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We investigate a model of a laser with an absorbing cell for which the width T;; of the 
spectrum of the absorbing component is much narrower than the width T,-,' of the spectrum of 
the active medium. We show that it is possible to obtain stable generation of pulses of self- 
induced transparency by finding exact analytic solutions for a model that takes into account the 
effect of phase relaxation in the absorber, linear losses in the resonator, and saturation of 
the gain. In this model the amplifier is treated as a slow medium, i.e., rp4 Tg . We note the decisive 
role played by an optical filter that limits the gain bandwidth in ensuring the stability of the 
mode-locking regime against the appearance of a regime of cw emission. We discuss the choice of 
optimal parameters for the absorbing and amplifying media that make experimental 
realization of a regime of stable mode locking with a coherent absorber easier. 63 1995 American 
Institute of Physics. 

1. INTRODUCTION 

From the earliest days of laser engineering, researchers 
have concentrated much of their effort on creating stable 
sources of short, and especially ultrashort, optical pulses. A 
broad review that encompasses the experimental and theo- 
retical aspects of the generation of ultrashort pulses can be 
found in the paper by ~ e w . '  The development of techniques 
for passive mode locking in the colliding-pulse regime2,3 and 
use of compression of phase-modulated pulses in a disper- 
sive medium has led to further progress in the direction of 
femtosecond-duration pulses from dye An analo- 
gous mechanism forms the basis of the method of generating 
ultrashort pulses in solid-state lasers now known under the 
name of mode locking by an auxiliary pulse (MLAP).~,~ The 
basis of the M W  method is the use of phase self- 
modulation to bring about coherent addition of a laser pulse 
and a chirp pulse in an external nonlinear resonator.* Very 
recently, Spence et  aL9 proposed to use the induced Kerr lens 
within the amplifier as an effective mechanism for mode 
locking (KLML). Stable generation of pulses is achieved be- 
cause the losses for this regime are lower than they are in the 
regime of cw ~scillation.'~ The difference in losses is caused 
by self-focusing in the nonlinear amplifier.10~11,12 Both tech- 
niques, MLAP and KLML, are based on soliton generation, 
which is described by the nonlinear Schrodinger equation.13 

In this paper we propose another method for generating 
pulses that is based on the phenomenon of self-induced 
transparency  SIT).'^,^^ In 1967, McCall and Hahn observed 
that an absorber with an inhomogeneously broadened line 
shape becomes transparent (neglecting phase relaxation) to 
pulses that exceed certain characteristic power and duration 
thresholds (i.e., the area under the field envelope of the pulse 
should be larger than T). The initial stage of pulse propaga- 
tion is accompanied by establishment of a stationary shape 
for the envelope in the form of the function sech(x), while 
the pulse area approaches a value equal to 27~. The transpar- 
ency mechanism is based on the coherent interaction of ra- 

diation with the absorber: the leading edge of the pulse con- 
verts atoms of the absorber to the upper excited state, while 
the trailing edge of the pulse induces stimulated emission 
from the upper state that returns energy to the pulse field. 
This coherent exchange of energy between the medium and 
the field causes an appreciable delay of the pulse, whose 
velocity in the medium can differ by several orders of mag- 
nitude from its velocity in vacuum. It is noteworthy that 
almost all the essential features of SIT can occur when a 
pulse interacts with an absorber without inhomogeneous 
broadening as well. 

The simplest and most natural way to generate SIT 
pulses is to place a cell containing the absorbing medium 
within the laser resonator. In order to ensure coherence of the 
interaction of the pulse with the absorber, a wideband ampli- 
fier must be chosen such that T,-~+T['~T,-,', where TZg and 
T2p are the phase memory times for the amplifier and the 
absorber. The main problem in achieving stable mode lock- 
ing is to suppress the regime of cw oscillation. A necessary 
condition for this is the requirement that the overall gain of a 
weak signal be negative throughout the band of frequencies 
at the leading and trailing edges of the pulse. The narrower 
the spectral line profile of the absorber, the more difficult it is 
to satisfy this condition, which requires an appropriate in- 
crease in the concentration of absorbing atoms. However, 
increasing the concentration of absorbers brings a second, 
competitive process comes into play-the loss of energy 
within an absorber can become so large that it leads to the 
collapse of pulse generation. We will show that it is possible 
to choose a compromise absorber density only in the pres- 
ence of an optical filter. The filter prevents shortening of the 
pulse, while also eliminating the possibility that a regime of 
cw oscillation will arise in the wings of the line profile. 

