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Using the functional integration method we compute exactly the time-dependent correlation 
functions of local spins in a finite quantum Heisenberg magnet with a position-independent 
exchange between spins. Explicit expressions for such correlation functions for an arbitrary 
number (N) of spins in the cluster and for all temperatures are presented. The spin correlation 
function for a cluster placed in an external time-dependent magnetic field is obtained 
under the same conditions. At large N the correlation function is found to have a Gaussian bump 
and a nonvanishing tail at large times. It is in good agreement with the finite-time domain 
of the experimental curve. A possible application of the exact results, which form a starting 
dynamical mean-field approximation for long-range magnets and an accompanied physical 
picture, are discussed. O 1994 American Institute of Physics. 

1. INTRODUCTION 

The theory of quantum magnets stretched due to a very 
long period in the framework and on the basis of the mean- 
field approach is well Magnets that allow a con- 
sistent mean-field approximation must be characterized by a 
large number of spins in the exchange sphere. But even in 
the case of the nearest-neighbor exchange, the inverse num- 
ber of those "nearest neighbors" turns out to be reasonably 
small parameters at least in 3D. The main purpose of the 
zeroth-order approximation in the method of static homoge- 
neous mean field is to replace many-spin exchange of a fixed 
spin with its surrounding onto an action of an auxiliary ho- 
mogeneous magnetic field on the spin. This field, in turn, 
must be expressed, in terms of the average value of the spin 
with respect to a corresponding density matrix. Formally, it 
results in the fact that we can replace the Heisenberg Hamil- 
tonian (we restrict the analysis here to the Heisenberg type of 
exchange only) with a cluster Hamiltonian 

where N is the number of spins in the exchange sphere of an 
original magnet, G=2;ij is the total spin operator of the 
system, and J is the strength of exchange between the spin 
and its surroundings. The position-independent feature of the 
exchange between spins in the model renders spatial corre- 
lations homogeneous, allowing one to express any spin cor- 
relator in terms of the autocorrelation function. The case of 
an external, spatially homogeneous, time-independent mag- 
netic field is also described by the method, with the addition 
of A= -hi? to the Hamiltonian (1). The standard approach, 
which works well at low temperatures, at least for 3D mag- 
nets, is to build on the basis of this static mean-field theory a 
spin-wave approximation.4 But in the vicinity of the Curie 
point, in the paramagnetic phase those techniques have failed 

together with the proposition about the presence of well- 
defined excitations. In the vicinity of the Curie point from 
the ordered phase side the situation can be improved by 
means of the first-order static approximation with respect to 
1/N (Refs. 3 and S ) ,  but in the paramagnetic phase anything 
"static" cannot help, because the average spin (or the aver- 
age spin of the sublattice in the case of an antiferromagnet) is 
zero. We are therefore dealing with a problem of finding a 
dynamic mean-field approximation, which would describe 
the paramagnetic phase in an intermediate interval of times, 
and which would improve the static mean-field theory in the 
ordered phase. 

In this paper we present for the first time a nonequilib- 
rium dynamical mean-field theory for a long-range quantum 
magnet in a homogeneous (but arbitrary changing in time) 
magnetic field. Our results are rigorous in the sense that we 
solved explicitly the dynamical problem for the cluster of N 
quantum spins 112 whose pair interactions are independent of 
separations, with the Hamiltonian 

A functional integral formalism is used with this cluster 
model to express the transverse pair autocorrelator in terms 
of a matrix element for one spin equal to 1/2. This reduction 
can be performed at an arbitrary moment of time, tempera- 
ture, number of spins, and arbitrary magnetic field varying in 
time. In the absence of an external magnetic field, as in the 
case of some specific feature of its temporal behavior, this 
matrix element is calculated explicitly. The sketch of the 
equilibrium variant (no magnetic field) of the present theory 
was published el~ewhere.~ We show that the cluster approxi- 
mation, formed by the model (1) for a real magnet, explains 
some short- and intermediate-time (up to a time of a spin 
diffusion regime formation) experimental measurements7 in 
the paramagnetic phase. 
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Let us formulate the problem. We consider the transverse 
pair autocorrelation function, which is defined as follows: 

