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We give examples of metallic Fermi surfaces with geometric structures for which the impedance 
5 under anomalous-skin-effect conditions does not become independent of the mean 1 free 
path as the latter increases, and estimate the impedance of these metals. We also elucidate how 
the overall Fermi surface topology affects the transition to the anomalous-skin-effect 
regime in normal metals. O 1994 American Institute of Physics. 

1. INTRODUCTION 

The theory of the anomalous skin effect developed by 
Reuter and ~ondheimer,' which was based on the free- 
electron approximation and a very simple treatment of the 
interaction between electrons and the metal surface, has been 
generalized by many authors in many directions (clarifying 
the role of surface structure, going beyond the 
T-approximation, treating Fermi surfaces of arbitrary shape, 
etc.). 

Anomalous behavior of the skin effect is most evident in 
the limit 1% S, where 1 is the mean-free path of electrons and 
S is the skin depth, when the expression for the surface im- 
pedance allows one to pass to the limit 1 4 ~ .  The dissipation 
of electromagnetic energy that leads to attenuation of the 
electric field intensity into the bulk of the metal is deter- 
mined by the loss of electrons from the skin-depth layer, and 
not by real collisions with irregularities of the crystal lattice 
in the bulk metal. Because the electrons that play the primary 
role in producing the anomalous skin effect are those that 
move almost parallel to the metal surface, the character of 
their interaction with the boundary is not very important: 
according to Reuter and ~ondheimer,' the surface imped- 
ances corresponding to specular and diffuse scattering differ 
only by a factor 819. 

The geometric approach to calculating various character- 
istics of metals has played an important role in understanding 
the high-frequency properties of the latter.2-6 

Thus, according to this interpretation, for 1% S the elec- 
trons that participate in generating the surface impedance of 
a metal lie in a "belt" on the Fermi surface: 

where ~ ( p )  is the energy of an electron with quasimomentum 
p, and v=d&ldp is its velocity; EF is the Fermi energy, and n 
is the normal to the metal surface.') 

In what follows we will assume that the metal occupies 
the half-space z>0, and that n=(0,0,1) so that nv(p)=v,(p). 

Note: for a nonquadratic energy spectrum (i.e., 
E # a i k p g k ,  where aik are constants) the first of Eqs. (1) is 
not the equation of a plane in p space. Thus, the "belt" is not 
a planar curve in this case. The structure of the belt is a 
strong function not only of the geometry of the Fermi surface 
but also the direction of the vector n. As the direction of n 

changes, the structure of the belt can be significantly altered: 
indeed, even its connectivity can change. In general (for the 
case of a surface of general topology, to use the mathemati- 
cal terminology), the connectivity of the belt can change in 
two ways: either (a) closed loops can appear (disappear) in 
the belt, or (b) a bridge between two loops can rupture (or 
rejoin). As shown by Avanesyan et ~ l . , ~  the kinetic charac- 
teristics of a metal have singularities in this case, which they 
refer to as 0-type singularities (for case "a") and X-type 
singularities (for case "b"). In both cases the change in to- 
pology of the belt gives "local information" about the Fermi 
surface: when a belt is initiated its radius is initially zero, 
while when a bridge in the belt is ruptured (or formed) there 
is a point of self-intersection. We will refer to a point in 
momentum space that is responsible for a change in connec- 
tivity of the belt as a critical point (p,). Avanesyan et al.' 
showed that critical points p=p, are located along curves of 
parabolic points. Therefore, singularities of 0- and X-type 
can occur only for those metals whose Fermi surfaces have 
parabolic points.2) 

When a metal is subjected to an external probe, its Fermi 
surface can change its dimensionality and shape. If the con- 
nectivity of the Fermi surface changes in this case, then a 
phase transition of order 2 112 occurs in the metal at T =  0, as 
was shown by I. M. ~ i f s h i t z , ~  (i.e., a topological or Lifshitz 
transition; see the review by Blauter et alV6 and the bibliog- 
raphy contained therein). However, even in the absence of 
changes in the connectivity of the metal Fermi surface, we 
may observe qualitative changes in its properties under the 
action of an external probe. Kaganov et al.'O showed that 
these changes can be due to a change in the connectivity of 
the line of parabolic points at the Fermi surface. Changes in 
connectivity of curves of parabolic points, and the set of 
phenomena that accompany these changes, were referred to 
there as generalized topological transitions. In a generalized 
topological transition the bulk thermodynamic potential of 
the electrons (and the other thermodynamic characteristics of 
the metal) do not have anomalies in the absence of an exter- 
nal magnetic field. However, the kinetic properties of the 
metal are sensitive to generalized topological transforma- 
tions, especially those that involve electrons of the belt. 