The coherence of the pulse field interaction with the ab- 
sorber can cause another instability mechanism to d e v e l o p  
instability with respect to small amplitude modulations. We 
solved a similar problem with regard to stability in Ref. 16; 
here, we pause only to discuss the essential results. We de- 
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fine a stability parameter equal to the square of twice the 
ratio of the Rabi frequencies for the amplifier and absorber: 

where dg and dp  are the amplifier and absorber dipole mo- 
ments. In these expressions, we may pick to be the pulse 
amplitude; however, the field we choose is not important, 
since the ratio of Rabi frequencies enters into (1) and the 
field cancels. The condition for stable propagation is that 
s a 1 .  

When both stability conditions are satisfied, it is possible 
to generate SIT pulses with area under the envelope equal to 
27r (for the absorbing medium) and with considerable time 
delay for a single round trip through the resonator. From 
these characteristic properties we conclude that the absorber 
plays a primary role in the process of pulse generation. In 
fact, the role of the amplifier reduces to compensating for 
incoherent losses in the absorber and linear field losses in a 
resonator. An appropriate formalism in which to discuss the 
theory of SIT is the theory of a two-component medium. A 
new physical effect appears that is not contained in the 
theory of McCall and Hahn-the pulse amplitude (and thus 
the duration) is uniquely determined. Recall that in the clas- 
sic paper by McCall and ~ a h n , ' ~  the amplitude is a function 
of the energy of the input pulse and its transient evolution in 
the medium. 

In this paper we propose to present our material in the 
following order. In Sec. 2 we set forth the basic equations for 
the model, and justify the approximations used. In this sec- 
tion we write the polarization of the amplifying medium in 
the form of a series with respect to energy and field intensity. 
In Sec. 3 we obtain a solution in the form of 27r pulses and 
discuss the influence of the filter and dispersion of the gain 
on the soliton parameters. We analyzed the transient pro- 
cesses by which the steady-state field shape is set up in the 
resonator, and derived stability conditions in Ref. 16. 

2. THE MODEL AND BASIC EQUATIONS 

The model we propose is based on the simultaneous so- 
lution of the wave equation and two systems of Bloch equa- 
tions for the amplifier and the absorber. The description of 
the interaction of the field with the amplifying medium can 
be simplified by expanding the polarization in the small pa- 
rameter T2g/~p .  We also include the effect of an optical filter 
which limits the gain bandwidth. We are interested in a re- 
gime in which a sequence of short pulses is generated with 
repetition rate equal to the time for one round trip of the 
resonator. We will assume that a rather large number of 
modes participate in the generation, so that we may neglect 
the spatial extent of each pulse compared to the resonator 
length. This allows us to replace the periodic boundary con- 
ditions on the field 

where I,,, and rCav are the length of the resonator and time 
for a circuit of the resonator, by the condition at infinity 

The solution to the problem is obtained in the form of a pulse 
with steady-state shape E(u), duration rp, and moving at 
velocity up.  This approximation is valid if the relative 
change in the field of the pulse is small during its passage 
through any of the resonator elements. We will assume that 
the dynamics of interaction of the radiation with both media 
is determined by the following conditions: both before a 
pulse arrives at a given point in the resonator and after it 
passes that point, the losses in the absorber return to their 
original levels via spontaneous relaxation. Furthermore, 
within the same interval of time, the initial value of the gain 
is re-established in the process of pumping. In order for this 
to occur, it is necessary to choose an active medium with a 
recovery time (i.e., the lifetime of the upper level) that is 
comparable to the round trip time of the resonator. As a rule, 
this condition is fulfilled for dye and semiconductor lasers. 

