
Suppression of photocurrent shot noise in a feedback loop 
D. B. Khoroshko and S. Ya. Kilin 

Institute of Physics, Belarus Academy of Sciences, 220602 Minsk, Belarus 
(Submitted 14 March 1994; resubmitted 27 July 1994) 
Zh. Eksp. Teor. Fiz. 106, 1278-1285 (November 1994) 

We employ the theory of continuous quantum measurements to examine the detection of an 
electromagnetic field when feedback exists between the detector and the source of the field. We 
obtain the spectrum of photocurrent fluctuations for both open-loop and closed-loop 
detectors. We demonstrate that even though the noise has been reduced in the latter, the field in 
the feedback loop is not nonclassical. O 1994 American Institute of Physics. 

Suppressing fluctuations in an optical beam below the 
shot-noise limit is one of the central problems of contempo- 
rary quantum optics, due in particular to the possibility of 
markedly enhancing the signal-to-noise ratio in optoelec- 
tronic circuits in the presence of sources of such radiati~n.'.~ 
It is not difficult to show that such light does not yield to a 
description in classical terms, and this is one of the distin- 
guishing features of a squeezed state of the electromagnetic 
field. 

Indeed, it is well known3 that photodetector shot noise 
can be explained by the impulsive nature of the photocurrent, 
which relates to the fact that atomic ionization produced by 
the photoelectric effect is a discrete process. Describing a 
random current in the form 

singular for pure quantum fields. The random quantity I(t)  
signifies the field intensity at the surface of the detector D: 

For a coherent field, (I(tl)I(t2))P= (I(tl))P(I(t2))P, 
and the photocounts have Poisson statistics: 
h2(tl ,t2) = hl(tl)hl(t2).  For an incoherent field, we have in 
general 

(1) where the first term corresponds to shot noise, and 

where e is the elementary charge and the t j  (j=1,2, ...) are S,(w) = /-+;(6I(t)6I(t + r))pe-i"d r (8) 
random arrival times of photoelectrons, we obtain4 

where 

Here hl(tl , . . .,tl) denotes the so-called coincidence probabil- 
ity density: which is the probability density for photocounts 
being produced at times t, , . . . ,tl (with counts possibly occur- 
ring at other times as well). 

The set of functions hl(tl ,.. .,tl), 1=1,2 ,... completely 
characterizes the random point process of photoelectron pro- 
duction, and thereby the statistics of the photocurrent. The 
relationship between these functions and the statistical prop- 
erties of the incident radiation was first deriyed by ~ l a u b e r . ~  
In the P which expands ~ ( ' ) ( r , t )  (coher- 
ent states) in eigenstates of the free field operator 
( r  t) ( r ,  t ) )  ( r  t) 1 ( r  t)) the Glauber rela- 
tion takes the form 

where X is the detector efficiency. Averaging denoted by 
(...), in Eq. (5)  is performed over P-functions, which are 
positive definite for classical fields, but can be negative or 

is the intensity spectrum of the incident radiation. According 
to the Wiener-Khinchin theorem,' this spectrum is nonnega- 
tive at all frequencies for any classical random process I(t). 
Consequently, a photocurrent noise spectrum can only drop 
below the shot noise limit when the light being detected is in 
a pure quantum state. The best known forms of such non- 
classical states are fields with sub-Poissonian statistics for 
the photon numbers (at measurement times much greater 
than the coherence time), for which SII(0)<O, and fields with 
anticorrelated photons, for which $im~,(w)dw<O. Obvi- 
ously, however, the most general manifestation of nonclassi- 
cal behavior that can be directly detected is a photocurrent 
spectral intensity (at some frequency) below the shot noise 
level. 

Beginning in 1977; various schemes for generating non- 
classical fields were proposed and evaluated, but in most, the 
power carried by nonclassical light and the extent to which 
the statistics deviated from Poisson noise were extremely 
 mall.'^,'^ It was for this reason that the experiments carried 
out by Yamamoto and his colleagues12 attracted so much 
attention: they exhibited a five-fold suppression of shot noise 
over the frequency range from 0 to 15 MHz (the width of a 
laser mode), using amplitude modulation of a single-mode 
laser in a feedback loop (Fig. 1; for similar schemes, see also 
Refs. 13 and 14). One interesting aspect of these experiments 
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was that the noise level of light diverted from the feedback 
loop by a beamsplitter (sampling detector D2) was above the 
shot noise level at all frequencies-in other words, it did not 
behave nonclassically. This gave rise to a number of theories 
on detection in a feedback loop,12,14-16 which indicate that 
the presence of feedback significantly affects the field- 
splitting process. It should be pointed out that all of these 
theories are either implicitly or explicitly based on Eq. (5), 
and therefore imply that nonclassical light is generated in a 
feedback loop. 

