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This paper studies the spectrum of the spin and electronic excitations of the Kondo lattice at low 
temperatures. To avoid unphysical states, the Mattis "dronev-fermion representation for 
localized spins is employed. First, the known Fermi liquid properties of a single impurity are 
examined. The behavior of the correlator between a localized spin and the electron spin 
density at large distances shows that the effective interaction between electrons on the Fermi 
level and low-energy localized spin fluctuations scales as p-l,  where p is the band- 
state density. This fact is developed into a renormalization of the band spectrum in a periodic 
lattice. If the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized 
spins is much smaller than the Kondo fluctuation frequency wk, the temperature of the crossover 
to the single-parameter Fermi liquid mode is determined by wk. When the RKKY interaction 
becomes of order wk, there is a new scale wsf, the energy of the (antiferromagnetic) paramagnon 
mode, with wSf4 wk. Here the coherent Fermi liquid regime is realized only below a 
temperature Tcoh of order wsf, while above TWh quasiparticle damping exhibits a linear 
temperature dependence. Finally, the nuclear-spin relaxation rate is calculated. 

1. INTRODUCTION 

The idea of a heavy-fermion state as a Fermi liquid 
"fixed point" of the Hamiltonian of the Kondo lattice model 
is widespread. But the procedure by which the low-energy 
limit is attained in this model is yet to be clarified in the 
technical aspects (a general review of this topic can be 
found, e.g., in Refs. 1 and 2). In the popular 1/N-theory (N is 
the degree of degeneracy of a localized state) introduced into 
this problem in Refs. 3-6, the "heavy7' band emerges even 
in the mean-field approximation (N= @J) as the result of co- 
herent hybridization of the broad conduction band and local- 
ized pseudofermions, introduced to describe the spin degrees 
of freedom of the f shell of rare-earth ions. It is assumed that 
this result can be qualitatively interpolated to the physical 
limit with N = 2, which corresponds to the canonical Kondo 
model with spin 4, although certain aspects appear unclear 
from the physical viewpoint. For instance, the 1/N-theory 
predicts a dramatic alteration in the topology of the Fermi 
surface (this result was recently debated in Ref. 7) and leads 
to an insulator state of the Kondo lattice of any dimension- 
ality in the case of a half-filled conduction band. The latter is 
understandable for A = J p >  1 (here J is the sf exchange cou- 
pling constant, and p the band-state density at the Fermi 
level), whereupon the problem reduces8 to the Hubbard 
model with localized Zhang-Rice singlekg However, for 
h e  1 such a critical dependence of the nature of the ground 
state of the nonmagnetic Kondo lattice on the total number 
of electrons in the band appears remarkable, except in low- 
dimensional systems. Undoubtedly, the insulator gap appears 
in a half-filled one-dimensional Kondo lattice1'-l2 for an 
arbitrary coupling constant A ,  but this result is a natural con- 
sequence of the fact that the problem is one-dimensional. 
Possibly, the insulating hybridization (pseudo)gap in a three- 
dimensional Kondo lattice is an artefact of the 1/N-theory, in 
which the passage to the physical limit of N = 2  brings to 

light the involved problem of excluding the superfluous 
states that appear while working with spin operators. The 
effectiveness of the 1IN-theory in the impurity problem is 
unquestionable (see the review paper of ~ i cke r s '~ ) ;  it ap- 
pears, however, that a satisfactory solution to the delicate 
problem of mutual adiabatic correspondence between the 
spectra for the limit values N =  03 and N =  2 in the three- 
dimensional Kondo lattice has yet to be found. 

An attempt to bypass the problem of unphysical states in 
"hybridization" theories was recently made by 
~ s v e l i k ' ~  and Coleman et a1.l5 who used the representation 
of spin atoms in terms of real (Majorana) fermions.16 By 
also expanding the band-state creation operators in terms of 
Majorana components Coleman et aL15 found a mean-field 
solution corresponding to a superconducting state. Here the 
scale of the order parameter is determined by the Kondo 
temperature, a natural consequence of the factorization of the 
Kondo interaction. However, the ansatz of Ref. 15 leads to 
an undesirable asymmetry of the band spectrum in spin and, 
more important, leaves the question of the properties of the 
normal " heavy-fermion" phase unresolved. 