We will assume that the spectral line widths of the ab- 
sorber and amplifier satisfy A wg%-Amp. When this condition 
holds, a pulse formed by mode locking can interact coher- 
ently with the absorber, since rp<T2p. In the similar formu- 
lation of this problem given in Ref. 17, a solid-state active 
medium was used as the amplifier and dynamic saturation 
was neglected; without this latter effect, stable generation of 
SIT pulses is impossible. The formalism we use in the 
present paper was first introduced by us in Ref. 18 and 19; 
however, in that paper we made a sign error in deriving the 
stability conditions, which led to incorrect results. In what 
follows, we give a correct and expanded theory of mode 
locking with a coherent absorber. 

Let us write the wave equation in the slowly varying 
amplitude and phase approximation, first separating the total 
field into real amplitude and phase. We also separate the 
polarizations of the amplifying and absorbing media into in- 
phase and quadrature components. We will assume that the 
line profiles of both media are homogeneously broadened: 

In this case the total field and polarization can be written in 
the form: 

h 
g(z,t) = - E(u,z)exp(i[cp(z,u) - (mot - kz)] ) ,  (3a) 

dg  

In order to identify the basic features of pulse generation 
and to simplify the exposition, we will assume that the cen- 
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ters of the amplification and absorption lines, and the trans- 
mission maximum of the filter LBw, all occur at the same 
frequency wo. We will look for steady-state (i.e., depending 
only on the wave coordinate u) non-phase-modulated solu- 
tions for the field in the form of pulses with a carrier fre- 
quency oo. In these equations we have retained the coordi- 
nate z and phase cp(z,u) for further use in deriving 
conditions for stability. We have introduced the following 
notation: n ,  and n p  are the concentrations of active and pas- 
sive atoms; Tzg and T2p are the times for transverse relax- 
ation of the amplifier and absorber (if we neglect inhomoge- 
neous broadening, the inverse values of these quantities are 
the spectral line widths); and d ,  and d p  are the dipole tran- 
sition moments for the amplifier and the absorber. LBW(w) is 
the value of the linear losses caused by the optical filter, and 

In order to determine the polarization components on the 
right sides of Eqs. (2), we write two complete systems of 
Bloch equations for the absorber and amplifier: 

Here we have introduced the additional notation 

In Eqs. (4c) and (5c) we have omitted terms responsible for 
the relaxation of the population differences N g  and N p .  This 
approximation is valid when the duration of a pulse 7, is 
much shorter than both times T I ,  and T I P ,  and the dynamics 
of pulse generation is not related qualitatively to the effects 
of spontaneous relaxation. Nevertheless, we implicitly take 
into account relaxation of N g  and N p  to their stationary val- 
ues when we speak of the mutual independence of pulses 
separated by time interval T,,, . 

The form of the optical filter transmission function LBW 
can be approximated by various functions, e.g., exponential, 
as was done in Ref. 20, or Lorentzian, as in Ref. 21. For our 
purposes it is convenient to choose a parabolic dependence 

where LC, are the linear losses of the resonator. 
Let us take a Fourier transform; then the transfer func- 

tion of the filter in the time representation is 

The combination of the optical filter LBw(t) and the disper- 
sion of the gain constitutes an effective filter that bounds the 
spectral width of the pulse. 

It is advisable to use the smallness of the ratio T =  T 2 g / ~ p  
to simplify the expressions for the polarization components 
P g  and Q ,  rather than solving the Bloch equations (4). Our 
procedure for reducing the Bloch equations (4) is analogous 
to the formulas developed in Ref. 22, where the polarization 
was written as a function of the amplitude, its derivatives, 
and the pulse energy by expanding the components of the 
Bloch vector in the small parameter (8. T~)-', where S is the 
offset of the pulse carrier frequency from the center of the 
amplification (absorption) line shape. We will obtain an 
analogous expansion by replacing S with T;:. 

Once more it is convenient to turn to complex variables, 
using the formulas 

From Eq. (4) we find the solution for the polarization com- 
ponents: 

making the change of integration variable v  = u - i, we ob- 
tain 

Xexp -- d v  i VTI 
In writing expressions (10) and (11) we have taken into ac- 
count the initial condition for the polarization of the medium: 

Assuming that the components of the Bloch vector and field 
envelope vary slowly compared to the quantity v l T ,  we ob- 
tain the Taylor series 
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For the purposes of this paper it is sufficient to keep the first 
three terms of the expansion (12), up to n =2 inclusively. The 
explicit inversion in explicit series form is 