In this paper, we will discuss two examples where the 
surface impedance of the metal should exhibit a sensitivity to 
the local geometry of the Fermi surface; for simplicity and 
clarity we will limit our discussion to hypothetical metals 
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FIG. 1. A Fermi surface with a "crater" (the belt is shown). 

whose Fermi surfaces possess axial symmetry (i.e., consist- 
ing of surfaces of revolution). The Fermi surfaces of interest 
to us are shown schematically in Figs. 1-4. 

A. (Figs. 1, 2). The Fermi surface has a "crater." We 
choose the surface of the crystal so that the belt (1) has 
points of self-intersection. External perturbations can convert 
this surface into the usual ovaloid shape (Fig. 2); in this 
process the surface passes through a stage at which points of 
flattening appear on the Fermi surface, where two loops of 
the belt contract into points. 

It is not difficult to show that the belt changes its topol- 
ogy even for rather small changes of the direction n (we may 
speak of a "broken crosspiece," although it is rather compli- 
cated to represent this pictorially for those spatial positions 
of the loops of the belt where this occurs). We will not dis- 
cuss this type of change in the belt topology, because it re- 
quires rather small controlled changes in the position of the 
sample boundary relative to the crystallographic axis, which 
are in practice not feasible. 

B. (Figs. 3, 4). The Fermi surface has a crosspiece and is 
situated so that the belt (1) consists of three loops. Under an 
external perturbation the Fermi surface may be converted 
into an ovaloid, passing through a stage in which the surface 
is quasi-cylindrical, i.e., three belts collapse into one. 

FIG. 3. A Fermi surface with a quasicylindrical portion (indicated by the 
dashed curves). 

Both cases (A and B) exhibit generalized topological 
transformations: when the Fermi surface is converted into an 
ovaloid, loops present in the curves of parabolic points on it 
disappear (shown in Figs. 1 and 3). However, because of our 
assumption of axial symmetry, they are a special exception to 
the general rule. This can be seen with particular clarity for 
the second example, because generalized topological trans- 
formations in case B do not involve a "local event" in 
p-space: all the loops that appear in the parabolic-point 
curves have finite radius. 

2. KINETIC INVESTIGATION 

For the anomalous skin effect, it is necessary to solve the 
Maxwell equations to calculate the impedance: 

4rr 
curl H= - j, 

C 

i w 
curl E= - H, 

C 

where w is the frequency of the electromagnetic wave inci- 
dent on the metal surface z=0,  and E, H, and j are the 
Fourier components of the electric and magnetic field inten- 
sities and the current density (respectively); we omit the fac- 
tor e - ' ~ ' .  Equation (2) must be supplemented by a current 
equation: 

FIG. 2. Transformation of a Fermi surface from a crater (a) through a point 
of flattening (b) to an elliptic point (c). A side view is shown. 

FIG. 4. Transformation of the Fermi surface: conversion of a single belt into 
three. 
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where f is the nonequilibrium portion of the electron distri- 
bution function, which satisfies the Boltzmann equation (fF 
is the equilibrium Fermi function): 

We used the r approximation3' and the assumption that 
the electric field in the wave is polarized along the symmetry 
axis of the metal, here along the x axis. Throughout this 
paper we will assume that, due to the postulated symmetry of 
the metal, no component of the electric field intensity ap- 
pears that is normal to the metal surface (E,=O), so that 
only the following field and current components are nonzero: 
Ex(z), Hy(z), jx(z). In the kinetic equation (4) we have 
omitted a term - iof  l ,  because it is assumed that w1-41. 
This is not a fundamental simplification; rather, it empha- 
sizes that spatial dispersion of the metallic conductivity takes 
precedence over its temporal dispersion (for the range of 
applicability of these results, refer to the Conclusion). 

