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The stabilization of a quantum system in a strong electromagnetic field is investigated by means 
of numerical integration of the time-dependent Schrodinger equation. The results of the 
numerical calculations are compared with calculations and analytical estimates based on the 
Kramers-Henneberger model in order to establish the limits of the applicability of the latter. The 
effect of the rise time of a laser pulse on attaining the stable regime is studied. O 1994 
American Institute of Physics. 

I. INTRODUCTION 

At the present time there is wide interest in the stabili- 
zation of atoms in an external intense light field due to the 
reduction in the ionization rate as the intensity of the laser 
light  increase^.'-^ In the literature it is customary to distin- 
guish two possible mechanisms for suppressing ionization, 
operating in different parameter ranges of the laser light: 

a) destructive quantum interference of the amplitudes of 
the transitions to the continuum from a group of closely 
spaced quantum states;435 

b) the formation of an electron wave packet oscillating 
with large amplitude in the external electric field and hence 
weakly interacting with the atomic core, which reduces the 
probability of photon absorption.677 

The main results relating to the stabilization effect are 
usually derived at present using the Kramers-Henneberger 
(KH) However, despite the wide use of 
this approach for solving specific problems, the actual region 
of applicability of the Kramers-Henneberger approximation 
has been little studied. Consequently, there is considerable 
interest in comparing information derived using this approxi- 
mation with the results of "numerical experiments" in order 
to sharpen the physical picture of the proces by which the 
quantum system is stabilized in a strong electromagnetic 

where a,= e ~ ~ l m w '  is the amplitude of the oscillatory mo- 
tion of the electron and E o  and o are the amplitude and 
frequency of the wave field. We go over to this coordinate 
system using the time-dependent unitary transformation 

*m(xl,t)=S(t)*(x,t), 

where 

and Hinl(t) is the operator of the interaction between the 
electron and the wave electromagnetic field. 

In the dipole approximation in the d E  gauge this opera- 
tor takes the form 

Hi,,(t) = - exEo cos wt. (3) 

In the Kramers coordinate system the Schrodinger equation 
for the electron wave function h ( x r , t )  can be written in 
the form 

+a ,  cos wt)qm(xr , t ) ,  (4) 
field and to determine the range of applic~bility of the KH 

where V(x) is the atomic potential. Thus, the atom-field in- 
approximation. 

teraction is reduced to a time-dependent shift in the argument 
In the present work the Kramers-Henneberger formal- 

of the potential. 
ism is used to treat the effect of stabilization in a one- 

Expanding the potential V(xr +a ,  cos wt) in a Fourier 
dimensional quantum system with a short-range potential. 

series we find 
The results are compared with calculations based on direct 
numerical integration of the time-dependent Schrodinger cC 

equation for a quantum system in the field of an electromag- V(xr+a ,  cos wt)= ~ , ( x ' , a , ) e ' " ~ ' ,  
a = - m  

(5 )  
netic wave. The relation between the rise time of the wave 
electric field and the occurrence of stabilization is investi- 
gated. where 

2. THE KRAMERS-HENNEBERGER APPROXIMATION V(xl+a ,  cos wt)e-ino'd(wt). 

Physically the KH approximation is based on going over (6) - - 

to a noninertial coordinate system oscillating like a free elec- 
The Kramers-Henneberger approximation consists of ne- 

tron in the field of the electromagnetic wave (the Kramers 
glecting all modes in (4) except the zeroth mode n =0. As a 

coordinate system1'): 
result, the motion of the electron in the atomic potential in 

x r  =x-a,  cos wt, (1) the presence of the variable wave field reduces to the prob- 
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lem of the Schrodinger equation with a time-independent 
potential Vo(x,a,) (the Kramers-Henneberger potential): 

Here and in what follows we omit the prime. 
The modes Vn(x,a,) are taken to be small, so that they 

can be treated as perturbations: 

SV(x,a,,t)=V(x+a, cos ot)-Vo(x,a,). (8) 

In the potential Vo(x,a,) there exists a system of time- 
independent and therefore stable (with respect to ionization) 
states. Being in one of these states is the essence of the 
stabilization phenomenon. The key question in this approach 
is when it is justified to neglect the harmonics V,(n # 0 )  in 
(4). The analysis in Refs. 6, 7, 12, and 13 shows that for high 
frequencies (formally, infinite frequencies) and intensities 
these terms vanish, i.e., the electron "sees" only the time- 
averaged potential. In Ref. 7 it was postulated that the nec- 
essary condition for the applicability of the Kramers- 
Henneberger approximation is the inequality 

where EY is the energy of the ground state in the KH po- 
tential. In the alternative approach in which in the right-hand 
side of the inequality (9) the energy of the ground state in the 
original potential appears, rather than in the Kramers- 
Henneberger potential. As will be clear from what follows, 
our calculations provide no support for this point of view. 