Substituting the expansions (12) and (13) into the equation 
for the inversion (4.3), and once more returning to real vari- 
ables, we find: 

No = wnst, (144 

Here 

is the energy that has passed through the amplifier by time t .  
The constant wmponent of the inversion N(u = - m,z) =No 
is determined by the pump amplitude and can be set equal to 
+1 without loss of generality. Also, in deriving Eqs. (14b), 
(14c) we made use of the initial conditions for N1 and N2: 

Having done this, we can obtain the desired expressions for 
the polarization components: 

The first and second terms of (16a) correspond to linear am- 
plification of the field amplitude during its passage, taking 
into account possible carrier frequency offsets from the line 
center; accordingly, the third and fourth terms correspond to 
gain saturation. The second term in (16a) corresponds to the 
round trip time delay of the resonator, which is associated 
with linear dispersion; changes in the value of the time delay 
due to the effects of saturation are given by the sixth term. In 
accordance with the widely used terminology, we will speak 
of the amplifier as "slow" when the recovery time of the 
medium is much longer than the pulse duration. When the 
relations between these times are reversed, we use the term 
"fast." It is interesting that (16a) contains a term propor- 

tional to the cube of the amplitude, which corresponds to the 
response of a fast medium. However, in this case our physi- 
cal interpretation of this term is not based on the rate- 
equation approximation, where it is responsible for satura- 
tion of the medium. This is already clear from the fact that 
the sign of the cubic term in the field the opposite of what we 
might expect if it were simply a consequence of the instan- 
taneous response to the applied field. We may assume that 
this is a manifestation of coherent effects in the amplifier. In 
the papers like those of by Ref. 23 and 24, where passive 
mode locking was discussed, there is usually no mention of 
this type of composite response of a slow medium. Usually it 
is assumedz4 that the fast processes depend on the field in- 
tensity E2, while the slow processes depend on the pulse 
energy J(u,z).  The influence of the coherent component 
needs to be evaluated for each specific case. For our model 
we find that its inclusion is important for values of the sta- 
bility parameter s close to unity. Finally, the term in (16a) 
that contains the first derivative of the field amplitude is 
responsible for limiting the gain bandwidth, and plays the 
role of a filter. 

The first and second terms in (16b) determine pulling of 
the carrier frequency of the pulse when the latter does not 
coincide with the maximum of the gain coefficient, along 
with variation of the magnitude of the pulling due to the 
saturation effect. The last two terms in (16b) are associated 
with dispersion of the group velocity. 

A necessary condition for the correctness of the expan- 
sion (16a) and (16b) is the assumption that T is small. Fur- 
thermore, it is also necessary to check that T T ~  J<1. Equa- 
tions (16) are derived under the assumption that the phase 
cp(u,z) varies slowly; therefore, they are valid for small off- 
sets from resonance. 

3. SOLUTION IN THE FORM OF SOLITON-LIKE SIT PULSES 

In the previous sections we derived the expressions for 
in-phase and quadrature portions of the amplifier polarization 
in detail. If we are interested only in non-phase-modulated 
solutions for the field, we set P,=O. In the expression for 
Qg , we keep only the two leading terms of the expansion (up 
to T' inclusively) and substitute them into the equation for 
the field amplitude (2a). In this approximation we limit our- 
selves to including only the first term in the expansion for the 
transmission function of the filter (8), i.e., we assume that the 
losses are constant over the entire band of frequencies occu- 
pied by the pulse spectrum. It is not difficult to verify that a 
solution in the form 

satisfies the system of Eqs. (2a), (5), and the usual boundary 
conditions, if the following three algebraic relations for the 
pulse parameters v p ,  T ~ ,  and A, are fulfilled: 
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We have introduced the following notation: 

-Pulse area (21) 

-Total pulse energy (22) 