In order to solve the kinetic equation (4) and compute 
the current density (3) we must formulate boundary condi- 
tions, in particular those that describe the interaction of elec- 
trons with the metal surface. However, noting that the quan- 
tities of interest to us depend weakly on the boundary 
conditions (see above), we will make the following (not en- 
tirely logical!) assumption: we will assert that the connection 
between E and j is "forgotten" at the boundary, thereby as- 
suming that Eq. (4) is true throughout space, i.e., Ex(z)+O 
as Izl+m, while in computing Ex(z) we "remember" the 
metal-vacuum boundary by assuming that the electric field 
has a discontinuous derivative (a kink) at z =  0. 

Thus, from Eq. (4), passing to Fourier components, we 
have 

The function and its spatial Fourier transforms we de- 
note by the same letters but with different arguments. From 
Eq. (3) we have 

In obtaining expression (6) we have used the fact that the 
equal-energy surfaces have an inversion center: E(-p) =e(p) 
and v(-p)= -v(p). As a result, uxx(k) is an even function of 
wave vector, i.e., uxx( - k) = uxx(k). 

Eliminating the magnetic field, for Ex = Ex(z) we obtain 
from Eq. (2) 

Let us extend the function Ex = Ex(z) in an even fashion 
onto the left half-axis: Ex(-2) = Ex(z). Because uxx(k) is 
an even function of its argument, according to (6), we also 

have jx( - z )  = jx(z). This allows us to assume that Eq. (7) is 
correct on the entire axis (- a<z<m).  For the incident 
electromagnetic wave on the metal surface we specify the 
magnetic field at z= 0 H,,(z= + O)=Hy(0) 
[H,,(z= - 0) = - H,,(O)]; according to (2) H,(z) is an odd 
function, i.e., dExldzl,= -,= - dExldzlz=o. Consequently, 
Ex= Ex(z) has a kink at z =  0. Passing to Fourier compo- 
nents, and taking into account the existence of the kink in the 
function Ex=Ex(z), we find from (6) and (7): 

From Eq. (8) it is clear that in order to compute the imped- 
ance we must .know the Fourier components of the electrical 
conductivity; all the singularities of the impedance (if there 
are any) arising from the geometry of the Fermi surface can 
be analyzed using Eq. (6). 

We note that uxx= uxx(k) can be used not only to cal- 
culate the impedance tXx,  but also directly, e.g., to calculate 
the coefficient of ultrasonic attenuation. In this case we have 
k= OIU, where u is the velocity of sound (see Ref. 12). 

3. A FERMl SURFACE WITH A CRATER (A) 

The simplest way to describe a Fermi surface that con- 
tains a crater is through the expression 

where p, = dm; m, u, and po are positive constants. 
In Fig. 5 we show all the characteristic dimensions; the ve- 
locity components are as follows: 

FIG. 5. Half of a Fermi surface with a crater; belt structure. 
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It is convenient to go to cylindrical coordinates: 

PY 
P,=-, 7 P x ,  fgP=-- -  (11) to which we must add the equation of the Fermi surface (9). 

PZ Equation (12) describes a circle along a "path" around 
the "crater," while (12') is the intersection of the Fermi sur- 

In cylindrical coordinates the equation of the belt re- face (9) with the plane pz= 0 [for pz= 0 and v,= 0 see (lo)]. 
duces to the equation of a circle: We emphasize that the belt is located on planes that are per- 

pendicular to one another. 
M 

PI=Po,  PxZPx (12) We will set - dfFId&= ~ E - E ~ ) ,  which implies that 
T e e F ,  where T is the temperature. It is easy to carry out the 

(see Fig. 5) and the equation of a straight line integration over p, due to the S function, and 

where 

Expressions (13) and (14) determine the dependence of 
the xx component of the conductivity on the wave vector k. 
For k=O 

To complete our picture let us write down the value of 
the transverse conductivity: 

and also the volume of the Fermi surface llF that contains the 
conduction electrons: 

If the Fermi surface of the metal has other sheets besides 
(9), then naturally n, is the density of electrons belonging to 

the sheet under study. The macroscopic (static) conductivi- 
ties (15), (15') have their usual orders of magnitude [pro- 
vided, of course, that we have not made any special assump- 
tions about the parameters entering into Eq. (9)], i.e., the 
existence of the crater does not affect the value of the static 
electrical conductivity. 