Another approach to the heavy-fermion problem, appar- 
ently originating in the papers of Razafimandimby et a1.18 
and varma18 (see also Eliashberg's paper19), are based on 
the localized Fermi liquid picture of ~oz i e re s~ '  for a single 
Kondo impurity. The picture assumes that for T4Tk  the in- 
ternal spin degrees of freedom are frozen; elastic scattering 
on a Kondo center, which in the single-impurity approxima- 
tion leads to the unitary limit in resistivity, plays no role in a 
regular lattice because of the Bloch theorem. Also, a local 
and highly retarded interaction arises between electrons due 
to the exchange of virtual spin excitations of the Kondo com- 
plex, an exchange that ensures the dynamic increase in the 
mass of the carriers. The spin excitations themselves contrib- 
ute to the entropy in a Fermi liquid form, further increasing 
the effective "thermodynamic" mass (see also the discussion 
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in Ref. 7). To this second approach we can also refer the 
variants of single-site approximations in the Kondo lattice, in 
which the self-energy of localized f-states is assumed the 
same as for a single impurity2' and the RKKY interaction 
between spins is taken into account separately, in various 
approximations.22.23 

This paper studies the low-temperature behavior of a 
Kondo lattice without resorting to homogeneous hybridiza- 
tion of states and following the ideology of the second ap- 
proach. We will find the spectrum of localized spin fluctua- 
tions and the scattering amplitude for conduction electrons 
by analyzing the single-impurity case. Then we will renor- 
malize the electron spectrum in the lattice, following the 
work of varma18 and ~ l i a s h b e r ~ . ' ~  As a result we will find 
that the spectra of both spin and charge excitations are char- 
acterized by a single parameter wk. Such universal behavior 
is actually exceptional from the experimental point of view. 
Even the normal (nonmagnetic and nonsuperconducting) 
phase of a Kondo system exhibits crossover behavior at what 
has become known as the coherence temperature Tcoh< wk . 
Only below this temperature does a true Fermi liquid picture 

(the quadratic resistivity law, the Korringa law 
of nuclear spin relaxation, positive magnetoresistance, etc.). 
Here the ratio Tcohlwk strongly varies with substance within 
a broad interval. Experiments in neutron scattering 

that interstitial spin correlations, strengthening as the 
temperature lowers, reach saturation as temperatures of the 
order of Tcoh are approached. The emergence of this new 
characteristic temperature (in addition to Tk) distinctly sets 
the Kondo lattice apart from the impurity case, where the 
temperature at which the Fermi liquid mode is entered is 
controlled, as is known, by the Kondo fluctuation frequency 
wk. Although the RKKY interaction obviously also partici- 
pates in the coherence mode as it becomes established in the 
lattice, a generally accepted theory relating the temperature 
Tcoh to the scale of the RKKY interaction and the frequency 
wk has yet to be developed. This paper shows that the spin- 
spin RKKY interaction leads to the appearance of a collec- 
tive relaxation mode of a ferromagnetic or antiferromagnetic 
nature, provided that the interaction is close in strength to 
wk (the system is close to a magnetic transition). The spectral 
weight of these excitations is concentrated at low frequen- 
cies, wsf- wk- WRKKY. If, by way of an example, we calcu- 
late the paramagnon-related contribution to the decay of 
electronic states and the Korringa relaxation rate, we estab- 
lish that Landau's Fermi liquid picture is achieved only at 
low temperatures T-osf, when the (anti) ferromagnetic 
correlations between spins cease to be temperature- 
dependent. 

The plan of the paper is as follows. Section 2 is devoted 
to spin correlators for a single Kondo impurity. In Sec. 3 we 
will investigate the formation of the "heavy" band of current 
carriers in the lattice. Section 4 takes into account the effects 
of the RKKY interaction on the establishment of the coherent 
mode. Finally, Sec. 4 is devoted to a discussion of the results. 

2. A SINGLE KONDO IMPURITY 

The Hamiltonian of the Kondo problem is 

where ck+, is the creation operator of a band state with energy 
Sk, and ui the operator of the conduction-electron spin den- 
sity at a site i where the localized spin S= $ is found. To 
avoid the Gutzwiller projection procedure, unavoidable in 
the usual pseudofermion representation of a spin operator, 
we use an approach close to the one employed in Refs. 14 
and 15. More exactly, we write the impurity spins in the form 
suggested by ~ a t t i s : ' ~  

where f and f + are Fermi operators, and the real (Majorana) 
operator x z X + ,  defined by the relation { x i  ,x j )+  = Sij , en- 
sures the correct commutation of spins at different sites and 
with the conduction-electron operators. According to Eq. (2), 
the state of a spin with a projection $(- i) corresponds to the 
presence (absence) of an f-fermion. Representation (2) trans- 
forms into the one used by Coleman et a1.l5 if f and f + are 
replaced by two Majorana fermions. 

