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A general theory of cooling of three-level A atoms in two standing light waves between which 
there is a relative spatial phase shift is presented for arbitrary ratios of the intensity and 
detuning. It is shown that in the case of equal detuning of the light waves, deep (sub-Doppler) 
cooling of three-level atoms occurs for any values of the spatial phase shift. For zero 
spatial phase shift, the atoms are strongly cooled due to coherent population trapping in the 
given atom-field interaction scheme. On the other hand, for the case of different frequency 
detunings, sub-Doppler cooling of A atoms is possible only with a nonzero relative phase 
shift; it is shown that this is associated with the so-called "Sisyphus" cooling mechanism. We 
underscore that in our scheme neither a polarization gradient of the exciting waves nor a 
magnetic field is required to achieve this type of cooling pattern; two standing waves acting on 
different transitions of a A atom are sufficient. O 1994 American Institute of Physics. 

1. INTRODUCTION 

The behavior of different atomic systems in standing 
light waves has traditionally been of great interest. One such 
problem is the cooling of neutral atoms by a standing laser 

It is well known that the main difficulty in describing the 
cooling of atoms in standing waves is taking into account 
explicitly the microscopic spatial structure of the light field. 
This is manifested mathematically in the fact that the quan- 
tities determining the dynamics of an atom in a light field 
(force of the light pressure, momentum diffusion tensor) are 
continued fractions, as happened for the two-level-atom 
model.' In addition, the number of denominators of the con- 
tinued fraction that must be taken into account increases with 
the intensity of the light waves. For this reason, such calcu- 
lations are ordinarily limited to the low standing-wave inten- 
sities and different variants of the perturbation theory in the 
field are used, which in reality reduces to retaining only the 
first few denominators in the expression for the continued 
fraction. 

Attempts to describe in this manner the interaction of a 
A atom with two standing waves were made in Refs. 3 and 4. 
Obviously, such an approach severely restricts the applica- 
bility of the results and does not permit investigating differ- 
ent effects which arise when the saturations of the transitions 
of the A atom are large. 

In this paper we regard the process of cooling of A at- 
oms in standing waves as being the result of the effect of the 
spatially homogeneous force F ,  of the light pressure acting 
on the atoms. We derive F ,  as a function of the velocities of 
the atoms on the basis of exact solutions for the elements of 
the atomic density matrix, which are represented in the form 
of matrix continued  fraction^.^ For this reason, in our calcu- 
lations no restrictions are imposed on the ratio of the fre- 
quency detunings and intensities of the standing waves. For 
intense waves, we observe the existence of nonlinear multi- 

photon absorption and emission effects in a three-level sys- 
tem, such as inversion of the light-pressure force in the re- 
gion of zero ve10cities.l~~ 

We emphasize that in the case of a A atom interacting 
with standing waves it is necessary to distinguish the cases 
of zero (cp=O) and nonzero (cpZO) spatial phase shifts be- 
tween the  wave^,^,^ since in the presence of such a shift the 
spatial structure of the field interacting with the atom is 
qualitatively different. We find that for pZO and unequal 
detuning of the exciting waves the coefficient of dynamic 
friction dF, /dv ,  is markedly higher and strong (sub- 
Doppler) cooling of the A atoms occurs. This can be ex- 
plained by the appearance of the so-called "Sisyphus" cool- 
ing mechanism when c p # ~ . * , ~  

On the other hand, the "Sisyphus" mechanism no longer 
works when the spatial phase shift is zero (cp=O). In this case 
sub-Doppler cooling is observed only for two different de- 
tunings of the standing waves, and it is associated with the 
existence of cooling as a result of coherent population trap- 
ping in the system.10 

An important part of our work is the calculation of the 
temperature of an ensemble of A atoms interacting with two 
standing waves. According to the theory of Brownian mo- 
tion, this temperature is the ratio of the velocity diffusion 
coefficient and the coefficient of dynamic friction of the A 
atoms in the standing waves. We emphasize that we obtained 
the velocity diffusion coefficient for zero velocity of the A 
atoms taking into account the nonadiabatic corrections deter- 
mined by the statistics of re-emitted photons.1 