Kaganov et a1.l3 discussed how the existence of a belt 
with self-intersection affects the electrical conductivity of a 
thin film ( d e l ,  where d is the film thickness). It is found that 
the conductivity grows by a factor ln(1ld) compared to the 
usual case.14,15 This growth effect also occurs in uxx(k) 
when k b l .  In fact, it is clear from Eq. (13) that once we 
remove the factor lkl rp,lm from under the square root and 
take it outside the integral, we cannot pass to the limit in the 
remaining integral (i.e., we cannot take k to infinity), because 
the integral diverges logarithmically at its upper limit (for 

M 
Px=Px 1. 

Calculating the integral (13) for I kl 1 % 1,  1 = rpolm leads 
to the following result: 

It is easy to show that for Ikll9 1 ,  a,, increases loga- 
rithmically as well. 

Note: if the belt (1) is simply connected, then for Ikll%l 
the conductivity a,, decays like constll kl 1. 

The result (17) is found to agree with the general discus- 
sion of Avanesyan et al.:7 when the belt has a point of self- 
intersection (a singularity of X-type), all the kinetic coeffi- 
cients of conductivity type increase logarithmically as the 
mean-free path 1 increases. 
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4. A FERMl SURFACE WlTH FLATTENING (A) 

As we said in the Introduction, an external perturbation 
The parameters v , m, and po in Eq. (18) can differ some- 

can make the "crater" at the Fermi surface disappear; at the 
instant it does so the equation for the Fermi surface takes the what from the corresponding parameters in Eq. (9). 

form (Fig. 2) Making use of Eq. (6), it is not difficult to obtain 

where, as before, 1 = rpo/m. 
For kl= 0, 

while for (k(l+w 

The existence of a point of flattening at the Fermi sur- 
face changes the asymptotic behavior of the conductivity 
quite dramatically: in place of the usual asymptotic behavior 
( u ~ u o l l k l l )  we have Eq. (21). 

It is important to emphasize that it is the electrons lo- 
cated near the isolated points on the Fermi surface that are, in 
fact, "responsible7' for the special asymptotic behavior of the 
conductivity [see expressions (17) and (21)], i.e., near a point 
of self-intersection of the belt [formula (17)] or a point of 
flattening [formula (21)J. Therefore, the primary result (the 
dependence of a,, on lkll as I kl l+m) is practically inde- 
pendent of the model chosen (if, of course, we do not "ab- 
solutize" the value of the coefficients in these formulas). 

However, it is necessary to keep in mind that the struc- 
ture of the Fermi surface near these isolated points that de- 
termine the asymptotic behavior of uxx(k) is very important. 
This is easy to demonstrate for the example discussed here of 
a Fermi surface with flattening. The higher the order of tan- 
gency of the Fermi surface to the tangent plane perpendicular 
to the axis p,, the larger the exponent of p, is in Eq. (18). 
Suppose it equals 2P (for the usual case of an elliptic point, 
P = l ;  here we have discussed p=2). If we do the calculation 
for an arbitrary value of P a l ,  it is not difficult to show that 
for Ik]l% 1 the conductivity uxx(k) is proportional to the 
expression 

From this it is clear that u,,(k)=constl~k~l for P = l ,  as 
we should expect, while for p>1 

The exponent reduces to zero as P increases. 
If there is a "truly" flat portion of the Fermi surface with 

an area equal to AS, then the electrons that belong to it are 
not subject to the anomalous skin effect, and these are the 
ones that determine the high-frequency properties of the 
metal in the geometry under discussion (provided, of course, 
that ASl~Z=-lllkIl, where S is the area of the Fermi surface). 

5. FERMl SURFACE WlTH A QUASICYLINDRICAL PORTION 
(B) 

In the process of changing from an ovaloid into a surface 
with a "waist," the Fermi surface should go through a stage 
where three belts merge into one, and the cylinder that en- 
circles such a surface is tangent to it to a much higher degree 
than usual (Fig. 4). 