To within unessential constants, the exchange interaction 
of localized spins with conduction electrons in (1) can be 
represented as 

Here c i ,  is the annihilation operator of the current carrier in 
the tight binding representation: 

After (3) is factored by means of the Hubbard- 
Stratonovich transformation, the partition function is reduced 
to a functional integral over the Fermi fields f ,  X ,  and c ,  and 
the auxiliary Bose fields A, and A2: 

where 

The structure (3) of the operators ai and bi implies that the 
coupling fields A2 and A2 describe correlations between lo- 
calized states and conduction electrons in the particle-hole 
channel (the "excitonic" channel) and the "Cooper" 
particle-particle channel, respectively. 
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The ordinary pseudofermion representation of spin intro- 
duces a local gauge symmetry U(1), and the phase of the 
coupling field A can be removed by transforming the 
pseudofermion phase ("radial" gauge3). The Mattis repre- 
sentation (2) does not exhibit such continuous symmetry: the 
phases of the Fermi fields in (2) can be changed only by 
2 T. In the given case we can pass to a "radial" gauge via 
the following global transformation, which incorporates elec- 
tron fields as well: 

where cpl and cp2 are the phases of the parameters A1 and 
A 2  in (7), respectively. Note that in the single-impurity case 
considered the parameters A and their phases are determined 
only at the site Ri- 0 occupied by a localized spin; at the 
same time, the transformation (8) is global and, hence, re- 
tains the form of the kinetic energy. 

Substitution of (8) into (6) and (7) yields the following 
expression for the action: 

where So is given by (6), and a i  and bi are defined in (3). In 
Eq. (9), 9, = 471 + cp2 and 

are, respectively, the total spin and the charge of the electron 
subsystem. The last two terms on the right-hand side of (9) 
reflect the fact that the total spin of the system and the num- 
ber of current carriers are integrals of motion. 

We distinguish the static (ro) and fluctuating (Sr) parts 
of the coupling parameters: 

IA1,21 =ro+ Sr1,2. (11) 

We restrict our discussion to the static approximation. The 
effective hybridization parameter ro is found from the equa- 
tion for the saddle point in the integral (5): 

ro= 3 J Re(ai+bi). (12) 

Allowing for the fact that (ai) = (bi), we get 

In the approximation adopted here, where the fluctuations of 
Sr and cp are not considered, the action (9) becomes a qua- 
dratic form and the averages in (13) are given by the follow- 
ing formulas: 

1 
( ~ i c i l ) =  -(f+ 6 z  it). 

Here the function 

is the pseudofermion Matsubara Green's function, and 

G,=C G~,==-i7rp sgn E, IE[<D, 
k 

(16) 

is the initial single-site electron Green's function, with D the 
halfwidth of the conduction band. The energy ok in (15) has 
the meaning of the frequency of the localized-spin Kondo 
fluctuations. Substituting (14) into (13)' we arrive at an equa- 
tion for determining wk : 

For T G o k  this yields 

The extra factor of 3 in (17) and (18) is a consequence of the 
mean-field approximation. It plays no essential role qualita- 
tively and can be removed by allowing for the lowest-order 
fluctuation corrections in Sr when calculating the averages in 
(13). 

The impurity contribution to the dynamic spin suscepti- 
bility is (in Matsubara frequencies) 

Here $ is the logarithmic derivative of the gamma function 
(the digamma function). The static spin susceptibility is 

where $' is the trigamma function. Formulas (19) and (20) 
correspond to the well-known expressions for the suscepti- 
bility of a Kondo impurity (see, e.g., Ref, 29). Note that 
since the representation (2) introduces no unphysical spin- 
zero states, for T S o k  the expression (20) yields the correct 
value of the Curie constant. For T< ok Eqs. (19) and (20) 
yield Korringa's Fermi liquid relation: 

The contribution of spin excitations to the specific heat 
for T<ok  also has the Fermi liquid form Ci= y,T, where 
the constant y, is determined by the spectral density of f-  
and X-fermions: 
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The numerical factor in (22) can be explained by the fact that 
the entropy related to the real field x is only half the entropy 
of ordinary f-fermions. Here the Wilson ratio is 

This relation gives the value of R found by Coleman et al.,15 
which is somewhat higher than the exact value of 2. The 
Fermi liquid behavior of the Kondo impurity at low tempera- 
tures is, as is well known, a consequence of the screening of 
localized-spin excitations by the low-frequency electron spin 
density fluctuations. The nature of the distribution of the 
compensating spin density near the impurity is determined 
by the dependence of the correlator (SXO)(r,,(R)) on dis- 
tance. In the limit r l + r ,  the mean-field approximation 
yields 

If we allow for the fact that for k&> 1 (k, is the Fermi 
momentum) the electron Green's function is 

ik& sgn E - - 

where v f  is the Fermi velocity, Eq. (24) yields 

f (x) = - eXEi(x) 