.rnh(t)l(T;P;N) 

Here i ' ( ~ )  is the usual notation for up- and down- spin 
operators in the Heisenberg reeresentation i'(T) 
=yexp[ -  i$~dt~(t)]i'~ex~(i$~dt~(t)), i' = ixt iiY; 
Yexp  and .pexp  are time-chronologi$al and antichronologi- 
cal exponentials, respectively; H(h,)=~,-h&, and 
ho=h(t=O). The lattice site index of the local spin operators 
i' here and below is omitted and the coordinate axes are 
chosen. Our aim is to rigorously calculate the many-spin 
trace (3) for an arbitrary function h(t), O<t<T at arbitrary 
values of time T, of the inverse temperature p, and of the 
number of spins N. 

The article is structured as follows. In Sec. 2 we develop 
the functional integral method to study the real time evolu- 
tion of the quantum spin cluster. Using this method, we ob- 
tain explicit expressions for the correlator (3) without an ex- 
ternal field. The case of antiferromagnetic exchange is also 
discussed in Sec. 2. Section 3 is devoted to the spin cluster in 
an external, uniform magnetic field. We show that the field- 
dependent part of the evolution operators is factorized. How- 
ever, the effect of magnetic field in the initial Gibbs distri- 
bution turns out to be very nontrivial. We present the 
expression for (3) in two cases. First, when the initial field h 
is constant in direction and, second, for a magnetic field 
which rotates uniformly along some axes with a constant 
angular velocity. In the last part of the article we discuss the 
correspondence between our results and the published ex- 
perimental data. Appendices A and B contain some technical 
details. 

2. EQUILIBRIUM CLUSTER DYNAMICS WITHOUT AN 
EXTERNAL FIELD 

Let us first describe why even without a magnetic field it 
is difficult to calculate the autocorrelator (3). The spectrum 
of many-spin Hamiltonian (1) cornmutates with the total spin 
of the system 6. This means that we can classify the eigen- 
states of the Hamiltonian by the value of the spin angular 
momentum L,  which can take the positive value L =N/2, 
N/2-1, ..., and its projection onto the z axis M, which can 
take the values M = - L, - L + 1,.  . . ,L . The energy level 
EL = -JL(L + 1)/2N, which corresponds to the value of the 
total spin L , thus has (2L + 1)-fold degeneracy. This IL ,M) 
representation of the eigenstates would be very convenient 
for a calculation of a diagonal matrix element (or a trace) 
which is defined in terms of the total spin operators only. 
However, for the calculation of a diagonal matrix element of 
a one-spin operator, which does not commute with the 
Hamiltonian, as in (3), this representation is not suitable. In 
addition, this eigenstate expansion would represent the result 
as a sum of exponentials oscillating in time, which is inap- 
propriate for an analysis of long-term behavior. 

To avoid the effect of mixing of the 1L,M) eigenstates 
by the one-spin operators i", we will formulate below a 
technique that maps the initial G phase space into an un- 
bounded functional phasespace. The resulting one-particle 
quantum mechanics will be shown to be exactly solvable. We 
note that the method which we use has nothing to do with the 
Bethe-ansatz or inverse-scattering approaches. 

Infinite Temperature 

As a first equilibrium step we consider the transverse 
pair autocorrelation function (3) at h=O and infinite tempera- 
ture P=O, when it takes the form 