The simplest equation that models such a surface is the 
following: 

here, m, v ,  po are constants [of course, they do not equal the 
parameters in Eq. (9)]. As always, the z axis is directed per- 
pendicular to the metal-vacuum boundary. 

In quasi-two-dimensional metals like graphite, the Fermi 
surfaces have quasicylindrical portions which, for most prob- 
lems, are treated as true cylinders. If such a cylinder is lo- 
cated so that normals to its surface (electron velocities) are 
parallel to the sample surface (a metallic half-space), then we 
will not observe the anomalous skin effect in such a sample. 
More precisely: only electrons of the cylindrical portion of 
the Fermi surface will determine the high-frequency conduc- 
tivity ah,, while the contribution of the remaining electrons 
will be of the same order as the quantity lllkll, for 1% S the 
equations of electrodynamics (for the impedance or skin 
depth) will be the same as in the theory of the normal skin 
effect if we replace the static conductivity by 
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4f=e21/4n2(py~p,lfi3), where p, is the radius of the cyl- From Eqs. (6) and (23) we can proceed as we did previ- 
inder and Ap, is its height (the number of electrons within ously to obtain 
the cylinder equals p~Ap,/4a2fi3). 

Here, as before, 1 = rpolm. 
For lkll=O, 

while for Ikll+m 

The exponent v of 1 kl 1 in the denominator of expression 
(26) (in this case v= 113) depends on the order of tangency of 
the cylinder encircling the Fermi surface. As the exponent 2 a  
of p, increases in Eq. (23) (in our case a=2) the exponent v 
decreases. If we set uxx=constll kll, then y= 112a- 1. As 
a + m  the exponent satisfies y-0. 

ln(lkll)l(lkll) 
if the Fermi surface has a crater, 

f ( l k l l )8  { 11('k11)213 
if the Fermi surface has a flattening point, 

for a quasicylindrical Fermi surface. 
(28) 

Substituting the value of uxx(k) into Eq. (8), we write it 
as follows: 

Comparing (28) with the asymptotic values of f(lkll), 
we see: y=O or 1, while q = 1 ,  213, and 113. 

Let us begin with y=O. Changing to dimensionless inte- 
gration variables, we obtain 

C a= ----- 
6. IMPEDANCE OF A METALLIC HALF-SPACE (SPECIAL n c  

CASES) (30) 

The Fourier components of the conductivity are interest- 
ing in their own right (see above). However, it is clear that 
the most important reason we have for obtaining these ex- 
pressions in this paper [keeping in mind Eqs. (17), (21), and 
(24)] is so that we can calculate the surface impedance of a 
metal whose Fermi surface possesses singularities of the type 
described above. Because the static conductivity possesses 
no singular properties, we will naturally discuss the anoma- 
lous skin effect. In fact, the expressions we will introduce are 
in the anomalous skin-effect limit (I+ 8). 

Naturally, in order to compute the impedance we use Eq. 
(8), writing the Fourier component of the conductivity in the 
following way: 

By comparing with Eqs. (17), (21), and (24), in each case it 
is clear how we should interpret 6 and what the form of 
f(lkl1) must be. Note that if we do not specify parameters 
that lead to model expressions for exotic Fermi surfaces, 
then u will be close in order of magnitude to an ordinary real 
metallic conductivity. 

If we discuss only the anomalous-skin-effect limit, then 
it is sufficient to give the asymptotic values of the function 
f(lkl0: 

For q= 1 we have the standard expression for the sur- 
face impedance lm in the anomalous-skin-effect limit, in 
which the dependence on the mean-free path becomes 
&llii)1/3= a2/311/3- ( 1 1 ~ ) ' ~ ~ .  Therefore, to within a com- 

plex factor P, where /PI-1, 

Thus, 

i-xx 

if the Fermi surface has a flattening point, 
= P I ~ ~ I  1 (a/l)4/21 

\ for a quasicylindrical Fermi surface. 