Here Ei(-x) is the exponential integral function, and y is 
Euler's constant. The radius Rk= v  /wk determines the char- 
acteristic size of the Kondo complex formed because of reso- 
nance scattering of electrons on the impurity. The integral of 
(26) over the volume (the result is equal to -1) is indepen- 
dent of the coupling constant A and is determined by dis- 
tances R s R k .  Except for unessential details, the formula 
(26) coincides with the one derived by Millis and Lee.6 

For further discussion it is essential to examine the be- 
havior of Green's function 

at low frequencies. In the loose binding limit T+wk, 

where xp=p/2 is the Pauli susceptibility, and 
xi(w) = xi the susceptibility of the free impurity spin. 
Here and in what follows we assume k&> 1. This standard 
expression for RKKY polarization is a consequence of the 
purely elastic scattering of an electron at an impurity, with an 

amplitude J independent of the electron energy. As the tem- 
perature decreases, the effective amplitude JeE for low- 
energy electrons begins to grow, as is well known, and this 
leads to a change in polarization over large distances. In the 
tight binding limit T 4  wk we ignore the fluctuations in A and 
cp in (9) and get 

where 

Let us examine the behavior of the correlator (29) in the 
limiting cases. In the static limit we have w = 0 and for ar- 
bitrary values of R 

where 

At large distances R>Rk the greatest contribution to (30) is 
provided by electrons with low energies (< ok . Comparing 
(30) for R+Rk with the appropriate high-temperature ex- 
pression (28) for #= 1, we see that they coincide if the ex- 
change integral in (26) is replaced by the effective value 
JeE=p-'. At small distances there is, naturally, no such en- 
hancement because polarization occurs owing to high-energy 
electrons. Indeed, if in (30) we put R-a- d k O ,  we find 
that (30) yields a quantity 2 1 ~ o ~ l . l  times smaller than (28) 
does. This is understandable because Eq. (30) does not ac- 
count for high-energy processes (fluctuations of the coupling 
parameters A(r)). Actually, RKKY polarization does not 
change substantially over distances on the order of the lattice 
constant, with the exception of renormalization of roughly 
A In A, as noted by 

At low frequencies o< wk and for R>Rk Eq. (29) yields 

with the dynamic susceptibility xi(w) specified in (19). We 
see that (32) corresponds exactly to the spin polarization that 
arises because of exchange scattering of electrons at a local- 
ized level with a susceptibility xi(w), with a scattering am- 
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plitude Jeff= p- ' .  This result finds a natural interpretation in 
the theory of ~ o z i e r e s . ~ ~  As long as we are interested in 
large distances R>Rk,  the Kondo complex acts as a point- 
like formation. The effective interaction of electrons with the 
Kondo complex is concentrated primarily at low frequencies 
04 wk ; hence the local electron-electron interaction via the 
impurity polarization, whose value is 

is highly retarded. The quantity specified by (33) corre- 
sponds to the electron-electron scattering amplitude A intro- 
duced by ~ o z i e r e s ~ ~  and also calculated by Lee.30 

The fact that the effective amplitude of the interaction of 
the electrons on the Fermi surface with Kondo-singlet exci- 
tations has the scale p-' follows readily from (29). Let us 
define this amplitude in terms of the three-point Green's 
function 

~G:(R)G:+,(R'). (34) 

The function K,(R) of (27) is obtained by summing (34) 
with respect to energy E at R = R ' . At the same time, while 
O<wk and R>Rk hold, this function is essentially deter- 
mined by the mean-field expression (29), with the main de- 
pendence on E in (29) contained in the electron Green's 
functions, since the local functions F ,  defined in (15) contain 
the "massive" term wk. Comparing now the expressions 
(29) and (34), we note that the amplitude of the interaction 
between an electron and spin fluctuations at low energies is 

3. "HEAW" FERMIONS IN A PERIODIC LAlTlCE 

As noted in the Introduction, our discussion of low- 
energy electronic states in the Kondo lattice is based on the 
view expressed by some researchers that the "heavy" 
charged Fermi liquid is the result of renormalization of an 
ordinary band caused by the interaction of dynamic spin 
fluctuations and Kondo centers, whose spectrum in the low- 
frequency limit w S  wk is, as we saw earlier, of a localized 
Fermi liquid nature. The analysis done in Sec. 2 suggests that 
the effective value of the interaction between low-energy 
electrons and spin fluctuations has the scale p- ' .  As for the 
spin Green's function, in the lattice it obviously differs from 
that given by Eq. (15) because of the effect of the spin-spin 
RKKY interaction. In this section, however, we ignore the 
RKKY exchange effects, having in mind the range of values 
of parameter J where E(RKKY)e wk. 