Hubbard-Stratonovich transformations of the evolution op- 
erators from the definition (4) 

factorize the initial trace to a product of local traces (here 
and below we measure t in units of J ) .  These equalities are 
products of the operator-valued Gaussian integrals. When the 
time discretization interval goes to zero, the noncommutativ- 
ity of the spin operators in each "infinitesimal" factor can be 
ignored. However, the properties of the total product are de- 
termined by this noncommutativity. Because of the absence 
of a time dependence in the Hamiltonian (I), we had no 
time-ordered exponentials in (4) but only the usual kind. Af- 
ter the Hubbard-Stratonovich transformation, however, the 
.Pexponents appeared again [in .&j1j2)(~)]. This stems from 
the noncommutativity of the total spin of the system & with 
an arbitrary one-site operator ii  and it reflects the multiplic- 
ity (in discrete time) of the functional measures in (5) and 
(6). At first glance, these time-ordered exponentials create 
some difficulties. Indeed, we cannot calculate them explicitly 
as functionals of c p ~ , ~ .  However, there is a substitution which 
recasts the time-ordered exponents (7) into the products of 
the usual exponents (see Refs. 8-10 and Appendix A) by 
means of the following change of variables cp-+(p,@) in the 
functional integrals (5) and (6): 

where cp'=(cpxt-icpY)/2. The map (8) faces the above- 
mentioned difficulty that it is impossible to express T expo- 
nential~ in terms of the usual function of initial variables cp. 
In general, p and @ cannot be expressed solely in terms of cp 
from (8). But to perform changes of variables cp-+(p,@) in 
the functional integrals (5) and (6), it is not necessary to 
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invert (8). The map (8) contains time derivatives of the fields 
i,b: and 4;. It should therefore be supplemented with the 
initial or boundary conditions. It was shown9 that only the 
initial conditions provide a one-to-one correspondence be- 
tween these two sets of fields. Moreover, initial conditions 
are natural for the real-time evolution problem. In this paper 
we impose the constraints 

Explicit expressions for ,R(',~)(T) and the Jacobian of the 
map (8) in terms of the new variables p and (I; are given in 
Appendix A [see Eqs. (A3), (A4), and (A7), respectively]. 
After a calculation of the N local traces, they yield for (4) the 
following functional representation for @(T;N): 

S' = const 9 p ,  , 2 @ + ~ 2 e ~ y ~ A P - 1  f?, I (10) 

Normalization of the functional integral (11) depends on N 
only and it can be fixed by the condition @(T=o)=~.  

The fields $: and t,bT enter the expression for 35' with 
the final time argument T only. On the other hand, the bare 
propagators ( * : ( ~ ) * ; ( t ) ) m ( * ; ( ~ ) * ; ( t ) ) m ~ ( ~ - t ) = 1 ,  
given by the action Y o ,  do not depend on t <  T. This means 
that the functional integral in (11) remains the same if the 
fields &(tr) ,~;( t r )  are replaced by &(T) and @;(T), re- 
spectively. Thus the functional integral over the fields & 
and & can be replaced by the usual integral by simply omit- 
ting the time arguments and by replacing the measure: 

The dynamics of the p fields remains a very nontrivial 
one. It turns out, however, that we can calculate explicitly the 
resulting functional integral. We show in Appendix B that the 
problem transforms to a calculation of a matrix element of 
the accompanied one-dimensional quantum mechanics with 
the Hamiltonian 

We note that a similar matrix element with respect to exactly 
the same quantum mechanics appears in the calculation of 
the multipoint density correlator in the 1 D  l~calization.'~ 
The wave function (and all the matrix elements) is calculated 
exactly. In total we therefore obtain the following answer for 
the equilibrium transverse pair correlator at infinite tempera- 
ture 

@(T;N) is periodic in time; starting with unity at zero 
time it relaxes to a minimum, then recovers up to 113 and 
becomes unity again at Tp,,=47rN. 