The temperature of the cold atoms as a function of the 
spatial phase shift cp between the standing waves is presented 
in Sec. 4. The results obtained enable us to discuss the data 
of the experiment-of Ref. 11 and to point out that this ex- 
periment involves two fundamentally different mechanisms 
of sub-Doppler cooling. 
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where dldt = dldt + v,dldz is the hydrodynamic derivative; 
(...) denotes averaging over the angular distribution of the 
spontaneously emitted photons; 2 y= yl + y2, where ym are 
the partial probabilities of spontaneous decays in the chan- 
nels (3)+(m) (m=1,2); r is the relaxation rate of the low- 
frequency coherence as a result of fluctuations of the fre- 
quencies of the optical fields or collisions of the atoms in the 
beam; gm = d3,Em/2h are the Rabi frequencies of the stand- 

FIG. 1. a) Energy-level scheme of a A atom; a,= 03- 03, is the detuning 
of light waves with frequency om from the transition frequency %, (m ing waves; dm3 are the matrix elements of the dipole moment 
=1,2); 2y= y,+y2 is the total width of the upper level, where y, are the for the transitions I3)*lm) (m =1,2); a 3 m =  W3m- o m  (m 
partial probabilities of spontaneous decays in the channels 13)+lm) (m = 1,2) is the frequency detuning; and it is also assumed that 
=1,2); and r is the relaxation rate of the coherence between the levels 11) the wave vectors have the same Ikm(=k. and 12). b) Spatial dependence of the standing-wave intensities I, for q#O.  According to Ref. 1, the force due to the light pressure 

can be represented in the form 

2. BASIC EQUATIONS 

Consider a three-level A atom (Fig. la) interacting with 
two linearly polarized standing light waves 

where e is the unit polarization vector, E m ,  o m ,  ' and 
km = W,/C are, respectively, the amplitudes, frequencies, and 
wave vectors (m = 1,2); and Q is the spatial phase shift be- 
tween the waves (Fig. lb). We note that the wave with fre- 
quency om is resonant with the optical transition lm)*13) of 
the atom and the transition l1)*12) is dipole-forbidden. 

To describe the translational motion of a A atom in the 
field (I), we employ the atomic density matrix in the Wigner 
representation p(r,p,t). The system of equations for the ele- 
ments of p(r,p,t), to zeroth order in the photon momentum, 
has the following form:',1° 

We note that to introduce concepts such as the light-pressure 
force and the velocity diffusion tensor, we must impose cer- 
tain conditions on the evolution time of the system and the 
characteristics of the atomic transitions. In our case, the first 
condition is 

and determines the times at which the system "forgets" its 
initial state, i.e., temporal coherence is lost. The second con- 
dition can be written in a form expressing the fact that the 
recoil energy R = h 2 k 2 / 2 ~  of an atom is small compared to 
the natural linewidth h o  of the atomic transition 

which actually means that the recoil momentum of the atom 
is small compared to the finite width of the velocity distri- 
bution. The conditions (4) together make it possible to use 
the quasiclassical approach to describe the interaction of an 
atomic system with the laser field.1910 
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We assume that the translational state of an atom 
changes over a characteristic time much longer than y-' (i.e., 
the condition (4a) holds). It can then be assumed that the 
elements of the density matrix are not explicitly time- 
dependent, but rather they are functions only of the velocity 
and position of an atom. For this reason, the stationary solu- 
tion of the system (2) can be used to determine the light- 
pressure force. This corresponds formally to neglecting the 
partial time derivatives on the left-hand sides of the system 
(2) compared to the relaxation terms on the right-hand sides. 
In the equations thus obtained we expand the elements of the 
density matrix in infinite spatial Fourier series 

and then write the equations for the amplitudes of the Fourier 
harmonics pb and p?, in the form 

where flM=f131-f132, and the normalization condition 
P ~ ~ + P ~ ~ + P ~ ~ = ~  is used. 