According to what has just been said, the self-energy of 
a conduction electron in the Born approximation has the 
form (in Matsubara frequencies): 

Using Eqs. (19) and (35) for ~ ( w )  and J e f f ,  respectively, we 
arrive at the following expression for the self-energy at 
T=O: 

This expression is valid for E <  wk . It implies that 

where the renormalization constant (the quasiparticle weight) 
Zo is specified by the following relation: 

Formulas (38) and (39) suggest that for Teak quasiparticle 
states are formed near the Fermi surface in a region whose 
width is of order wk. In this region the retarded Green's 
function of the current carriers is determined primarily by its 
pole part, 

Here Sk=zOtk is the energy of a quasiparticle with an effec- 
tive mass M* greater than the initial mass m by a factor 
Z, ' . The damping of this "heavy" current carrier, 

has the Fermi liquid form. Equations (38) and (41) cause the 
resistivity to have a quadratic temperature dependence, 
which reaches the unitary limit at temperatures of the order 
of Tk . 

Obviously, quasiparticle excitations in the Kondo lattice 
also occur at extremely high energies, wB wk, where their 
spectrum can be calculated using perturbation-theory tech- 
niques. However, within a broad range from energies of the 
order of wk to energies 6, the motion of current carriers is 
completely incoherent. This incoherent part of the current- 
carrier spectral density apparently corresponds to the elec- 
tron component of a multiparticle Kondo resonance. The en- 
ergy 3 can be estimated from the equation 

where the right-hand side is, in the logarithmic approxima- 
tion, an estimate of the relaxation rate of electrons whose 
energy is 6 in the Kondo lattice. 

In the present approximation the electron self-energy is 
momentum-independent and the shape of the Fermi surface 
does not change, but, of course, it can be distorted to a cer- 
tain extent by the emerging spatial dispersion of spin excita- 
tions due to spin-spin interaction. 

The higher density of states fi = plZo in the quasiparticle 
band near the Fermi level leads to an enhanced constant in 
the linear part of specific heat for T< wk : 
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The current-carrier contribution ye established by (43) has 
the same value as the localized Fermi liquid contribution 
y, given by (22), related to the excitation of f-  and 
X-pseudofermions and having a purely spin nature. Bearing 
in mind that for E(RKKY)*ok the localized "spin" liquid 
does not undergo any substantial changes, we arrive at the 
following expression for the total specific heat: 

As for the spin susceptibility of current carriers, it does not 
undergo much renormalization, in contrast to the entropy. 
The point is that the high density of states 6 in the "heavy" 
conduction band is exactly balanced by the smallness of the 
quasiparticle weight Z, in the electron wave function. For 
one thing, the quantity 

which determines the contribution of the conduction band to 
the rate of the Korringa relaxation of nuclei, remains un- 
renormalized. Such a compensation effect explains why 
when conduction electrons constitute the dominant channel 
in the relaxation of test magnetic moments there can be no 
"heavy-fermion"  effect^.^^,'^ More typical, from the experi- 
mental viewpoint, is the situation where relaxation in the 
fluctuations of the localized spin of a rare-earth ion is domi- 
nates. For T< ok this channel also yields a linear tempera- 
ture dependence, imitating enhanced Korringa relaxation: 

Here we have used Korringa's relation (21), and A is the 
coupling constant in the interaction of a test nuclear (elec- 
tron) moment with the spin of a rare-earth ion. If we allow 
for (44), the Wilson ratio in the lattice becomes close to 
unity: R = $. 

Thus, for the Kondo lattice at low temperatures we have 
the two-liquid picture: one liquid, almost localized, deter- 
mines the spin response, and the other, the renormalized con- 
duction band, is responsible for phenomena related to charge 
transfer. Such a picture was discussed in detail by Kagan 
et but, in contrast to those researchers, it was found 
that both components contribute equally to the thermody- 
namics of the problem and that the low-energy behavior is 
characterized by a single energy scale ok . The same energy 
scale determines the magnitude of the residual interaction 
between "heavy" quasiparticles at the Fermi level, which 
can be estimated by multiplying the strength of the interac- 
tion between electrons [Eq. (33)] by the square of the wave- 
function renormalization factor Z o  . 

Such universal behavior is partially the result of our use 
of the impurity expression for the spin fluctuations correlator 
on the assumption that the RKKY interaction is much lower 
than the frequency of Kondo fluctuations. In Sec. 4 we show 
that for E(RKKY - ok), a new energy scale appears that 
disrupts the single-parameter behavior. 