In the limit of large N, when Tper is not reached, an 
intermediate asymptotic behavior takes place. Thus, at 
T= rdN, T-1, N+1 we have a smooth relaxation, which 
depends on N in terms of r only: 

The result (16) is characterized by a Gaussian bump at 
small times, a minimum at intermediate times, and a nonva- 
nishing tail in the limit 7-+m. We note that the Gaussian 
bump, which takes place, as we will see below, at lower 
temperatures, has also been obtained by Belinicher and 
L'vov for the Green's function of dispersion-free magnons in 
a long-range quantum magnets.3 The asymptotic value of 
~ ' ( 7 )  at dNG 7<N (113 at N+m) stems from the eigenstates 
of the initial quantum mechanics (1) with a zero total spin 
a = O .  The nonvanishing tail is just an artifact of the noner- 
godicity of our model. Thus, in the case of a more realistic 
long-range model, the 113-plateau can be realized in the ther- 
modynamic limit only as an intermediate-time asymptotic 
relation. 

The present result gives an approximation for real long- 
range quantum magnets. It is zeroth order with respect to the 
small parameter 11N cluster approximation (the number of 
spins in the exchange sphere plays the role of N). Experi- 
mental observations7 supports this statement. The experi- 
mental curve for the transverse autocorrelation function in 
Rb2CuBr,XH20 (which is three-dimensional BCC, s = 112) 
repeats dependence (16) with a very good agreement in the 
interval of times from zero up to the instant of time .@(T) 
from (16) reaches its minimal value. Later in time the depen- 
dence (16) deviates from the experimental curve, which re- 
stores the value approximately at 0.05 units to cross over 
further into a spin-diffusion tail at the largest times. 

The behavior (16) looks similar to the result of 
 calculation^'^ for spin in a classical random field. In our 
case, however, there was no external randomness at all. The 
constant of Gaussian relaxation, which was external in Ref. 
13, is defined in our analysis by means of the dynamics 
itself. 

In a recent paper,'4 we investigated the long-term dy- 
namics of an arbitrary-exchange quantum Heisenberg model 
at the infinite temperature. It was shown that the quantum 
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spin pair correlation function (in the paramagnetic phase due 
to unbroken symmetry of the Hamiltonian it is a transverse 
correlation function multiplied by 314) is equal to the corre- 
lation function of a classically evaluated vector field c#Jk(t) 

averaged over the initial conditions +k(0) =pk with respect 
to the Gaussian measure 

This "classical" problem, which is strongly nonlinear at an 
arbitrary exchange Jij , becomes linear and exactly solvable 
for the position-independent exchange, Jij = JIN.  In this case 
the right-hand side of (17) is J [ + k ~ P ] / N ,  where 
P=C,p=Ck+ is the integral of motion. Classical motion of a 
spin turns out to be just the uniform precession around the 
total spin of the system. It yields the same answer (16) for 
spin s=1/2 at N+l ,  T= TJN for the transverse autocorrela- 
tion function. We therefore see that (first) a good physical 
picture results in (16) and (second) the transition to the clas- 
sical model is valid not only at a large enough time,14 but 
also for a long enough exchange rate. 

Paramagnetic Phase Dynamics at Finite Temperatures 

It is possible to show that the approach taken in (15) is 
generalized to finite temperatures. Substitution of TI = T- i P  
instead of T in the first exponential on the right-hand side of 
(4) produces S ( T ;  P;N), whose real part gives 
.X(T;P;N) (3). Omitting the details of the calculations in 
Appendix B (they are performed exactly in the manner dis- 
cussed above for the infinite temperature), we write the result 

FIG. 1. Transverse pair autocorrela- 
tion function versus T ( ~ = t l i N ,  t is 
measured in units of J) at various 
temperatures: in the paramagnetic 
phase (a,) P=0, (a,) P = l ,  (a31 
P=3.5; in the ferromagnetic phase 
(b,) P=4.5, (b,) P=10, (b,) P=m. 

The three plots correspond to differ- 
ent number of spins in the cluster: 
the straight line-asymptotic in the 
limit N-m; the long-dashed line -N 
= 10; the dashed line N=100. 

(T- i p +  2ixN)(T- i p )  

xexp( 2 N P  

where Z(P) is the partition function defined, for example, 
from this expression under the condition Re 
[27+(0;P;~)]=1 [note that expression (19) is valid in the 
entire temperature interval, not just in the paramagnetic 
phase). 