The case y= 1 and q = 1 (the presence of a crater on the 
Fermi surface) must be discussed in slightly more detail. 
Here 

m kdk 
XX 

-r c 1 ln(kll)+ik3 
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Let us change, as before, to dimensionless variables of not depend on I. Thus, if we separate out the dependence on 
integration: the mean-free path 1, from Eq. (31) we obtain 

[ -2w ( c21 )lt3/; xdx (1-9)1(2+9) 

IX TC 4 ~ 6 0  9 
(34) 

ln[(6) + i x 3  ' where 

To logarithmic accuracy4) the impedance of a metal whose -21 11 
Fermi surface has a crater is I,=(& ) 3. (35) 

- 113 The parameter lo does not depend on the mean-free path 

i x x - 8 ~ L ~ [ l n ( - ) ]  9 181-1. (33) (see above) and is the penetration depth of the electromag- 
netic field into the metal in the "ordinary" anomalous skin- 

Expressions (32), (33) are the first terms of an expansion in effect limit, for which 1,41 (see Ref. 16, para. 86). From 
powers of the ratio S/I. We recall that 8-1-112, and [ ,  does (34) and (33) we have 

[(3/2 ln(l/lo)]-113 
if the Fermi surface has a crater, 
(lo/l)118 
if the Fermi surface has a flattening point, 
(1' 
for a quasicylindrical Fermi surface. 

Let us say a few words about the accuracy of these ex- 
pressions (36). Of course, the first of them is by far the most 
accurate [see example 4)]. 

In deriving all these expressions we have, first of all, 
retained only leading asymptotic terms for axx(k) [see Eq. 
(28)]; secondly, we have neglected contributions from "ordi- 
nary" sheets of the Fermi surface (if the metal Fermi surface 
has any such ordinary sheets, i.e., besides the anomalous 
one). 

To complete this section, we note that the absolute value 
of the impedance is not so important as the fact that, in the 
cases we have discussed, its dependence on mean-free path 
does not disappear for 1s 8. Consequently, this quantity con- 
tinues to depend on temperature, the presence of impurities, 
and everything that determines the value of the mean-free 
path (or the static conductivity and static resistivity; see Fig. 
6). 

7. GENERALIZED TOPOLOGICAL TRANSITION 

Among the Fermi surfaces5) of various metals, we ind  
those that possess singularities of the sort described above. 
However, it is quite possible that such a singular surface can 
also be generated by an external perturbation, i.e., as a result 
of a generalized topological transition.'' 

Using the expressions obtained and Figs. 2 and 4, we can 
trace how the surface impedance should change as we pass 
through a generalized topological transition. 

Here we consider two different topological transitions: 
A. Formation of a crater by passage through a point of 

flattening (Fig. 2); 
B. Formation of a "waist" (Fig. 4). 

The following features are common to these two cases: 

1) on both sides of the transition the structure of the 
Fermi surface and the belts on it are different and the imped- 
ances of the metal are different; 

2) at the transition point the conductivity is higher (im- 
pedance is smaller) than on either side of the transition. 

A. When a crater forms before the transition, the imped- 
ance has its usual value, while it decreases as we approach 
the transition (as analysis shows). At the transition point 
there is a point of flattening on the Fermi surface, and the 
impedance is smaller than normal by a factor of ( I I S ) ' ~ ' ~  
[see (32)]. After the transition, the belt has a point of self- 
intersection and the impedance is [ln(l/8)1~/~ times smaller 
than normal [see (33)]. 

B. Formation of a waist is accompanied by "splitting" of 
one of the belts into three. At the transition point, the Fermi 
surface has a quasicylindrical portion and the impedance is 

abnormal 

11s - 1 P 

FIG. 6. Schematic dependence of the surface impedance on the mean-free 
path I: (a) standard, (b) singular. 
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FIG. 7. Dependence of the surface impedance 5 on the parameter q used to 
specify closeness to a generalized topological transition (sketch). 

times smaller than normal. On that side of the tran- 
sition where there is a waist in the Fermi surface, the imped- 
ance is somewhat smaller than on the side where there is no 
waist (if the parameters of the belt before and after the tran- 
sition were to coincide, then the impedance would be smaller 
by a factor of @). 