We employ the method of Ref. 5 to solve Eq. (6): We 
express the amplitudes of the Fourier harmonics of the off- 
diagonal matrix elements P Y ~ ( ~ ~ )  and d3(32)  in terms of the 
harmonics of the diagonal elements pl, (m=1,2) and the 
off-diagonal low-frequency coherence matrix elements 
p;2(21). Then we obtain from Eq. (6) 

where 

Substituting the expressions (7) into the equations for 
p'i2(21) and P;(,) into Eq. (6) yields a system of recurrence 
equations that can be written as a single matrix equation 

where the vectors x, and y have the form 

r l=(2  yl+ y2)/3, r2=(y1+2 y2)/3, a,,, and the elements of 
the 4 x 4  matrices A,, B, , and C, are given in Appendix 1. 

The solution of Eq. (8) can be formally constructed as 
the solution of an ordinary C-number recurrence equation? 
in the form of an infinite fraction whose elements are 4 x 4  
matrices obtained from A,, B, , and C, : 
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The higher-order Fourier harmonics of the vector x can 
v,= + (fi1-fi2) 

be obtained from x, by means of the transformations 2k 

are clearly seen. We note that for weak saturations of the 
transitions of a A atom, the force shown in Fig. 2a can be 
interpreted as being the sum of two profiles of different signs 

Expressions for the matrices T;, are presented in Appendix from two pairs of oppositely propagating traveling waves 
1. Now the amplitudes of the Fourier components of the with different frequencies into which the field (1) can be 
off-diagonal matrix elements can be determined from Eq. (7) expanded.1° 
and the light-pressure force (3) can be expressed as Figure 2b displays the velocity distribution of a beam of 

co A atoms after the beam has interacted with the standing 
ink 

F . = y  C { ~ ~ [ ( P ; ; ~ + P ; ; ~ ) - ( P ; : ~ + P ; : ~ ) I  
waves. It is assumed that the beam of atoms resides in the 

n=-m interaction region for a time ~ 1 0 - '  s. In the calculation, we 
solved the Liouville equation 

+g2[(~1;;~+~;;l)ex~(icp)-(~;;~+P;:~) 

X exp( - icp)])exp(inkz). (10) F. lhk y 
l ' 7 . v . r 1  

We emphasize that the force (10) can be used to describe 0.04L 

the evolution of an arbitrary ensemble of atoms. In the im- 
0,02 

portant (for practical applications) case of a wide spatial 
atomic distribution whose width Az is much greater than the 0.00 
wavelength of the light (Az*X), the average light-pressure 
force fi, is determined only by the first nonoscillating term in -0.02 

Eq. (10): 
-0.04 

We note that the matrix-fraction method was employed in 
Ref. 7 to study the interaction of a V atom with standing 
waves and to study J= 112-J'= 112 schemes of atomic lev- 
els. 

3. DYNAMICS OF A A ATOM IN STANDING WAVES 

A. Case of unequal frequency detunings 0, #0, 

In the present section, we discuss the light-pressure force 
F,  acting on a A atom in standing waves with arbitrary ratios 
of the intensity and detuning. We emphasize that we do not 
consider here the case of equal frequency detuning, which 
will be investigated in the next section. 