The saddle-point equation 

tanh t* = 4 t * l P  (20) 

for P>4 has nonzero solutions corresponding to the ferro- 
magnetic phase. At the end of Sec. 3, we consider this low- 
temperature region in the context of a more-general case of a 
finite external field. We now set P<4, (4-P)NB1 and t*=O. 
The saddle-point calculation of the integral (19) gives us the 
following expression for the correlation function in the para- 
magnetic phase: 

In the case p < 4  we have z ( P ) ~ ( ~ - P ) - ~ "  . We thus con- 
clude that at P = 4  there is a peculiarity of the usual phase- 
transition type (of course, there is a phase transition only in 
the limit of a large number of spins, N B l ) .  It is clear that the 
static critical exponent 3/2 is the mean-field (by construc- 
tion) exponent, but its evaluation is useful for a control of the 
complicated dynamical calculations. We see that the squared 
inverse time of the Gaussian relaxation (21) goes linearly to 
infinity as 4-,B-0. 

The results for .%(T;P;N) [defined in (19) in the entire 
temperature interval] are illustrated graphically in Fig. 1. 

The finite range of the exchange leads to the existence of 
propagating excitations. In the ferromagnetic phase their 
contribution to thermodynamic quantities can be found by 
perturbation theory  method^.^'^"^ However, one cannot 
maintain this perturbation approach (at least directly) in 
studying the temporal correlations, because of the strong in- 
fluence of the dynamic mean-field b a ~ k ~ r o u n d . ~ " ~ - ' ~  The ex- 
act treatment of the latter would allow us to reach a new 
understanding of the problem. 
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Antiferrornagnet Cluster 

The position-independent antiferromagnetic exchange is 
described by the Hamiltonian (I), where J has a negative 
value. In the expression (19) p and T are measured in units 
of J. Thus, performing an analytical continuation P-i-P 
and T-4- T in (19), we obtain an analogous representation 
for a transverse correlation function in an antiferromagnet 
cluster, where p and T are measured in units of IJI. In mov- 
ing from the positive semiaxis of p to the negative one, we 
must rotate the line of the dx-integration toward the imagi- 
nary axis. In the thermodynamic limit NIPS-1, T= TJN we 
obtain 

There is no phase transition in this case. At the strictly zero 
temperature limit p=w, only states with a zero total spin 
survive. Each such state 10) satisfies the equality 

where j is an arbitrary lattice site number. This immediately 
gives 

3. CLUSTER IN A MAGNETIC FIELD 

Let us first consider the value 

We recall that the time dependence of the operator i+(T)  is 
governed by the Hamiltonian ~ ( t ) ,  O<t< T [see Eq. (2)], 
the same as the initial value ho of the magnetic field deter- 
mines the initial Gibbs density matrix. The correlation func- 
tion (25) can be considered as a retarded Green's function for 
spin operators. In general, the Hamiltonian ~ ( t )  at some 
instant of time does not commute with itself. But the pertur- 
bation A(t) and the Heisenberg Hamiltonian (I), which does 
not depend on time, commute with each other. This means 
that we can rewrite (25) in the following way: 

We direct the initial field ho along the z axis: 
ho&=ho&z=hoZ .iz. There is a unitary operator that trans- 
forms s-  into s+i ' 

It allows us to establish a relationship between the correla- 
tion function (25) and 

Substituting the identity k2=1 under the sign of the trace in 
(25) and performing the Hermitian conjugation, we obtain 

where h=(h, , - hy , - h,). Like in the equilibrium case, we 
discuss first the case of the infinite temperature (specifically, 
the unit density matrix). Making the Hubbard-Stratonovich 
transformations (5)-(7) and performing the change of vari- 
ables (8), we obtain the expression which differs from Eq. 
(11) only in the factor %. Instead of K in ( l l ) ,  we have 
@h(t)] for mh( t ) ] (T;  P=O; N), where 

