con- 
sisting of transparent spheres of large radius (koa I n - 1 I S 1,  

From expression (81) it follows that under these condi- the multiple scattering angle at depths z>l[ln- l l ln( l /  
tions the intensity i(z,  0) for multiple scattering of radiation In- 11)]-' is the sum of two terms, 
near the bulge (8< 8,) is determined by a relation analogous 1 
to Eq. (34), (e2),-,In-- 112z In - +uln-  1I2z In (az) .  (83) 

In-ll 

1 e2 The first term in (83) results from small-angle diffusion of 
i(z,  e) = exp( - - l12rL], (82) rays that have crossed the boundary of different scatteren 

2.rru)n- 1 I 2 z ~ ,  twice. The second term in (83) describes multiple scattering 
of rays that have undergone external or internal specular re- 

where L ,=ln (uz) holds for z<  l[ 1 n - 11 ln(1 / [  n - 1 I)] -' flection from the boundaries of the scatterers and deflection 
and ~ , = l n  d m  holds for in each collision through a relatively large ( y > d m )  
z>l[ln-llln(l1ln-ll)]- ' .  The intensity of the wings angle. 
( 0  8,) of the angular spectrum is equal to the product of Corrections to the Born approximation are especially im- 
(80) and az.  portant for the magnitude of the degree of polarization of the 

Note that, as can be seen from (82), the spread in scattered waves. From the small-angle expansion of the exact 

122 JETP 80 (1). January 1995 E. E. Gorodnichev and D. B. Rogozkin 122 



scattering matrix44 we find that in the case of very large 
irregularities (koa Jn - 1 1 2 1) the diagonal elements d and 
d2, continue to be determined by expressions (8), while for 
the function II which appears in the nondiagonal elements of 
(9) and (10) we now must use the expression 

where All and A, are the scattering amplitudes of the waves 
polarized respectively parallel and perpendicular to the scat- 
tering plane.1*31*44 

In analogy with Eq. (80) we write the quantity n(y) as a 
sum 

where each term describes polarization of rays undergoing a 
different number of interactions with the boundary of a scat- 
terer. 

Using the results of the asymptotic representation of the 
exact Mie solution for large ~catterers,~' we find 

1 
11(2)( y)w - 4 x(~)(Y) ,  Y* m ,  

W y ) =  1 
n( l ) (Y)  + I I ( ~ ) ( ~ ) -  - - [X(l)(Y) +X(3)( y)], y% dm . 2 

From (86) we find without difficulty the degree of polarization of singly scattered radiation 

According to (87), at large angles the Born approximation still holds, while at relatively small angles the degree of polarization 
in general has the opposite sign. 

The function II(o) corresponding to expression (86) is equal to 

At depths z<l[ln- llln(l/ln- ll)]- '  the angle 8 
- dm enters the region of the wings of the angular spec- 
trum (i.e., > 8,). In this case, using expression (86) 
and the results of the previous section, we find for the degree 
of polarization of multiply scattered waves in the region of 
the bulge in the spectrum ( 8 4  8,) 

P= 
82 

8 In (uz) 

For z>l[ln-llln(l/ln-ll)]- '  the situation is differ- 
ent. The opposite inequality < 8, holds, and hence 
collisions with deflections through angles y > dm play 
the principal role. The main contribution to (20) and (21) 
comes from values w 6 ( d m )  - '. The degree of polar- 
ization has a value close to that found above in the Born 
approximation, 

At large depths, where absorption effects become impor- 
tant, when 1 9  1,<1, holds, the width of the angular spectrum 
is always greater than dm. Using this inequality we find 
for the degree of polarization 

where the diffusion coefficient is 
~ , = 1 / 4 ( u ~ n - l ~ ~ ) l n ( ( 8 2 ) , / ~ n - l ~ ~ ) ,  and the function 
f(51a=4) is defined by Eq. (74). For small values of z 
expression (91) goes over to (90), and for z+m it yields 

As for the degree of polarization on the wings of the 
angular spectrum (8% B,), in all cases considered above it 
coincides with the degree of polarization of singly scattered 
radiation and is determined by expression (87). 

7. CONCLUSION 

Summarizing the results of the above calculations, we 
paint a qualitative picture of the dependence of the degree of 
polarization of multiply scattered radiation on the medium 
parameters. 