FIG. 2. a) Light-pressure force F ,  acting on a A atom in the case of low 
standing-wave intensities for R1= -1, R2= 1, y,=l, y2=0.5, 
g, =g,=g=0.5, r=0.005, and q=O. b) Change introduced in the velocity 
distribution of A atoms by the force F, from Fig. 2a. Curve I-initial 

Figure 2a dis~javs the force F- obtained bv the method Gaussian distribution whose width corresponds to Doppler cooling; curve " 1 ,  

described above in the case of low itanding-wa;e intensities. 2-final distribution of the A atoms. The interaction time is ~50,-', where 
o R = f i k 2 / 2 ~  is the recoil frequency. The two narrow peaks near the reso- 

The regions of narrow structures centered nance values of the velocity (12) corres~ond to cooline of atoms as a result - .  . 
on the resonant velocities of coherent population trapping5 
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FIG. 3. a) c&nge in the light-pressure force F ,  with increasing intensity of 
the standing waves. The numbers on the curves correspond to g=1.5 (I) and 
5 (2). The remaining parameters are: a , =  - 1, a2=1,  y l= l ,  y2=0.5, 
r=0.005, and q=O. b) Velocity distribution formed by the force F,  (Fig. 3a, 
curve 2) over the time r - 5 o i 1 .  Curve I-initial distribution; curve 
2--effective force; curve 3-final distribution. 

for the atomic distribution function w@) with the force F ,  
(Fig. 2a) and an initial Gaussian velocity distribution. In so 
doing, we assume that the broadening ( A v ) ~ ~ ~  introduced 
into the velocity distribution by the velocity diffusion over a 
time T can be neglected. 

One can see (Fig. 2b) that the velocity distribution un- 
dergoes considerable deformation over the interaction time T 
only in the region of the coherent-trapping resonances (12). 
This is due to the high value of the coefficient of dynamic 
friction within the resonances (12) as compared to the value 
in the zero-velocity region. Correspondingly, the strong cool- 
ing of A atoms is likewise more efficient near the coherent- 
trapping resonances (12), and this makes it possible to obtain 
such narrow structures with effective temperatures signifi- 
cantly lower than the Doppler limit TD= f i  ylk, , as happened 
for the case of oppositely propagating traveling waves.1° 

The form of the light-pressure force changes qualita- 
tively as the standing-wave intensities increase. For example, 
the coherent-trapping dips (Fig. 3a, curve 1)  vanish, and as 
the intensity increases, multiphoton absorption and emission 
processes start to play an active role. As a result, the light- 
pressure force acquires a complicated multiresonance struc- 
ture, and a narrow dispersion feature appears near zero ve- 

F. lhk y 

FIG. 4. Light-pressure force accompanying a change in the magnitudes and 
signs of the light-wave detuning. a) g=10, a , = - 3 ,  a2=3 ,  y ,=l ,  y2=0.5, 
r=0.005, V=O. b) g=5,  al=i, a2=2 ,  ~ , = i ,  ~ , = 1 ,  r=o.005, V=O.  

locity of the A atoms (Fig. 3a). The existence of such a 
structure is due to induced photon absorption and emission 
by A atoms in intense standing waves. A feature of this type 
in a light-pressure force is also typically present in the case 
when a two-level atom interacts with intense standing wave.' 
Correspondingly, the form of the velocity distribution of the 
A-atoms (Fig. 3b) after interaction with intense standing 
waves shows that the beam of atoms is effectively decolli- 
mated by the light field near zero velocities, while it is col- 
limated for other values of the velocity (with the chosen 
values of the parameters). As a result of the combined effect 
of these two action-"heating" at the center and "cooling" 
at the periphery-the velocity distribution of the beam of 
atoms acquires a characteristic "double-peak form." 

It is interesting that in the case of transverse collimation 
of the beam of A atoms by two standing waves by means of 
an optical axicon, the distribution in Fig. 3b corresponds to a 
ring structure of the collimated atoms in the plane perpen- 
dicular to the propagation axis of the beam. 

Finally, Figure 4 shows how the form of the light- 
pressure force changes when the sign and magnitude of the 
detuning changes in the case of large saturations of the tran- 
sitions of a A atom. For detuning of different signs, not only 
does the sign of the slope of the force near zero velocities 
change, but additional roots also appear (Fig. 4b). 