In the present paper, we propose another description of 
experiments that deal with detection in a feedback loop, 
based on the rapidly developing theory of continuous quan- 
tum The need for reconsideration results 
from the fact that the Glauber approach holds only for fields 
whose sources are not correlated with the atomic states in the 
detector (cf. Ref. 19), so that Eq. (5) does not apply to de- 
tection in a feedback loop. 

The theory of continuous photodetection, apart from the 
functions hl(tl ,. . . ,tl), 1 = 1,2 ,..., operates on a set of "el- 
ementary probability densities7' p[$,)(t,,. . . ,tn), n =0,1,2 ,..., 
each of which is the probability that exactly n counts are 
detected at times t l  , . . . ,tn in the half-open interval [O,t), and 
that no counts are detected at any other time. These functions 
also completely determine the photocount statistics over the 
interval [O,t), and are related to the functions hl(t17 . . . ,tl) 
(see, e.g., Ref. 4): 

x (t, ,..., tn , t i  ,..., t;)dti ... dt; , (9) 

In what follows, we make use of the fact that for a wide 
range of modulation schemes based on a linear interaction 
between the current and field (the electrooptic modulator em- 
ployed in Ref. 14, or the slow modulation+ompared to the 
lifetime of the upper lasing level-of the laser pump rate 
above threshold, as used in Ref. 12), the coherent state la) is 
transformed by the modulation into the coherent state la') 
with a different amplitude.6 In the process, the average in (5) 
reduces to an average over the initial intensity I. (prior to 
modulation), the distribution of which is unrestricted-it can 
be positive definite (classical) or not (essentially quantum 
mechanical). Since practical interest is mainly concentrated 
on the transformation of coherent radiation into nonclassical 
radiation, we will assume that the initial state is coherent, 
and that I. is constant. 

For the detection of a nonsteady coherent field with in- 
tensity I(t) ,  Eqs. (5) and (9) yield the elementary probability 
densities 

FIG. 1. Optical layout used in Ref. 12. G l a s e r ;  D l  and D2detectors;  
M-beamsplitting mirror. The photocurrent from detector D2 modulates the 
laser pump current ip via the feedback loop. 

A rigorous examination of detection in a feedback loop in the 
context of the theory of continuous quantum measurements 
shows20 that when an interaction exists between the field (or 
its sources) and the photocurrent in the detector (resulting in 
a dependence of I ( t )  on the photocount times of arrival ti), 
Eq. (11) is still valid, but Eq. (5) is not. Transformation to the 
functions hl(t, , . . . ,tl) via Eq. (10) then becomes nontrivial 
by virtue of the dependence of I ( tn )  on the time of arrival of 
previous photocounts, t j< tn .  For amplitude modulation of 
coherent light, this dependence takes the form 

where the ti, j=1,2, ... are the arrival times of photocounts 
from D l  (Figs. 1, 2), and F(r)  is the response of the entire 
feedback loop to a Sfunction current impulse at the detector 
[F(r)=O at K O ,  SO only counts with t ,< r  contribute to 
(12)l. 

The results of measurements in the two-detector scheme 
of Figs. 1 and 2 can be best described by the joint probability 
density for the compound event that during the interval [O,t), 
detector D l  registered exactly n counts at times t, ,. . . ,tn 
(event A), and detector D2 registered exactly m counts at 
times t i  , . . . ,tL (event B), which is equal to the product of the 
probability of event A and the probability of event B under 
the condition that A actually occurred: 

EOM a 1 . .  % 9 
FIG. 2. Optical layout used in Ref. 14. Notation as in Fig. 1. Feedback is 
implemented via the electrooptic modulator (EOM). 
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Here A1 and A2 are the efficiencies of detectors D l  and D2 
with allowance for the beamsplitter (i.e., they include a fac- 
tor of E and 1-8, respectively, where E is the (intensity) 
transmission coefficient of beamsplitter M), and event A 
specifies the intensity in accordance with (12). Note that in 
the present approach, the transformation of the field state at 
the beamsplitter is of the form Icu)+(~"~a), which is equiva- 
lent to the unitary transformation of field operators in Refs. 
12 and 14-16. 