3. NUMERICAL EXPERIMENTS TO OBSERVE ATOMIC 
STABILIZATION 

In recent years direct integration of the time-dependence 
Schrodinger equation has been actively employed to study 
the dynamics of an atomic system in an electromagnetic 
wave field.14 Numerical experiments designed to study the 
stabilization effect have been carried out repeatedly both for 
the smoothed Coulomb and for short-range 
potentials.'7-20 These treatments have shown that for a given 
radiation frequency there exists a critical intensity above 
which the stability of the atomic system against further dis- 
ruption increases. 

In Refs. 17-19 the photodisruption mechanism in a 
strong field and atomic stabilization due to the formation and 
spreading of a rapidly oscillating wave packet were analyzed 
in detail. The conditions under which this regime occurs 
were determined: strong fields, low frequencies, and short 
rise times for the pulse. It was shown that as the rise time of 
the pulse increases the regime in which free expansion and 
oscillations of the wave packet occur is replaced by one in 
which Kramers-Henneberger stabilization occurs in the 
model. The physical meaning of the stabilization is that the 
atomic potential limits the spreading of part of the wave 
packet when it becomes larger than the electron oscillation 
amplitude a,. The model of almost-free oscillations of the 
electron wave packet was also treated in Ref. 20, where it 
was shown to yield good agreement with the results of nu- 
merical experiments. 

FIG. 1. The Kramers-Henneberger potential for laser radiation intensity 
(w/cm2) 1-1014; 2-10'~; 3-10''; 4-the initial atomic potential. 

4. ONE-DIMENSIONAL MODEL OF THE ATOMIC SYSTEM 

As the atomic potential we will consider a square-well 
potential 

with parameters Vo=5 eV, d = 2  A. This well has a single 
bound state with energy E,= -2.55 eV and wave function 
cpl(x), determined as the eigenvalue and eigenfunction of the 
atomic potential Ho= - (h2/2m)d2/dx2+ V(X). Figure 1 
displays the Kramers-Henneberger potential for this atom 
for different values of the intensity and fio=2.5 eV. At high 
intensities (p>10I4 w/cm2) it has a typical two-well shape 
(the distance between the wells is equal to 2a,). This is the 
typical shape of the KH potential and does not depend on the 
specific properties of the atom.2319 The number of states in 
the KH potential increases as a function of intensity. For 
example, for an intensity p=10I6 w/cm2 in the potential 
Vo(x,a,) there exist five time-independent states with ener- 
gies E F = E ~ =  -0.152 eV, gy= -0.09 eV, gy= -0.055 
eV, & F = - O . O l  eV. The position of the two lowest energy 
levels, corresponding to the time-independent state in the KH 
potential as a function of intensity, are shown in Fig. 2. The 
spatial distributions of the probability density pKH(x) 
= 1 *"I2 ( i= l ,  ..., 5) for p=1016 w/cm2 are shown in ~ i ~ .  3. 
It is noteworthy that the two lowest states are degenerate and 
the distributions p"(x) for them are the same. 

In this model the harmonics Vn(x,ae) can be calculated 
analytically, and the perturbation SV(x,ae,t) in the region 
x E ( -ae-  d/2,ae+ d/2) assumes the form 

cos n o t  
- .il-~u.-~(-5~)6(*~)1(~~~ .,,]. 