We now consider the case of nonzero spatial phase shift 
cp between the standing waves. We underscore that introduc- 
ing a nonzero shift cp qualitatively changes the physical pic- 
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FIG. 5. a) Light-pressure force versus the velocity of the atoms for g=0.5, 
R l = l ,  R2=2, y l = l ,  ~ = l ,  r=0.005 and different values of the spatial 
phase shift 9. The numbers on the curves correspond to cp=O (I), n/6 (2), 
.rr/4 (3) and 4 2  (4). b) Change in the velocity distribution of the A atoms 
accompanying the interaction with the field of the standing waves with 9=O 
(curve 3, the interaction time i-=3wi1) and cp=~r/2 (curve 2, the interaction 
time r=1.5wi1) .  The initial distribution is Gaussian (curve I) .  The remain- 
ing parameters are the same as in Fig. 5a. 

ture of the interaction of a A atom with the field (1) (Fig. lb). 
Indeed, in this case nonuniform optical pumping arises in the 
system, and as a result for low velocities of the atoms a 
significant fraction of the atomic population is transferred 
from one lower level into another. In the process, population 
exchange occurs between the lower levels over distances of 
the order of the wavelength of the light wave. Naturally, this 
should result in more efficient interaction of the atoms with 
the field than in the case of zero spatial phase shift. It is also 
necessary to take into account the fact that the energies of the 
lower levels oscillate in space in accordance with Eq. (1). 
This picture of the interaction between the atoms and the 
field for cp#O corresponds to the so-called "Sisyphus" 
cooling,8 which arises in combination with spatially nonuni- 
form optical pumping and light-induced shifts of the energy 
levels of an atom. The cooling occurs as  follow^:^ A atoms 
in one of the lower states move in a potential produced by 
the periodic light-induced shift of this level. As the atoms 
approach the maximum of the potential, they lose kinetic 
energy and at the same time the probability for an atom to 
undergo a transition as a result of optical pumping into an- 
other unperturbed state with a smaller light-induced shift in- 
creases. With such a transition, an energy equal to the differ- 
ence of the light-induced shifts of the levels at a given point 

FIG. 6.  Light-pressure force versus the velocity of a A atom in the case of 
intense standing waves for different values of the shift 9: p=O (I)  and n/2 
(2). The remaining parameters are: g=5,  @=3, R2=6,  y l = l ,  y2=l and 
r=0.005. 

is dissipated by means of spontaneous emission. It is due to 
the multiple repetition of this process that the atoms slow 
down. This pattern of the motion of the atoms has been pro- 
duced in other sub-Doppler laser cooling schemes: a polar- 
ization gradient of the exciting waves8 or a magnetic field.9 
In our case, it can be achieved with two standing waves 
acting on different transitions of a A atom.6y7 

Figure 5a displays the light-pressure force acting on a A 
atom for different values of the spatial phase shift cp. One can 
see that for a shift cp#O a narrow dispersive feature appears 
near zero velocities of the A atoms. Here the slope of the 
force for zero velocity increases considerably, even for low 
values of cp. We shall show below that this results in strong 
(sub-Doppler) cooling of the atoms. Characteristically, the 
sign of the slope of the force for cp#O is different from the 
case of zero spatial phase shift. Correspondingly, if decolli- 
mation of the beam of atoms by the field (1) occurs for q = O ,  
then for cp#O beam collimation will occur for the same 
standing-wave detuning and intensity. 

Figure 5b displays the velocity distribution of a beam of 
atoms for different values of the spatial phase shift after in- 
teraction with the standing waves. It is obvious that at times 
of order r-ui l ,  where u~ = f i k 2 / ~  is the recoil frequency 
and cp#O holds, an intense peak of collimated atoms forms 
(curve 2). On the other hand, for cp=O the atomic beam is 
only weakly decollimated (curve 3). 