4. THE COHERENCE TEMPERATURE IN THE KONDO 
LAlTlCE 

The goal of this section is to establish how the renormal- 
ization of electronic states changes if we consider the corre- 
lation between spins caused by the RKKY interaction. The 
RKKY energy scale is basically determined by the interac- 
tion at small distances on the order of the lattice constant. At 
such distances the RKKY polarization forms owing to high- 
energy electrons and, as noted earlier, experiences no sizable 
renormalizations. Hence, we assume that the potential 
JH(R) of the Heisenberg interaction 

is a free parameter, which theoretically can be calculated via 
perturbation-theory techniques as the initial RKKY integral 
plus logarithmic Kondo corrections. In essence, the small- 
ness of the renormalization of the RKKY interaction is one 
of the main reasons for the nonuniversal behavior of real 
Kondo systems at low temperatures, systems that manifest a 
multitude of magnetic and electronic properties. If we allow 
for (47), we are dealing with the Kondo-Heisenberg model, 
often used to describe heavy-fermion systems (see, e.g., Ref. 
33). 

Let J, be the Fourier transform of the RKKY integral. In 
the random phase approximation (RPA) we have the follow- 
ing expression for the dynamic spin susceptibility: 

where xi(w) is the single-site susceptibility, for which we 
use Eq. (19). Equation (48) takes into account the spin-spin 
correlations in the lattice in the simplest possible way. Of 
course, the RPA is insufficient near a magnetic instability 
proper, that is, when a pole appears in the expression (48) for 
spin-wave excitations. When spin correlations are well- 
developed, the problem must be solved by applying Moriya's 
self-consistent allowing for the effect of these cor- 
relations on the single-ion susceptibility xi(w) via the renor- 
malization of the pseudofermion functions F [see Eq. (IS)]. 
Here we restrict our discussion to a qualitative picture of the 
situation in the RPA. This leads to the expression 

which can also be written as3' 

where 
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is the wave-vector dependent static susceptibility, and 
rq=(7rxq)-' is the damping factor. If Jq reaches its peak 
value at q = Q, near Q the susceptibility assumes the form 

The quantity D, depends on the type of lattice and the form 
of the function JH(R); roughly, its scale is determined by the 
value of the exchange integral over the lattice constant: 
~ , - / ~ ( a ) a ~ .  Equation (52) implies that dD,lw,f= trn de- 
termines the spin correlation length. Note that since the 
single-site susceptibility xi in the expression for frequency 
osf is temperature-dependent [according to Eq. (20), 
x ( T ) - , Y ( O ) ( ~ - ~ ~ T ~ / ~ W ~ )  for T4wk], the length 6, de- 
creases as the temperature grows. 

The chief meaning of Eq. (52) is that when the RKKY 
energy begins to compete with r w k ,  a relaxation mode ap- 
pears that has an energy wsf@ok in a narrow region of the 
Brillouin zone near the vector Q of the expected magnetic 
ordering. Such (anti)ferromagnetic paramagnon excitations 
are characteristic for strongly correlated systems with short- 
range spin order and are being actively discussed, for one 
thing, in connection with high-Tc superconductivity (see, 
e.g., Refs. 36 and 37). The role that paramagnons play in the 
thermodynamics of heavy-fermion systems was studied by 
~hkawa . '~  

Let us now examine the effect of spin-spin correlations 
on the self-energy of conduction electrons by employing the 
spin susceptibility in (36) in the form (52). Again assuming 
that Jeff=p-' in the low-energy limit and performing stan- 
dard transformations, we find that 

where ~ " ( x )  is the imaginary part of the susceptibility (52), 
and (' = ((k+ Q + q). At low temperatures, 

where 8 is the Heaviside unit function, and the constant Zo is 
defined in (39). The paramagnon contribution (small values 
of q)  is important only if the scattered-electron momentum 
k' = k+ Q + q is near the Fermi surface and (' < ok . This is 
possible in two cases: when vector Q is zero (ferromagnetic 
correlations between spins), and when Q coincides in mag- 
nitude with the diameter 2ko of the cross section of the 

Fermi sphere (for simplicity we consider only the completely 
isotropic case). The situation when Q-2ko holds is quite 
typical of rare-earth compounds, where RKKY exchange is a 
source of helical magnetic structures. Moreover, for purposes 
of qualitative analysis we assume that Q is equal either to 0 
or to 2ko. 