The relation between the relaxation times T2,-GT2, cre- 
ates a precondition for self-induced transparency. Let us 
demonstrate this. Let us use the dipole moment for the gain 
medium d, to normalize the field in Eq. (3a); then Eq. (18) 
determines the area under the field envelope with regard to 
propagation in the amplifier, and equals AT. At the same 
time, for the absorbing component this same pulse has area 
27r. The fact that the area under the envelope is constant, and 
that it is independent of the parameters of the problem for 
propagation of a pulse in an absorbing medium, is a conse- 
quence of the coherent interaction of the field with the ab- 
sorber. We note a still more obvious similarity with SIT if we 
write Eq. (19) in the form: 

where 

are the squares of the cooperative frequencies for the absorb- 
ing and amplifying media respectively. In Ref. 16 we showed 
that if the dominant interaction of the field with the resonator 
medium is coherent interaction with the absorber (i.e., the 
amplification and dissipation processes can be considered to 
be perturbations), then stable pulse generation requires that 
s 2 l .  Furthermore, as is clear from Eq. (24), the amplifier 
forces the pulse to speed up. One of the basic manifestations 
of SIT is the considerable delay exhibited by the pulse as it 
propagates in the absorber, due to the dynamic exchange of 
energy between the field and medium." The second term on 
the right side of Eq. (24) is associated with slowing of the 
pulse in the absorber. For 7,eTZp (or K T % ~ ) ,  Eq. (24) re- 
duces to the well-known expression for the velocity of a 27r 
pulse'5 

From Eq. (20) we determine the duration of the gener- 
ated pulse. The graphical solution to this equation is illus- 
trated in Fig. 1. The lower (dashed) branch corresponds to an 
unstable solution to Eq. (20). This unphysical solution is 
characterized by increasing pulse generation power as the 
density of the absorber increases. Our use of the term 

FIG. 1. Dependence of signal power on the density of absorbers. The dashed 
curves correspond to the region of unstable pulse generation. 

"power" for the quantity T is validated by the presence of a 
strict relation between A ,  and r,, determined by Eq. (18); 
therefore the quantity T is directly proportional to the in- 
crease in Jo.  

To obtain a regime of stable soliton-like pulses, it is 
necessary to ensure that the overall gain of a weak signal at 
the leading and trailing edges of the pulse is negative. In Ref. 
16 we showed that this condition is satisfied when 

'J2 K2 2 
p > - 7  for K ~ S = ~ ,  

Kf 

The requirement on the density of the absorber imposed by 
(26) determines the lower threshold for p. To the left of pmin, 
the regime of generation of 27r pulses is found to be unstable 
against the appearance of a regime of cw oscillation. 

The characteristic values indicated in Fig. 1 are deter- 
mined by expressions given below, where Tmi, is given by 

We will be interested in the generation of short pulses, 
which requires that ~'JK/s%-1. Then the expressions for the 
characteristic values shown in Fig. 1 simplify: 

In order to obtain stable generation of 27r pulses it is neces- 
sary to fulfill the obvious condition 
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The more rigorously inequality (31a) is satisfied, the wider 
the region pmin<p<p,, within which we may choose the ab- 
sorber density. A narrow optical filter (larger than 4 )  ensures 
a wide region of stability due to the limits on the gain band- 
width. 

If the optical filter is very wide, i.e., 4 is close to unity, 
then the expression for pmin (26) becomes unsuitable and 
must be replaced by 

Pmin=(l-J1-?7)~2 for K ~ = I ,  

(see Ref. 16). Accordingly, condition (31a) becomes 

The bound on the value of the stability parameter s, i.e., 
s a l ,  makes it impossible to satisfy (31b) for any pump 
value. We are led to an important conclusion: stable genera- 
tion of 27r pulses is impossible in the absence of a band- 
limiting filter. 

Let us also note that the duration of the 27r pulses re- 
mains finite even if we do not include the boundedness of the 
gain bandwidth (29). That is, the coherent absorber itself 
fulfills the role of a filter. The mechanism for this is rather 
simple. The phenomenon of gain saturation bounds the 
growth of the generated pulse energy. The fixed relation be- 
tween the duration and amplitude of a pulse implied by the 
constancy of the area (18), in turn, limits the duration of the 
pulse. Of course, gain dispersion and finiteness of the band- 
width of the optical filter contribute to the narrowing of the 
pulse spectrum. These effects are not taken into account in 
deriving Eqs. (18)-(20); therefore, Eq. (29) give saturated 
values for the quantity T. The theory can be further refined 
by including the third terms in the expansion of the polariza- 
tion components Q, and P,  , (16a) and (16b), which are pro- 
portional to T ~ .  At the same time we need to include the 
second term in the expansion for the transmission function of 
the filter (8). 