Here 
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FIG. 2. Position of the ground (I) and first excited (2) states in the KH 0.50 
potential as a function of the radiation intensity. 

sin( (n + 1 )arccos 6) 
Un(6) = sin 6 0 10 20  

5. DYNAMICS OF AN ATOMIC SYSTEM IN A WAVE FIELD k . ~ . ~ * ~ f i n n ~ A A n A f i .  
2 

WITH CONSTANT INTENSITY 0 10 20 I .  @c 

are Chebyshev polynomials of the second kind2' with argu- ,v 

We will assume that at t=O the system is in the ground 
state of the Kramers-Henneberger potential. Our calcula- 
tions reveal that in the range of values ~=10~~-10'"/cm~ 
the rate at which the initial state is destroyed falls off as the 
laser intensity increases, i.e., one can speak of the stabiliza- 
tion of the quantum system with respect to ionization. Note 
that condition (9) is satisfied in this range of intensities: thus, 
e.g., for p=1014 w/cm2 we have lapI-0.9 eV. On the other 
hand, under the conditions of our calculations the photon 
energy is somewhat smaller than the ionization potential of 
the system. The presence of stabilization in this situation is 
evidence in favor of the validity of the criterion (9). As an 
example of the evolution of a quantum system in time, in 
Fig. 4 we show the time dependence of the populations of 

ments 61,2=(d/2 Tx)/a, and 

1,  t2<1,  0.75 ,o=[ 0, t2>1. 
0 . 5 0 -  

In Eq. (10) cos(nwt) corresponds to even values of n and 
sin(n wt) to odd values. 0.25 

FIG. 4. Time dependence of the populations of the ground state (I), first 
excited state (2), and third excited state (3) in the KH potential. The broken 
trace is the probability for transition to the continuum. The radiation inten- 
sities (in w/cm2) are a-1015; b--3.10'~; c-1016. 
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the ground state and two lowest excited states in the KH 
potential, together with the probabilities for transition to the 
continuum for different field intensities, derived from exact 
solution of (4). These results show that as the intensity in- 
creases the contribution of the harmonics Vn(x,a,) to the full 
potential V(x+a, cos o t )  drops off. The space-time evolu- 
tion of the probability density p(x,t) for p=1016 w/cm2 is 
shown in Fig. 5a. Figure 5b displays p(x,t) for the same field 

FIG. 3. Spatial distributions of the probability 
density in the time-independent states of the KH 
potential for p=10I6 w/cm2. 
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intensity, but for the case in which the system is initially in 
the third state of the KH potential. As can be seen, this state 
also exhibits great stability. 

In order to determine the contribution of the various har- 
monics V,,(x,ae) of the ionization process, we performed 
numerical solution of Eq. (7), retaining the harmonics 
Vi(x,a,), i=1,2,3, ... on the right-hand side. It was found that 
as the intensity increased and the ionization rate decreased 
the number of harmonics which must be retained in (7) 
grows. Thus, for P= 1014 w/cm2 it suffices to treat just two 
terms V, and V2; for P=1015 w/cm2 the three harmonics 
(i=1,2,3) contribute only 50% of the total ionization prob- 
ability. In the case P= 1016 w/cm2, however, these three har- 
monics contribute a mere 20-25% to the probability of tran- 
sition to the continuum. 

This property of the ionization process can readily be 
understood in terms of perturbations in the form of the op- 
erator SV(x,ae ,t). Regarding SV as a perturbation about the 
Hamiltonian 

we can write an expression for the transition probability per 
unit time from the initial state %Y(x) to the continuum: 

Here 

is the matrix element coupling the initial state and the con- 
tinuum state, which by virtue of the condition hw+lsKHI can 
be represented as a plane wave; k, is determined from the 
condition 

Assuming that the wave function % Y  is a smoothly varying 
function of position in comparison with V,, and exp(iknx), 
we can easily find from (11) and (12) that 

FIG. 5. The space-time evolution of the prob- 
ability density p(x,t)  for P=lOlh w/cm2. The 
initial state corresponds to the ground state (a) 
and third state (b) in the KH potential ( T  is the 
laser field period, T=2?r/w). 

where ~ = 2 m I ~ ~ ( a ~ / h ~ ,  a=d /2 ,  a=a l ae .  
A similar expression was obtained previously for the 

photoionization probability of a quantum system in Ref. 22 
using the Keldysh-Faisal-Reiss approximation. 