The mean value and the photocurrent fluctuation spec- 
trum can be obtained for each detector by averaging (13) 
over the readings of the other detector and carrying out the 
calculations indicated in Eqs. (1)-(4) and (10). 

For a detector in the feedback loop, we have 

Similarly, for the out-of-loop detector, 

It is also straightforward to obtain integral equations cor- 
responding to the two-time coincidence probability densities 
for the closed-loop detector and the out-of-loop detector, 
hF(t,to) and hYt(t,to): 

where 

and the integral equations have been derived, under the as- 
sumption that t 2  to, by expanding the first set of parentheses 
in the n-fold multiple integral. 

We can then work our way from Eqs. (16) and (17) to 
the equations for the g2(t,t0) defined by Eq. (4): 

To solve (20) and (21), we introduce the function 

I 

We can then rewrite (20) and (21) in the form 

r t  

gYt(t,to)= h1 ~ ( t - t ' ) g y ' ( t ' , t ~ ) d t '  I,' 

(24) 

It can easily be shown by direct substitution that &"(t,t0) 
can be expressed in terms of G (t  , to) : 
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FIG. 3. The function F ( t )  (inset) and photocurrent fluctuation spectrum 
from detectors D l  and D2 of Fig. 1 normalized to the shot-noise level. The 
plot shows (Gi;) J e ( i , )  (solid curve) and (Gi:) Je ( i2 )  (dotted curve) for a 
feedback delay time T=20 ns, Alh=A2h=4.108 photonsJsec, and expo- 
nential field relaxation time rC=1 ns (photon lifetime in the resonator). The 
dashed line is the shot-noise level. 

In the steady state, as t+m, tO+m, t- t0=7, we obtain 

and 

where 

From (27)-(29) and (3), we find the mean and the pho- 
tocurrent fluctuation spectrum in the two channels: 

- 1 

( i l )=eh l Io ( l  - A l / j ( ~ ) d ~ )  , 

where F(w) is the Fourier transform of F(T). 
Figure 3 shows the form of F(T) and the corresponding 

photocurrent spectrum in the two channels for the layout of 

FIG. 4. Same quantities as in Fig. 3, but for the optical layout of Fig. 2. 
Parameter values T,  A,h, and h2h are the same as in Fig. 3; modulation 
pulse width is T,,, = 1 ns. 

Fig. 1 (neglecting the selectivity of the feedback loop), and 
Fig. 4 shows the same functions for the layout of Fig. 2. It 
can be seen that at several frequencies, the photocurrent fluc- 
tuations in detector D l  clearly lie below the shot-noise level, 
while in detector D2 they are always above that level. 

Equation (31) and (32) for the fluctuation spectra of the 
two detectors yield the same results as the corresponding 
equations in Ref. 16, suggesting that analysis of the rate 
equations is indeed a valid approach to such problems. The 
interpretation of these equations in the present theory, how- 
ever, is an entirely different matter. In our approach, the field 
is in a time-dependent coherent state ILu(t)), which is ran- 
domly time-variable in amplitude as the result of some 
modulation. But of course such a field is not nonclassical, 
and its noise exceeds the shot-noise level (as indicated by the 
out-of-loop detector), while the sub-shot character of the cur- 
rent noise in detector D l  can be accounted for by the inap- 
plicability of the traditional (Glauber) theory of photodetec- 
tion to that detector. Therefore, even if we were to replace 
D l  with a nondestructive detector (as proposed in a number 
of papers12315,16), we would not be able to obtain a nonclas- 
sical state of the electromagnetic field with the given setup. 

In light of the foregoing theory, the agreement between 
the results obtained in the operator and c-number approaches 
to the description of feedback systems15 becomes clear. The 
agreement results from the fact that the generated field has a 
classical analog, and all means over operators in Ref. 15 are 
entirely classically stochastic in nature. 
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