Rather than develop the theory further, we note that the 
solution in the form of (17) satisfies Eqs. (2a), ( S ) ,  along 
with the usual boundary conditions, for relations between the 
pulse parameters up ,  T,, and A O  other than (18)-(20): 

This alternative solution consists of a 7r pulse for the ab- 
sorber moving with the velocity of light in the absorbing 
component. We will not pause to analyze the properties of 
this solution in detail. It would seem that it is obtained over 
a wide interval of durations for T ~ = T ~ ~ .  For smaller values of 
the duration the coherent interaction of the pulse with the 
medium predominates, and in accordance with the classical 
properties of a T pulse it passes through the absorber, which 
leaves it inverted. The detailed nature of the propagation 
creates the precondition for instability at the trailing edge of 
the pulse, where the medium turns out to be amplifying for a 

weak signal. Furthermore, it is doubtful that this regime is 
energetically advantageous for pulse generation. 

There is also another reason that allows us to ignore 
solutions in the form of 7r pulses within the framework of 
our paper. The generation regime for 27r pulses that we have 
investigated also includes an analysis of stability; hence, no 
other regimes can compete with it in the region where it is 
stable. 

4 . 2 ~  PULSES TAKING INTO ACCOUNT DISPERSION OF 
THE GAIN 

A distinctive feature of the theory of passive mode lock- 
ing with a coherent absorber is distortion of the hyperbolic- 
secant shape of the pulse when the effect of the optical filter 
and dispersion of the gain is included, in contrast to the 
theory for fast and slow abs~rbers .~O-~~ Thus, when we sub- 
stitute the full expressions (16a) and (16b) for the polariza- 
tion components Q, and P,, including terms proportional to 
T ~ ,  into Eqs. (2a) and (2b), we are no longer able to find 
analytic solutions to the problem. However, we can achieve a 
considerable simplification by identifying the primary inter- 
action. For short enough pulses, with T ~ ~ T ~ ~ ,  the coherent 
absorber plays the primary role in forming the field enve- 
lope, while the role of the amplifying medium reduces to 
compensating losses generated by the optical filter and relax- 
ation processes in the absorber. Let us write the equation for 
the field in the form 

- uP1-c-l P P p loss Q E +  - (Qp)sol= - - (Q 1 - 

L P ~ P  P T2, P T2, T2g 

The polarization of the absorbing medium has been split into 
two parts: (Qp)sol, which is obtained by assuming T,,+m 
and is thus responsible for the formation of a classic SIT 
pulse, and (Qp)loss, which contains the rest of the polariza- 
tion Qp ,  taking into account the finiteness of T2,. The coher- 
ent absorber plays the primary role in the formation and 
propagation dynamics of the pulse, and specifically the soli- 
ton part of the polarization (Qp)sol. The energy loss and dis- 
tortion of the envelope connected with the nonsoliton part of 
the polarization (Qp)l,,s decreases as the pulse gets shorter, 
in the ratio T ~ T ~ ~ .  We will assume that linear losses in the 
resonator and amplifier also play a secondary role in forming 
the field profile. We will make some quantitative estimates of 
this approximation at the end of the section. 

Let us use the smallness of the right-hand side of Eq. 
(33) and solve (33) first, replacing the expression on the 
right-hand side by zero. We then obtain a solution in the 
form of a classic SIT pulse with an envelope (17) and the 
parameters 

In the theory of SIT, the amplitude A O  and the associated 
duration T~ remain arbitrary and are determined by the pa- 
rameters of the input pulse and transient processes in the 
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system.1s This behavior is due to the conservation properties 
of this system of equations. Amplification and absorption are 
taken into account as perturbations. The condition for solv- 
ability of the inhomogeneous Eq. (33) is orthogonality of the 
right side to the solution of the unperturbed equation. By 
separating the soliton and nonsoliton parts in the expression 
for the inversion in the absorber, as we did for the polariza- 
tion, we obtain 

Expressions (34) and Eq. (35) clarify the physics of the ap- 
proximation we are using. The velocity of the pulse, the 
shape of the envelope and the area under it are determined by 
the coherent properties of the absorber. The amplifying me- 
dium compensates for linear losses in the absorber and leads 
to generation of pulses with fixed energy. The band-limited 
losses limit the pulse shortening. In fact, Eq. (35) can be 
written in the form of the law of conservation of energy. 