In Fig. 7 we show schematically the dependence of the 
impedance on the parameter ?,I=(+-&,)I&, that defines the 
closeness to the generalized topological transition; here E, is 
the value of the Fermi energy at which the generalized topo- 
logical transition takes place. The width of the transition re- 
gion is not large (1 ?,1l--l/lk11~, where the power q depends 
on the geometry of the transition; see above). It is necessary 
to understand that this generalized topological transition af- 
fects the high-frequency properties of the metal (i.e., the im- 
pedance will have an anomaly) only when an electromag- 
netic wave is reflected from that face of a single crystal for 
which the belt (1) undergoes the metamorphosis described 
above. 

8. CONCLUSION 

In this paper we have discussed the surface impedance 
of metals in the normal state, a problem that is not exactly 
the center of attention for experimental physicists. Among 
other things, it is possible that this is due to some feeling that 
this area of physics is "closed." In our view, the origin of 
this feeling is the suspicion that agreement between the 
theory of the anomalous skin effect and experiment is not 
entirely adequate. 

Among the many problem areas in which there is still a 
prospect of improving the agreement between theory and 
experiment, the question of the role of local geometry of the 
Fermi surface in electrodynamics of metals is by no means 
the least interesting. We have undertaken to demonstrate the 
connection between the geometric structure of the Fermi sur- 
face and the value of the impedance in a number of the 
simplest cases. Unfortunately, we know of no experimental 
work that might require use of the expressions derived here. 
On the other hand, special experiments could be formulated 
based on contemporary values of the electron energy spec- 
trum of metals that could undoubtedly reveal the existence of 
belts with complicated topologies, flattening points, and qua- 

sicylindrical segments, i.e., all the singular geometries that 
ought to appear in the high-frequency properties of a metal. 

We have intentionally limited our discussion to the RF 
wavelength range,6) more precisely the condition o 6 l .  The 
behavior of the kinetic coefficients [e.g., the components of 
the conductivity tensor uik(w,k)] depends sensitively on the 
ratio of the spatial and temporal dispersion parameters. In 
particular, it is well known (see Ref. 2, Sec. 23) that we may 
"forget" about Fermi-liquid interactions between electrons 
for o d l ,  with the understanding, however, that the values 
used for ~ ( p )  and v(p) refer to quasiparticle electrons. In 
other words, all the expressions obtained above are correct if 
we take into account Fermi-liquid interactions between the 
electrons. On the other hand, for 07>>1 the singularities that 
occur are very sensitive to Fermi-liquid interaction.18 For 
pure metals at low temperatures the combination of condi- 
tions 

does not limit the choice of frequencies very much: there 
exists a "window" 

1 C (:I2 T 
:<o<-, 7 ~ ~ = - - 1 0 - ~  cm, 

W L 

that is "wide open" for 1% sL. 
We use this opportunity to express our enthusiastic grati- 

tude to A. N. Vasil'ev and V. G. Peschanskii for their support 
of this work and useful comments. 

')1t is convenient to represent this "belt" as a boundary between light and 
shadow when the Fermi surface is illuminated by parallel rays of light in 
the direction n (in the case of a Fermi surface with dents and crosspieces it 
is necessary to assume that the surface is semitransparent). The corre- 
sponding figures can be seen in Refs. 4, 5. 

2 ) ~ t  is only rarely that the Fermi surface of a metal is so simple that there are 
no parabolic points on it [e.g., the Fermi surfaces of Na, K, Rb, Cs are 
spheres, and the Fermi surface of Bi is a system of ellipses (see Ref. 2, 
Appendix 111, and Ref. 8)]. 

3 ) ~ o r  an analysis of the feasibility of using the   approximation, see Ref. 11. 
4)~trictly -speaking, for our !stimate we have neglected terms of order 

In ln(llS) compared to ln(l/S). Obviously, this is a very crude approxima- 
tion. 

' )~n  the majority of metals the Fermi surface is broken up into several sheets; 
it is possible that only one of the sheets will have one of the properties that 
we have discussed. 

6 ) ~ n  approach that is not limited by the condition w 6 l  makes up the 
contents of N. A. Zembovskii's dissertation." 
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