As the intensity of the light waves increases, the form of 
the force F,  for pit0 changes even more dramatically (Fig. 
6). For example, not only does the coefficient of friction 
increase, but the amplitude of the force for A atoms with 
velocity close to zero also increases and the region of veloci- 
ties where the light-pressure force is determined by the value 
of the spatial phase shift becomes wider. We note that the 
characteristic velocity scale of the dispersion structure aris- 
ing in the force F,  when cp#O holds depends on both the 
value of the spatial phase shift and the intensity of the light 
waves. 

We have presented the change in F,(v,) accompanying 
the introduction of a spatial phase shift cp for light waves 
with different detuning and intensity. We assumed that the 
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F, lhk y 

FIG. 8. Light-pressure force for different values of the spatial phase shift in 
the case of detuning of different sign and high standing-wave intensities. 
&=-I, n2=1, g=3, yl=l, y2=0.5, r=0.005. Curves: cp=O ( I )  and ~r/4 

region on the cooling slope of the central velocity resonance 
of F, . We note that in principle the effective temperature of 
all three peaks of collimated atoms in Fig. 7b can be signifi- 
cantly lower than the Doppler limit T D  . 

Finally, Figure 8 illustrates the change occurring in the 
light-pressure force F, in response to a change in the spatial 
shift cp in the case of high light-wave intensities. As one can 
see from the figure, the character of the velocity dependence 

FIG. 7. a) Light-pressure force for different values of the spatial phase shift 
in the case of detunings of different sign. a,= - 1, R2=l, g=0.5, y,=l, F,(v,) for cp=O is completely different from the case with 
y2=0.5, and r=0.005. Curves: p=o (I), .lr/4 (2), and - ~ / 4  (3). b) Change v = T / ~ .  For example, for cp=~/4  the amplitude of the force 
introduced in the velocity distribution by the force in Fig. 7a. The interaction FZ increases in the region of zero velocities and the velocity 
time with the field is ?=2wi1 and the initial distribution is Gaussian (dashed interval where F, is large becomes wider. 
curve). 

frequency detuning has the same signs. Now, let the 
detuning of the standing waves have different signs. Then, 
for cpZO a sharp peak of the light-pressure force acting on a 
A atom forms at the point v,=O. The sign and amplitude of 
this peak are determined by the sign and the value of the 
spatial phase shift, and the maximum value of the amplitude 
is reached for lql  = ~ 1 4  (Fig. 7a). 

We note that this form of F,(v,) corresponds to the pres- 
ence of a "rectified gradient force" in the system.12 Indeed, 
as shown in Ref. 12, such a force occurs in a A system if the 
difference between the wave vectors is large and the fre- 
quency detuning has opposite signs. Let k2 = k1 + Ak. Then 
k2z=klz+@, where @=Akz is the nonuniform spatial 
phase shift, and the problem of excitation of the system by 
fields with two different wave numbers reduces to the case 
studied here but with a nonuniform spatial phase shift. At the 
same time, it is well known12 that averaging the "oscillating 
rectified force7' over a wavelength of the light field yields a 
nonzero value. For this reason, the average light-pressure 
force in our case is also different from zero when a A atom 
has zero velocity. 

Figure 7b illustrates the change occurring in the velocity 
distribution of a beam of atoms under the action of the force 
F, (curve 1 in Fig. 7a). One can see that there are three 
regions of collimation of the atoms: two peripheral regions, 
determined by coherent-trapping resonances (12) and a third 

B. Case of equal detuning a, =a, 
We now investigate the case in which the light waves 

acting on a A atom have equal detuning. It is well known1' 
that when &I1 =a2 holds coherent population trapping occurs 
in a A system. This trapping prevents excitation of the sys- 
tem into an upper state. Nonetheless, even for equal detuning 
of the standing waves 

a light-pressure force giving rise to strong cooling of the A 
atoms exists when the relaxation rate r of the low-frequency 
coherence between the levels 11) and 12) is taken into ac- 
count. 