Terms having nonzero "cumulative charge" with respect to 
the phase transformation @-+e5"@ give a zero contribu- 
tion'to the result. Thus, flh(t)] can be replaced by 

and 

Returning to the case of finite temperatures, we note that 
the initial field ho directed along the z axis does not destroy 
the phase invariance of the averaging measure. Thus the 
field-dependent part of the evolution operator can be factor- 
ized in this case: 

where 

and 

The Hubbard-Stratonovich transformation (5)-(7) for 
~ X ~ ( - ~ T , H ~ ) ,  TI = T- iP, and exp(iTH0), with the change 
of variables (8), gives us a representation for s 0 ( T ; / 3 ; N )  
in the form of the right-hand side of (lo), where the func- 
tional~ 9 and 27 are replaced by 
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1 g= - ~ r [ e x ~ ( ~ h ~ i , ) ~ ~ ~ ~ ~ ( ~ ~ ) i + ~ ( ~ ) ( ~ ) ~ - ] .  
(36) 

Substituting for &(')(TI) and JB(~)(T) the explicit expres- 
sions (A3) and (A4) and retracing the procedure of Appendix 
B, we obtain the following quantum-mechanical representa- 
tion: 

This representation differs from representation (B4) in the 
operators only: 

The identities (B7)-(B9) allow us to resolve the quantum- 
mechanical problem. After some computations we obtain 

sin vPho 

Pho 
v sinh3 - 

2 

X ( e - ~ T I N - 1 ) - 2 e - v T I N + i v ~ h o  

Pho 
cosh - 

2 
- 

Pho 
sinh2 - 

2 
v sinh - 

2 

In the limit N B l ,  /3ho+l this integral is given by a saddle- 
point contribution;') 

+ i r ~ ~ / ~ c $ ) .  (40) 

Here 6 is the solution of mean-field equation: 

T= TN"~, and the relaxation constant DP,ho is 

At small temperatures and in high fields ho the constant 
DB,ho decays exponentially. At the phase-transition point 
/3=4 for small ho we have DPYho - hizi3. In the absence of a 
"dynamical" field h(t), the complete correlation function 
has the form 

In general, we can use the relation (28). The expressions for 
an antiferromagnetic cluster can be obtained from (40) and 
(42) by a formal substitution P-+-/3. Note that in the ferro- 
magnetic phase in the limit l /N<ho< 1 the spin correlation 
functions do not depend on h,; the corresponding answer for 
the transverse spin correlation function is obtained after set- 
ting the limit ho+O in Eqs. (40)-(43) and choosing one of 
the solutions of Eq. (20) [which is the zero field limit of Eq. 
(41)l. This asymptotic relation breaks down at strictly zero 
temperature. One of the saddle point solutions of (20) is 
t* =P/4=m, and (19) gives us 

Let us now turn to the calculation of the one-spin matrix 
element a[h(t)]. In general, the problem of one-spin quan- 
tum dynamics in an arbitrary, spatially homogeneous mag- 
netic field cannot be solved exactly. There are, however, at 
least two examples19 which can be analyzed explicitly. First, 
in the case of a spatially homogeneous magnetic field, which 
is constant in direction but varies in absolute magnitude, ac- 
cording to an arbitrary law h = h(t), we obtain 

Second, in the case of a uniform magnetic field which is 
constant in absolute value, whose direction rotates uniformly 
with an angular velocity w around the z axis and at an angle 
8 to it, we obtain 

RT o + h  cos 8 2 

a[h(t)] = eiYT[cos l- i R sin y] , 
R= J(w+h cos ~ ) ~ + h '  sin2 8. (46) 

CONCLUSION 

In summary, we have introduced an N-spin quantum 
model with a position-independent exchange, for which we 
have rigorously calculated the temporal dependence of the 
transverse pair autocorrelation function with an arbitrary 
number of spins and temperature for a spatially homoge- 
neous magnetic field applied to the system. 