In weak fields when a41 holds, it suffices to retain one 
term n = l  of the series in Eq. (14), whereupon Wp-P, 
which corresponds to the usual perturbation theory for 
single-photon transitions. In the opposite limit a+l we have 

This dependence of the probability ionization from the KH 
state in the stabilization regime agrees with the results of 
exact numerical calculations (see Fig. 5). The dependence 
W(P) in the form (15) was also obtained previously in Ref. 
20 in the model of nearly free expansion of the electron wave 
packet. 

Expression (14) enables us to estimate the number of 
harmonics that need to be taken into account in the pertur- 
bation SV for different values of the intensity. Noting the 
property of Bessel functions 

IJn(x)(*l for x>n,  

we can anticipate that the contribution to (14) comes from 
terms for which 

Condition (16) can be rewritten in the form 

where ee is the electron vibrational energy in the field of the 
electromagnetic wave. It is well known22,23 that the param- 
eter N=eehw determines the number of peaks in the spec- 
trum of the subthreshold ionization. These calculations there- 
fore demonstrate that the number of harmonics excited in 
connection with photoionization is correlated with the pho- 
toelectron spectrum.2 In particular, for p=1016 w/cm2 we 
find from (16) that n=10. 
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Our analytical expressions also enable us to establish the 
relationship between stabilization of a quantum system in a 
wave field and the effect of high-frequency harmonic 
generation.2 Specifically, the nth mode Vn(x,ae) of the po- 
tential induces oscillations of the dipole moment of the sys- 
tem, and consequently emission at the frequency nw. In- 
creasing the number of modes Vn(x,ae) that must be retained 
as the radiation intensity increases thus leads to an increase 
in the number of harmonics generated. 

6. STABILIZATION AND FINITE PULSE RISE TIME 

Thus far we have considered the effect of stabilization 
for a constant radiation intensity. From the practical stand- 
point it is important to take into account the finite rise time 
of a laser pulse and to determine the probability that an elec- 
tron will undergo a transition from a time-independent state 
of the atomic Hamiltonian to a time-independent state of the 
KH potential, and then (when the pulse is turned on) to the 
initial state. 

It is well known that when the wave electric field is 
turned on discontinuously an electron feels a shove and ac- 
quires an energy in directed motion on the order of the vi- 
brational energy of an electron in the wave field. The abso- 
lute value of this energy is dependent on the phase of the 
electric field at the time it is turned on. In the range of in- 
tensities treated above, this quantity is greater than the ion- 
ization potential of the atom, i.e., the jolt can cause ioniza- 
tion of the atom and destroy stability. On the other hand, 
when the intensity increases slowly the duration of the stage 
in which the KH approximation is unsuitable is increased: 
the harmonics Vn(x,a,) ( n a l )  lead to ionization of the atom 
before the stabilization regime is attained. The maximum 
ionization rate will occur when a wave field with the 
"atomic" value Ea-Voles is reached (the corresponding 
atomic intensity is pa= CE;/~T-8.10'~ w/cm2). From these 
comments it follows that there exists an optimum rise time 
for the laser pulse in order to achieve the stabilization re- 
gime. 

Let us consider the transition of the quantum system 
from the initial time-independent atomic state to a state of 
the KH potential when the amplitude of the wave electric 
field increases linearly: 

Eo(t)=E0tlrf ,  (17) 

where rf is the length of time used for the yield to rise to the 
value &. 

The probability W i  for excitation of the different states 
of the KH potential when the field is turned on according to 
Eq. (17) has been calculated by expanding the solution of the 
Schrodinger equation in the KH approximation 

(18) 

in the eigenfunctions of the time-independent states @?(X) 
of the KH potential: 

FIG. 6. Probabilities for occupation of the states i = 1,3,5 in the KH potential 
(traces 1,2,3, respectively) as functions of the rise time of the pulse, calcu- 
lated in the M approximation. Trace 4 is the ionization probability. The 
radiation intensity is 1016 w/cmZ. 

The wave functions of the initial state for Eq. (18) was de- 
termined by solving the eigenvalue problem for the atomic 
Hamiltonian. 

The probabilities for occupation of the states i=1,3,5 
(characterized by even wave functions) as a function of the 
rise time rf are shown in Fig. 6. For long times r f ,  corre- 
sponding to an adiabatically slow increase in the field, the 
system goes over preferentially to the ground state of the KH 
potential, and the probabilities for occupation of the other 
states and for ionization are exponentially small. In the range 
of values rf = (2- 6) T the Wi(rf) curves exhibit resonances, 
whose origin is not completely clear. 