In both cases, passing in (54) and (55) from the sum over 
momenta to integration with respect to the variables 5' and 
y = g1- cos a), where 6 is the angle between kr  and k+ Q, 
we get 

When E(RKKY) is low, that is, D,-+0 and o -to&, 
Eq. (56) yields the result (38) for Z"(w), determ~ned by 
inelastic scattering at localized Kondo fluctuations. But if the 
RKKY interaction is fairly strong, so that 
~ , ( 2 k ~ ) ~ -  ok+ oSf ,  the damping is quadratic in w only at 
frequencies o < o, : 

Thus, the presence of low-frequency (anti)ferromagnetic 
paramagnons caused by RKKY correlations "delays" the 
transition of the Kondo lattice to the Fermi liquid mode. 
Strictly sppaking, in the frequency range wsf< W <  o k ,  or in 
the temperature range osf < T< ok , no quasiparticles partici- 
pate in the process, since their damping is on the order of 
their energy. It is natural to identify the crossover tempera- 
ture T,,-wSf with the coherence temperature Tmh<Tk of 
heavy-fermion systems, introduced empirically as the tem- 
perature of a smooth transition to the Fermi liquid mode. For 
one thing, relation (57) signifies a transition from a linear 
temperature dependence of the resistivity to a quadratic de- 
pendence at temperatures on the order of wsf. The magni- 
tude of w,, proper depends, according to (52), on the close- 
ness of the system to magnetic disorder. Note, however, that 
although the results specified by Eqs. (56) and (57) are com- 
mon for ferromagnetic and antiferromagnetic correlations, 
the relaxation transport time and resistivity are sensitive to 
the pararnagnon effect only in the second case, while in the 
first only forward scattering (Q = 0) is enhanced. Note also 
that the linear dependence of resistivity in systems with an- 
tiferromagnetic correlations has been repeatedly discussed in 
the context of high-T, superconductivity, starting with the 
work of Moriya et aLJ6 

The real part of the self-energy, Eq. (55), is 
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At low frequencies w < w, this becomes 

which again yields (38) when D, is sent to zero. In the pres- 
ence of fairly strong spin-spin correlations, when 
~ , ( 2 k ~ ) ~ -  wk>> wSf, Eq. (59) predicts an additional de- 
crease in the quasiparticle weight: 

In the intermediate frequency range wSf< w< wk, 

which corresponds to the already noted "marginal behavior" 
of quasiparticles with an energy w>osf .  

The (anti)ferromagnetic fluctuations discussed also af- 
fect, for instance, the nuclear spin relaxation rate, which is 
proportional to xU(w)/w. For T< wk and within the RPA, 
instead of (21) we arrive at (as w-0) 

where t,(T)= is the magnetic correlation 
length. The temperature dependence of w,f is determined by 
the susceptibility xi(T) from Eq. (20). Using its expansion 
and assuming that wsfd wk , we find that 

By combining (62) and (63), we can express the temperature 
dependence of the nuclear relaxation rate for T< wk as 

T ; ' - T ~ ~ ( T ) - T  (64) 

Note that the numerical factor of in (63) and, hence, in (64) 
is actually understated; if the temperature dependence of the 
Kondo fluctuations frequencyz9 is also considered, the factor 
becomes equal to f. Moreover, as noted earlier, paramagnon 
effects also renormalize xi(T) in a self-consistent manner.34 
Nevertheless, the approximation (64) clearly shows that the 
linear Korringa dependence is reached only at temperatures 
much lower than wk and that the nature of the relaxation is 
controlled by two parameters, wk and osf. 

Experimentally, the coherence temperature is also char- 
acterized by the peak spin susceptibility and the peak value 
of y(T) = C(T)IT, which is usually interpreted as proof that 
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a local minimum has emerged in the density of states of the 
Kondo resonance near the Fermi Such a pseudogap 
in the spectrum of localized pseudofermions ("spinons") 
might have emerged if we had carefully considered the effect 
of short-range spin order on the one-particle Green's func- 
tions of the f- and X-fermions in the lattice. Of course, the 
RPA does not have the capacity to allow for short-range 
magnetic order, which is, obviously, also a source of inelastic 
neutron scattering at low temperatures.27 

Equation (52) acquires a pole provided that JQ= 110~:~ 

which must be assumed identical to the Doniach condition. 
For JQ>Ji= muk we have the ordered phase, in which the 
magnetic moment per site is determined in the molecular 
field approximation by the self-consistency equation 

1 
m=2(f+fz:-$)=2Tx 

is + i wk sgn E + JQm/2 

The quantity g Q m  in (65) acts as a chemical potential for 
the f-fermion and determines the scale of the pseudogap in 
the spectrum of such fermions. Equation (65) in the magnetic 
moment m has a nonzero solution for JQ2Ji. Near the 
critical value, x = JQ I J i -  1, the magnetic moment is sup- 
pressed because of Kondo fluctuations, with m =  -, as 
obtained earlier by Bred1 et ~ 1 . ~ '  and 

5. DISCUSSION OF RESULTS 

Thus, building on the ideas of varma18 and 
~ l i a s h b e r ~ , ' ~  we have shown that a "heavy" band of current 
carriers forms in the Kondo lattice as a result of the interac- 
tion of electrons and almost localized virtual spin fluctua- 
tions. We calculated the fluctuation spectrum in the 
single-site approximation21 and allowed further for the 
spin-spin RKKY interaction in the RPA. As for the effective 
amplitude for scattering of Fermi-surface electrons by spin 
fluctuations, we found from analyzing the single- impurity 
problem that Jeff-llp. This aspect is important because it 
ensures universal behavior at low temperatures. 