We have shown that the dependence of the correlation 
function %[h] (t;p;N) [whose real part gives the sought- 
for transverse autocorrelation function mh] ( t ;P ;N) ]  on a 
spatially homogeneous magnetic field is "factorized" com- 
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pletely in the one multiplier cu(h;P). cu(h;P) is expressed in 
terms of well-defined, one-spin matrix element which is pos- 
sible to calculate at least for two nontrivial time dependences 
of the magnetic field: a) the case of a magnetic field which is 
constant in direction and b) the case of a magnetic field con- 
stant in absolute value, whose direction rotates uniformly. 

The results are obtained by a method which is a dynamic 
mean-field method and which by construction turns out to be 
exact. As seems to us that this is the first example of this 
kind. 

From the point of view of possible applications to long- 
range quantum magnets, these exact results are unique as a 
basis for generating a starting dynamical approximation. The 
possibility of having an exact result for an arbitrary N is very 
important. Indeed, result (19) gives an approximation to the 
problem with a large but finite radius of exchange in an 
infinite magnet, when N plays the role of a number of spins 
in the exchange sphere. The physical picture drawn by this 
approximation is clear from the classical m ~ d e l : ' ~ , ' ~  dynam- 
ics of a spin is defined by its uniform precession around the 
total spin of the system. A comparison of the approximation, 
which gives for the equilibrium autocorrelation function in 
the paramagnetic phase a Gaussian relaxation from 1 at t =O 
through a minimum at t=t, (for P=O, -0.04 at 
tm=3.5dNJ) to the universal plateau 113 at t, dN-=SteN, 
with the corresponding experimental curve? gives a remark- 
able coincidence at short and intermediate (up to t,) times; 
the experimental results show that the cluster approximation 
breaks down immediate after t,, when a spin diffusion re- 
gime begins. Precise analytical calculations describing a 
crossover between the cluster and the spin-diffusion regimes 
must be carried out. 

We wish to thank V. Cherepanov, A. Larkin, V. Lebedev, 
and V. L'vov for useful discussions. 

APPENDIX A: AVERAGING OF TIME-ORDERED 
EXPONENTIALS 

Time ordered exponentials 

are defined by the equations 

~&'(',~)(t) = i(p(t)i,1$1,2)(t) (A21 

and by the initial conditions a(1,2)(0)= i. Let us consider an- 
other operators ~ ( ' , ~ ) ( t )  given in the explicit form 

6(')(t) = exp[;-$:(t)]exp 

xexp[i'$i(O)l, (A41 

where ~,b~,(t),~,, ,(t)  are certain new functions of time. Us- 
ing the commutation relations for spin operators, we can see 
that the operators ~( ' , , ) ( t )  satisfy the conditions 

~(')(t)={i-[&~+ip~$--i$~($~)~]+ii-$: 

The last factors in (A3) and (A4) give the equalities 
B(' ,~)(o)=~. Thus, after comparing (A2), (M) ,  and (A6) we 
see that the substitution of (8) transforms .lf;('r2)(t) into (A3) 
and (A4); hence, . ~ ( ' , ~ ) ( t )  = ~ ( ' , ~ ) ( t ) .  

The Jacobian < R P I , ~ ~ P ? ~ ] :  9 9 1 . 2  

= ~ P 1 , 2 , q t 2 ] ~ p , , 2 B ~ 2  depends on regularization of the 
map (8). We make use of the regularization from Refs. 9 and 
10. It gives for the Jacobian 

Finally, the constraints 9t2= ( ~ ~ 1 , ~ ) *  (*=complex conjuga- 
tion) can be replaced by the standard constraint $c2=($i2)* 
which deforms the integration surface. The corresponding 
definition of the path integral and the explicit form of this 
homotopy are presented in Refs. 8 and 11. 