The behavior of the degree of polarization P near the 
bulge in the angular distribution of the radiation can conve- 
niently be classified using the diagram given in Fig. 3. The 
diagram indicates the regions in which the function 
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FIG. 3. Diagram for the quantity p(a ,z )=  1~1182 as a function of z and a .  
Traces I-IV describe the following equations: for z<I,, I) a=4-l/ln(zlI), 
11) a=4+l/ln(zlI), 111) a=6-l/ln(zll), IV) a=6+l/ln(z/l); for z>Id,  If) 
a=4-l/ln(Idl), 11') a=4+lnn(ldl), 111') a=6-llln(ldl), IV') 
a = 6 +  l/ln(ldl). 

p(a ,z )=  I ~ 1 1 0 ~  displays different behavior, reflecting the 
way P changes as a function of the depth z and the decay 
index a of the phase function. Regions 1 and 1' in the dia- 
gram correspond to the range 2<a<4, with (region l') and 
without (region 1) absorption effects. The degree of polariza- 
tion in regions 1 and 1' is determined by Eqs. (61) and (76). 
Other values of a correspond to regions 2, 2' and 3, 3', etc. 
The degree of polarization P in regions 2 and 2' is deter- 
mined by expressions (59) and (74) respectively; that in re- 
gions 3 and 3' by Eqs. (57), (%), and (71); that in regions 4 
and 4' by Eqs. (60) and (68); and that in regions 5 and 5' by 
Eqs. (56) and (65). 

Using the diagram in Fig. 3 we can readily see how 
different values of a change the dependence of P on the 
depth z. For example, the behavior of the degree of polariza- 
tion in a turbulent (a=11/3) absorbing medium has the fol- 
lowing properties. At depths z=Z (20 -30)l the quantity 
p(a,z)  falls off as p ( a =  11/3,z)m[ln uz]-'. As z increases 
[ z a  (20-30)1] the function p ( a =  1 1 1 3 , ~ )  goes over to a 
plateau p-0.04. For 2 3  1~'1115'11 absorption effects begin to 
pull apart and the value of p ( a =  1113 ,~ )  decreases. In the 
deep regime p approaches its minimum value p,-0.03. 

Figure 4 shows p(a,z)  as a function of depth for differ- 
ent values of a. As can be seen from the figure, the degree of 
polarization falls off monotonically as z increases. As a de- 
creases the absolute value [PI grows (for a fixed value of the 
parameter u,-&u), and the depth dependence P(z) becomes 
more gradual. 

As the size of the irregularities in the medium increases 
and the deviations from the Born approximation grow, the 
behavior of the degree of polarization can change drastically. 
As shown above for the case of a medium consisting of 
refracting particles of a single radius, the degree of polariza- 
tion P for multiple scattering of light as a function of depth 
becomes more complicated. Nevertheless, P retains features 
inherent in single scattering. For relatively small values of z 
the degree of polarization is positive; then it changes sign 
and falls off approximately as in the case of Born scattering. 

Thus, the analysis of the degree of polarization of scat- 

FIG. 4. Plot of the functionp(a,z)= IPI182 as a function of the depth z for 
different values of a (u,$u=3.10-~): a) a=3; b) a=11/3; c) u=4; d) 
a=7.  

tered radiation can be an additional means (along with analy- 
sis of the angular spectrum) for studying structural variation 
in multiple-scattering random media. 

This work was performed with the partial support of the 
International Scientific Fund (Grant No. N3U000). 

APPENDIX A 

To prove the identity (12) we make a change of variables 
8= 8'+ y in the corresponding term in Eq. (7), taking into 
account the obvious identity 

where a ,  P = x , y .  As a result we find for the left-hand side of 
(12) 

+Ya)O;-(O;+Yg)Obl-J]. 

Then using the obvious relations 

we find that (A2) vanishes identically. 
When the conditions for the Born approximation (2) do 

not hold the proof of the identity (12) is unchanged. Now, 
however, instead of ~ ( y )  we must use II(y). 
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APPENDIX B 

Let us consider the evaluation of the right-hand side of 
Eq. (14). The corresponding term in Eq. (13) can be found 
analytically. 

From Eq. (7) it follows that the desired quantity 
&(z,  e ) = d Z 1 g  can be written 

where 

& 2 ( ~ , e ) =  - c I," - ","," ~ , n ( ~ ) ~ , ( ~ e ) i ( z , ~ ) .  

Using the recurrence relations for the Bessel f~nct ion?~ 
we transform (B2) into 

where 

~ ( z , o )  = 2 T edeJ0( o e ) i ( z ,  e ) .  I," 
Substituting (B3) and (B4) into ( B l )  for 

we find 

d2 
- i ( z , o ) ~ , I I ( w ) - n ( w )  - 

( d o '  

To derive (B5) we use the identity45 

Using elementary transformations in (B5) we find the right- 
hand side of Eq. (14). 

"1n contrast to the scalar transport theory, where it is always enough to 
retain only the first three terms in the expansion (17) in the analysis of the 
asymptotic form of the intensity at angles B> yo (Ref. 8). 

" ~ ~ u a t i o n s  (13) and (14) are unsuited for calculating the Stokes parameters 
of back-scattered light. However, the intensity of these photons is low. 
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