The appearance of quasiparticles at low temperatures in 
the given approach is a consequence of the fact that the 
Kondo interaction generates a finite energy of the localized 
spin fluctuations, wk . Hence, inelastic electron scattering, 
which damps such fluctuations, is found to be "frozen" 
when both w and T are lower than wk . At the same time, the 
fairly strong RKKY interaction decreases the spectral density 
of the spin excitations at low frequencies wSf caused by (an- 
ti)ferromagnetic paramagnons. Hence, the Fermi liquid be- 
havior of Kondo lattices that are close to magnetic ordering 
is expected only below temperatures TCoh- wSf. The Fermi 
liquid is, apparently, retained also under moderate doping of 
the lattice with nonmagnetic ions, although here the current 
carriers will not have a definite quasimomentum because of 
strong (on the order of the unitary limit) elastic scattering on 
nonmagnetic carriers. 

We found that the low-temperature entropy of the 
current-carrier "heavy" band is commensurate in magnitude 
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with the contribution of the localized "spinon" liquid, 
which, apparently, explains the size of the jump in specific 
heat when heavy -fermion systems transfer into the super- 
conducting state. At the same time, the qualitative modifica- 
tion of the nature of the spin relaxation of nuclei strongly 
supports the idea of simultaneous transformation of the spin 
liquid. As a result, apparently, there appears a V-like 
pseudogap in the density of "spinon" excitations if the ordi- 
nary T , ' a ~ ~ - l a w  is taken into account (see Ref. 41). We 
can assume that there is probably pairing between 'spinons" 
suitable energywise for landing in the region of the super- 
conducting gap in the "heavy" band of the current carriers. 

In the suggested theory, the case of a half-filled band, 
ne= 1, is not represented by a singular point, as long, of 
course, as the initial constant A =Jp is much smaller than 
unity. (Note that we are dealing here only with the three- 
dimensional Kondo lattice, with a regular density of states at 
the Fermi level.) Apparently, the point ne= 1 is singular, 
corresponding to an insulator state, only in the Zhang-Rice 
limit A %  1, where at each site there is a localized bound state 
of an "individual" electron and the spin. In this limit, the 
triplet sector as well as itinerant vacant states and doubly 
electron-occupied states are separated by a finite gap and 
are effectively absent from the picture, reducing the state 
basis. It is not obvious how this picture can be adiabatically 
transformed into the case where A 4 1 holds, when formation 
of a low singlet-triplet energy wk is essentially a collective 
effect. This paper has assumed that as long as wk is much 
smaller than the bandwidth, the wave function of the conduc- 
tion electrons near the Fermi surface has an extended nature 
(as extended as the quasiparticle weight is small) irrespective 
of ne and that the topology of the Fermi surface does not 
change dramatically. At the same time, resonance scattering 
of electrons on localized states leads to a situation in which 
the greater part of the wave function has a localized (over 
distances on the order of R k )  incoherent nature and partici- 
pates in the formation of a multiparticle Kondo resonance. It 
is assumed here that for A 4 1  the three-dimensional Kondo 
lattice is a metal even for ne= 1 since it has no exact nesting, 
which in low-dimensional systems is known to help the spec- 
trum acquire features inherent in an insulator by enhancing 
the interaction of electrons and spin fluctuations at the edge 
of the Brillouin zone. The tricky question of the mutual cor- 
respondence of the two limits discussed here in the case of 
ne= 1 is closely linked to the problem posed by ~oz i e re s~ '  
concerning the insufficient number of electrons in the Kondo 
lattice and requires further investigation. 

This paper can be considered a development,of the semi- 
phenomenological theories of varrnal8 and ~ l i a s h b e r ~ . ' ~  
The weakest point in it is the combination of the single-site 
approximation and the RPA. In this approach the interaction 
of the phases of the effective hybridization parameters A i  at 
different sites is completely ignored. 

I am grateful to K.A. Kikoin for stimulating discussions 
concerning the Kondo lattice problem. The work was spon- 
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Grant Number 93-02-02578. 
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