APPENDIX B: DERIVATION AND CALCULATIONS IN 
ACCOMPANIED QUANTUM MECHANICS 

1. To describe the case of the infinite temperature, we 
begin with expression (11) for 3 @ ( t ; ~ ) ,  where the replace- 
ment (13) was already done. Using the identity 

(here r is an arbitrary contour closed near z=0 in the 
z-complex plane), we recast the d$t2-integration in a Gauss- 
ian form. It can be performed exactly and we lift the result in 
the exponential by means of the formula 

We thus obtain the expression 
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If we perform a linear change of variables ~ ~ , ~ ( t ) - + 5 ~ , ~ ( t ) ,  
where 

(note that the upper limit in the last integral is the "final" 
time argument T), we obtain a path integral over 351,2, 
which has a Feynman-Kac form. The boundary conditions 
following from (B3), 

51(T)=-52(T), 51(0>=-52(0), 

allow us to rewrite (B2) as the quantum-mechanical matrix 
element: 

where the Hamiltonian of this one-dimensional quantum me- 
chanics is 

The delta-functions, the coupled bra- and ket- states in (EM), 
are determined by the boundary condition at the time T and 
the initial conditions 51(0)=52(0) join together the direct and 
inverse evolution operators in the matrix elements through 
their averaging weight e-251(0). Now we can exclude inte- 
gration over y in the expression (B4). It can be done in two 
steps. First, through the shift 5-+5+ln(4zy) and correspond- 
ingly .%-+Aa, [see (14)l. Second, integration with respect 
to y.  Equation (B4) will then hold if the integration with 
respect to y and e x p ( - 4 ~ ~ ~ )  with the delta-function of 
el + t2 are replaced by 

~ ( ~ 1 , 7 7 2 )  - - 1 [ 71 772 Z( ni+ d ) ] ,  ( B ~ )  
exp - -- 

?h 772 771772 42 71 '72 

where 7,71,2=2N e~p(-5~,~/2) .  The integral representation for 
F(771717~) 

037) 

with the identity 

[K,(x) it is the standard notation for the modified Bessel 
function of the second kind], makes further progress in !he 
evaluation of 9. Indeed, Ki,(v) is an eigenfunction of .gat 

p2 
& S i p (  7) = 8~ Kip( "). 039) 

which immediately gives the expression for @(t;N) 

Finally, performing integration with respect to v and z, we 
obtain (15). 

2. In the case of a finite temperature and zero magnetic 
field Eq. (B4) for & ( t ; ~ )  transforms into a corresponding 
equation for .@(t;P;N) if e x p ( - i m )  in the matrix ele- 
ment is replaced by exp(- i.%Q,) [TI = T - iP; the exponen- 
tial exp(i%T) remains unchanged]. Using equalities (B6)- 
(B9), we obtain 

which gives rise to (19). (We used the integral representation 
for the modified Bessel function of the second kind.) 

"The expression for the partition function Z(ho) can be found from (39) 
with use of the equality:  go(^ = O;p) + .%?,,,(T = 0;p) = 2. 
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Note added in proof (8 September 1994). After this work had been 
completed and presented for publication we have known about series of 
papers published by R. Dekeyser and M. H. Lee [Phys. Rev. B 19, 265 
(1979); 43, 8123 (1991); 43, 8131 (1991)l. They investigated the more 
general anisotropic variant of the model discussed in the present paper 
(so-called van der Waals model). They use the following strategy: first, 
solve the evolution equation for a single spin (Phys. Rev. B 43, 8123 
(1991)); and then average the solution with respect to the equilibrium 
density matrix [Phys. Rev. B 43, 8131 (1991)l. The authors have shown 
that the dynamics of the single spin is coupled linearly with the dynamics 
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of the rest N- 1 spins in the system at N+m. Then they find the autocor- 
relation function in this limit analytically. The results obtained are com- 
patible with our Eqs. (16), (21). However, the method used in those papers 
does not allow to receive our Eqs. (15), (19) which are valid at finite N, as 
well as our Eqs. (33), (39) for the case of external field and vice versa, the 
method used in the present publication allows one to generalize all the 
finite N and external field results to the anisotropic case. 

This article was published in English in the original Russian journal with 
stylistic changes by the Translation Editor, Dr. S. J. Amoretty. 
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