In the linear approximation (Np)loss4(Np)sol, we have 
the following equation for (Np)Ioss : 

From this we obtain at once 

The components entering into (14) do not contain enough 
information to find an expression for the inversion of the 
active medium, so we must consider the next term in the 
expansion. Then the inversion is 

Finally, we find that the transmitted pulse empties the upper 
level by an amount: 

Substituting Eqs. (37) and (39) into the conservation law 
(35), we obtain an equation for the energy (duration) of the 
pulse: 

For T ~ K - ' ,  Eq. (20) reduces to Eq. (40) without including 
the next term in curly brackets. This sequence of operations 
confirms the validity of the approximations we have used. 

The most significant difference between Eqs. (20) and 
(40) is the presence of the next term in curly brackets in (40). 
It changes the duration of the pulses generated, but does not 
change the qualitative form of the dependence of the pulse 
duration on the density of the absorber shown in Fig. 1. The 
values of characteristic points change in the following way: 

In Eqs. (41) we see a competition between two processes: a 
narrowing of the pulse spectrum caused the effective optical 
filter (xG), and, conversely, a broadening of the spectrum 
due to the more efficient removal of the amplifier inversion 
(ms2) and to coherent processes in the amplifier (as). Here 
we are dealing with the coherent component, which responds 
to the instantaneous field intensity and opposes saturation of 
the fast medium. In other words, the coherent properties are 
manifest in a slowing down of amplifier saturation. The use 
of the term "coherent" can be justified by starting from 
analysis of the expression for the amplifier inversion (38). 
The next term in (38) is different from zero only within a 
narrow interval of time (-T~) and can in no way change the 
value of the inversion after the pulse passes through it. The 
expansion in a series of the components of the Bloch vector 
for the amplifying medium (12), (14) does not include (re- 
covery) processes that relax the population difference (-T2,) 
to its equilibrium value under the action of the pump. There- 
fore, the term proportional to the instantaneous field intensity 
can be only a manifestation of coherent exchange of energy 
between the amplifying medium and the field of the pulse, 
which take place without energy loss. 

If of these two competing processes it is the effect of 
decreased pulse duration that predominates, then there exists 
a small parameter range for which the expression in (41) 
under the root sign is negative. We assume that no real physi- 
cal process is connected with this. Its explanation lies in the 
insufficient accuracy resulting from our inclusion of only the 
first three terms in the expansion for the amplifier polariza- 
tion. We can obtain real values of the pulse duration if we 
consider the next orders in the expansion of Q,(u). 

Equation (41) allows us to establish the limits of appli- 
cability of the theory without taking into account dispersion 
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FIG. 2. Dependence of generated pulse power (for an absorber density 
p=p,,) on the width of the filter 4. Here we have ~ = 8 / 9 s ( 4 - 2 s - 2 s ' ) .  
The straight line corresponds to a theoretical analysis without including the 
effects of the filter and dispersion of the gain. 

of the gain. The theory accurately describes the dynamics of 
pulse generation when the action of the filter and the "addi- 
tional saturation" cancel each other: 

Deviations from Eq. (43) toward positive values indicate that 
the effective filter predominates and the duration of the pulse 
is increased compared to (20). A change in the parameter S 
influences the duration of the pulse in two ways. First, it 
increases s because the gain saturation coefficient leads to an 
increase in the pulse duration; second, pulse shortening due 
to the additional saturation also takes place as s increases, 
see (43). This second effect is considerably less important. In 
Fig. 2 we show the dependence of Tmin on the width of the 
filter. 

In order to get an idea of the size of the parameters that 
are needed to achieve stable pulse generation, we turn to Fig. 
3, where the crosshatched region contains the stable param- 
eters s(7) for a filter width that satisfies Eq. (43). Then the 
choice of allowed values of the absorber density lies in the 
interval 

FIG. 3. Region of stability for generation of SIT pulses for a filter with 
4 = 2 s ( l  +s). 