We note immediately two circumstances that make the 
case of equal detuning different from the case considered 
above. First, relaxation (with rate r) of low-frequency coher- 
ence plays an important role in this situation. There are three 
basic physical reasons for such relaxation: fluctuations of the 
laser fields, transit broadening, and atomic collisions in the 
beam. The spectrum of the exciting fields must be quite nar- 
row (Awlwel), since otherwise it is meaningless to talk 
about the spatial structure of the light field.13 Second, as 
shown in Ref. 10, the relaxation rate of the low-frequency 
coherence determines the conditions which the light waves 
must satisfy so that the dynamics of the atoms can be de- 
scribed quasiclassically. 
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FIG. 9. a) Light-pressure force F,  versus the velocity of A atoms in the case 
of different frequency detuning: n l = l ,  f12=1, y l=l ,  y2=l,  r=0.005, and 
cp=O. Curve I-low standing-wave intensities g=0.5; curve 2-high 
standing-wave intensities g=5. b) Light-pressure force for different spatial 
phase shifts with equal detuning. & = l ,  Rz= l ,  g,=0.5, g2=0.25, y l= l ,  
y,=l, r=0.005; curves: 9=O (I), 0 . 1 ~  (2), and d 2  (3). 

Figure 9a displays the velocity dependence of the light- 
pressure force acting on a A atom when the frequency de- 
tuning of the exciting waves is equal. Obviously, in this case 
there is a narrow dispersive structure for A atoms with ve- 
locities near zero. This structure is caused not by the spatial 
phase shift between the standing waves, as happened previ- 
ously, but rather by the characteristic manifestations of co- 
herent population trapping in this system. Characteristically, 
if cooling occurs near zero velocity for the chosen values of 
the parameters, then even for Jv,(=v, (v, is the velocity at 
which F,(v,)=O) cooling of the atoms by the field is re- 
placed by heating and demonochromatization of the beam 
occurs everywhere except for velocities lv,l<v,. Another 
interesting feature of this case is that as the intensity of the 
light waves increases, the coefficient of dynamic friction re- 
mains unchanged in the region of zero velocities (curve 2 in 
Fig. 9a). At the same time, for Iv,l >v, multiphoton induced 
absorption and emission processes appear and the light- 
pressure force acquires a characteristic multiresonance struc- 
ture. Multiphoton processes are not manifested in the region 
Iv,l<v, because they are suppressed by the coherent popu- 
lation trapping. 

The change in the form of the force F, accompanying a 
change in the spatial phase shift is shown in Fig. 9b. It is 
obvious that the velocity interval where monochromatization 
of the atomic beam is possible increases. The relatively small 

FIG. 10. Temperature of an ensemble of A atoms as a function of the spatial 
phase shift cp in the case of unequal frequency detuning R l = l  and n2=2  
(curve I) and in the case of equal detuning n,=Q2=l  (curve 2). The re- 
maining parameters are: gl=0.5, g2=0.25, y ,=l ,  y,=l, and r=0.005. 

change of the coefficient of dynamic friction in the region of 
zero velocities shows that the cooling efficiency is approxi- 
mately the same for both q=O and q#O. 

4. TEMPERATURE OF AN ENSEMBLE OF A ATOMS IN 
STANDING WAVES 

In conclusion, we now study the temperature of the A 
atoms cooled in standing waves as a function of the spatial 
phase shift q. To determine the temperature of the cold at- 
oms, we calculated the velocity diffusion for zero velocity by 
the method of Ref. 1. Both the spontaneous and induced 
parts of the velocity diffusion tensor were taken into account, 
and the nonadiabatic correction determined by the statistics 
of the re-emitted photons was also taken into account in the 
induced part of the velocity diffusion tensor.' To obtain the 
spatial average of the momentum diffusion at the point 
v,=O, we performed wavelength averaging of the light fields 
similarly to Eq. (11) 

where 

+ ~ g ) g ; !  sin(k2z+ v)], (15) 

and pjO,) and h h r e  the coefficients of the Wigner density 
matrix in the Bogolyubov series expansion: 

and can be found from the system presented in the Appendix 
2. Then, according to the theory of Brownian motion, the 
temperature of the cold atoms is' 

where 
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is the average coefficient of dynamic friction, which can be 
obtained directly from Eq. (11). 