As already noted, when the field is turned on slowly and 
the harmonics Vn[x,ae(t)] are not taken into account, Eq. 
(18) yields erroneous results. The solution of the general 
equation (4) for the electric field 

allows us to determine the evolution of h ( x , t )  when the 
laser field is turned out as well as the populations of the 
various KH states in the potential ~ ~ ( x , e ~ ~ l r n w ~ ) .  The time 
evolution of the three lowest states for rf= 6T and rf= 1 4 T  
is shown in Fig. 7. The case r f=6T corresponds to stabili- 
zation of the system in the third KH state, while for rf= 1 4 T  
the system goes principally to the ground and first excited 
states of the KH potential. In the stabilization regime the 
decrease in the population of the states with i = 1,2 is accom- 
panied by an increase in the population of the third state. 

There is considerable interest in determining the opti- 
mum rise time for the laser pulse, corresponding to the great- 
est probability for W=EiW, for exciting the set of KH states. 
Calculations of this quantity for the leading edge of the pulse 
determined by (20) are given in Fig. 8. The function W(rf) is 
nonmonotonic, which is related to the preferential population 
of the various KH states for different values of rf. The ab- 
solute maximum, corresponding to rf= 4 T  and 5 T, is deter- 
mined mainly by the transition of the system to the third 
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FIG. 7. Time dependence of the population of the three lowest states of the 
KH potential ~ , ( x , e & , / m w ~ )  when the electric field varies according to Eq. 
(20) for 7,=6T (a) and rf=14T (b). The radiation intensity is 10'~ w/cm2. 

1 0 - '  

a 

lo-? 

time-independent state of the KH potential, while the maxi- 
mum for q= 1 2 T  and 1 3 T  occurs as a result of the transition 
to the degenerate states i=1,2. The same figure shows the 
function W(rf) found in the Kramers-Henneberger approxi- 
mation (18). In the region rfS4T-5T the exact solution and 
the calculation in the KH approximation agree qualitatively 
with one another. For long rise times the quantity W calcu- 
lated in the KH approximation increases, which is related to 
the adiabatic nature of the increase in the electric field. An 
exact calculation shows that W(rf) goes to zero for long 
times: the ionization takes place before the stabilization re- 
gime occurs. 

Thus, these calculations show that the optimum pulse 
rise time is =5T. In this case the total probability for popu- 

r . 

; 

lation of the time-independent states in the KH potential is 
20-25%. 

Similar investigations should be carried out also for the 
trailing edge of the pulse. For the case of a wave field am- 
plitude that falls off linearly one would expect that the sys- 
tem is most likely to return to the bound state of the atomic 
potential for rfZ5T. 

o 5 10 ~,n 

FIG. 8. Probability for excitation of a set of time-independent states in the 
KH potential as a function of the rise time of the pulse. The solid trace is the 
calculation using the KH approximation; the points are an exact calculation. 

0 10.0 20.0 The radiation intensity is 1016 w/cm2. 

7. CONCLUSION 

The calculations described in this work show that the 
stabilization regime in the Kramers-Henneberger model sets 
in for intensities in the range - 1 0 ' ~ - 1 0 ~ ~  w/cm2, when 
somewhat more closely spaced energy states exist in the KH 
potential. Consequently, we can expect that the mechanism 
of destructive quantum interference475 and the Kramers- 
Henneberger model constitute different aspects of the de- 
scription of an atom in a strong light field. 

Under our conditions an increase in the radiation inten- 
sity above 10163 w/cm2 should result in the loss of atomic 
stabilization due to the appearance of a relativistic drift 
effect.19 This estimate can easily be carried out by comparing 
the magnetic component F M = e l c v H  of the Lorentz force 
(where v = e E l m o  is the electron velocity) and the intra- 
atomic force FA=(Vo(ld  acting on the electron. In this con- 
nection it is impermissible to talk about the effect of stabili- 
zation in the dipole approximation in the range of intensities 
up to 1019 w/cm2 (see, e.g., Ref. 2). 
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