Returning to our discussion of the limits of applicability 
of the perturbation theory we have developed, we note that 
the accuracy of our results depends on the extent to which 
the following inequalities are satisfied: 

The conditions (45) agree with the overall formulation of the 
problem. The first of them is easily satisfied due to the con- 
siderable difference between the spectral widths of the am- 
plifier and absorber line profiles: K S ~ .  In addition, there is 
no need for a special arrangement to satisfy the inequality 
(45b), because it is a consequence of (45a). It is not difficult 
to verify that when the magnitude of the pump is sufficient to 
satisfy (45a), the density of absorbers required for stable 0s- 
cillation pmin always exceeds h. 

5. DISCUSSION 

We have set up the basis for a theory of mode locking 
with a coherent absorber, and shown that stable generation of 
27r pulses is possible for a suitable choice of parameters of 
the amplifying and absorbing media. The profile of the en- 
velope is shaped primarily by the absorber. The amplifier 
compensates the losses of the field, and consequently deter- 
mines the energy and duration of the 27r pulse. 

This theoretical analysis allows us to identify two factors 
that hinder experimental implementation of stable mode 
locking. 

5.1. High concentration thresholds 

We can propose two different methods for threshold low- 
ering. The first is to choose an amplifying medium with a 
long recovery time. In this case the threshold pmi, is deter- 
mined not by the steady state gain, but by its saturation 
value. If we follow this path we must resign ourselves to 
losses in the generated pulse power. We should also keep in 
mind that the maximum achievable density of absorbers p,, 
also decreases as the intraresonator gain decreases. We can 
increase the recovery time T I ,  by choosing a solid-state me- 
dium as the amplifier andlor decreasing the length of the 
resonator. 

Another method of decreasing the threshold pmh in- 
volves choosing an absorbing medium with an inhomoge- 
neously broadened transition line. Then the absorption coef- 
ficient for a weak field in the resonator will be determined 
not by the phase memory time of the medium TZp but by the 
width of the absorption line profile T,* . At the same time, 
the concentration of the coherent absorber is preserved, be- 
cause coherent interactions of the field with the absorber play 
a decisive role when T ~ ~ T ~ ~  and consequently the coherence 
does not depend at all on the quantity Tg . Once we decrease 
the ratio of times T ; / T Z p ,  we can attain stable generation of 
27r pulses for moderate absorber concentrations. By decreas- 
ing p, we decrease the incoherent field losses at the same 
time, which allows us to obtain the most powerful pulses 
possible for a given value of the pump. 
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5.2. Limitations on the magnitude of the stability parameter 

The need to have s>l strongly constrains our choice of 
the corresponding pairs of media, i.e., the laser operating 
medium and the absorber. Furthermore, a large value of s 
corresponds to a small gain saturation energy, and conse- 
quently, prevents us from obtaining the shortest possible 271. 
pulses. We can remove the limitation on values of s by fol- 
lowing a path that avoids the reason for amplitude instability 
of the 2.rr pulse. We have indicated above that linear disper- 
sion of the group velocity leads to a delay in the pulse as it 
propagates in the amplifier, and requires a larger value of the 
saturation coefficient (whose role is played by the parameter 
s) in order that the nonlinear correction to the group velocity 
be able to cancel the delay. However, there is another method 
for compensation that we should consider-shifting the car- 
rier frequency of the pulse into the region of anomalous 
dispersion.') By doing this, we obtain an acceleration of the 
pulse instead of a delay, and we are free of the need to limit 
the value of the parameter s. The carrier frequency can be 
shifted by moving the centers of the absorption and gain 
lines. A quantitative estimate of the required shift between 
line centers can be given only on the basis of further theo- 
retical analysis. 

The authors are unaware of work in which SIT pulses 
have been obtained experimentally. However, the authors of 
Ref. 27 mention a program for generating 271. pulses using a 
pumped, erbium-doped waveguide at room temperature as a 
gain medium, and another segment of erbium-doped wave- 
guide at 4.2 K as a coherent absorber. We hope that the 
theory developed above and the proposed recommendations 
will be useful in subsequent experimental investigations. 

 he fact that the region of anomalous dispersion is located near the center 
of the gain line profile (at a distance -T;;) is shown, for example, in Ref. 
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