The results of our calculations are presented in Fig. 10. 
One can see that for unequal detuning R1#R2 of the light 
waves sub-Doppler cooling occurs in the A system only for 
cp#O,.rr ,... . As cp approaches O,T, ..., the spatially nonuniform 
optical pumping vanishes and the "Sisyphus" mechanism of 
cooling no longer operates; it is this that results in the sharp 
increase of the temperature near the points cp=O,rr, ... (Fig. 
10, curve I ) .  In contrast, for equal detuning R1=R2 sub- 
Doppler cooling is observed irrespective of the spatial phase 
shift cp (Fig. 10, curve 2), since in this case cooling occurs 
not only by the "Sisyphus" mechanism,' but also by coher- 
ent population trapping.'' 

From this standpoint, the experimental results of Ref. 11 
on the observation of strong cooling of A atoms in standing 
waves with an arbitrary spatial phase shift are interesting. 
Figure 2a of Ref. 11 displays the measured profile of the 
atomic beam for two values of the spatial shift cp for standing 
waves with equal detuning. It is obvious that the quantity 
determining the effective temperature of the atomic beam- 
the width of the velocity distribution-hardly changes as the 
phase shift increases from 0 to cp=?r/2, whereas the ampli- 
tude of the signal due to the cold atoms increases with the 
spatial shift cp. This behavior can be understood by referring 
to Fig. 9a, where one can see that the cooling zone Iv,l<v, 
increases and therefore the fraction of cooled atoms increases 
as the phase shift increases from cp=O to cp=.rr/2. On the 
other hand, a slight change in the width of the velocity dis- 
tribution as cp changes is completely equivalent to the behav- 
ior of the effective temperature in Fig. 10 (curve 2). 

We emphasize that for cp=O, just as for cp=.rr/2, sub- 
Doppler cooling of the atoms occurs in the experiment of 
Ref. 11. In the first case cooling is due to coherent population 
trapping1' and in the second case the "Sisyphus" mechanism 
operates if there are no polarization gradients.6" 

APPENDIX 1. 

The elements of the matrices A,, B, and C ,  can be 
written in the following form: 
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APPENDIX 2. 

Here 

b?=bn-cl= - - 1  
m m 2 [ i * f + ( R , - ( n *  l ) k v , ) ]  ' 

r l = ( 2 y l + y 2 ) / 3 ,  r 2 = ( y l + 2 y 2 ) / 3 ,  m = 1 , 2 .  

The matrices T: and T i  are defined as matrices relating 
the neighboring Fourier components of the vector x: 

+ 
xn+2=Tn x , ,  n>O, 

xnP2=T,xn ,  n<O. 

Recurrence relations for T' can be derived from Eq. (8): 

+ - 1  T , f _ , = - ( A , + c , . T , )  B , ,  n>O, 

T,,= - ( A , + B , . T ; ) - ' c , ,  n<O. 

Assuming X ,  + 2  =0 ,  X - , -  =0 ,  and therefore T: = O  for 
some n ,  the matrices T can be obtained for the smaller indi- 
ces, including T:, and the vector x, can be found [see Eq. 
( 9 ~ .  

In calculating the velocity diffusion coefficient at the 
point v,=O, the matrix elements pj;) can be found from the 
system (2)  in which the derivatives satisfy 

and the third equation is replaced by the normalization con- 
dition 

The matrix elements p$) are solutions of the system with 
the same coefficients as in the preceding case and the same 
vector of free terms 

where f , = ~ ! ~ ) l f i k  y. 
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