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The interaction of two-level systems in dielectric glasses leads to a subsystem of spatially 
delocalized, collective low-energy excitations. At ultralow temperatures, when phonons are to a 
large extent frozen out, relaxation processes will be determined by the excitations of this 
subsystem. The new relaxation mechanism leads to a different picture of low-frequency sound 
absorption in glasses. The internal friction coefficient acquires under these conditions a 
linear temperature dependence instead of the classical Q- ' -  T 3 .  Experiments demonstrating the 
change in the relaxation regime at ultralow temperatures are discussed. 

1. INTRODUCTION 

The tunneling model introduced in the now classical 
work of Anderson et al.' and phillips2 for a description of 
dielectric glasses explains, to a large extent, the universal 
character of the anomalous low-temperature properties of 
amorphous systems widely different in their nature (see, e.g., 
Ref. 3). Within this model, the low-temperature properties 
have been linked to the special properties of an ensemble of 
randomly located two- level (two-well) systems (TLS) with a 
specified parameter distribution. If the description of a TLS 
employed the standard pseudospin representation 

then for the distribution of the relative level shift in the 
wells, A,, and of the tunneling amplitude, AOn, one as- 
sumed, on a limited energy scale 5 1 K, the representation 

The uniform distribution in A appears natural, while the uni- 
form distribution in InAo or in the tunneling action scale is 
less obvious. In this paper we take the distribution (1.2) as an 
experimental fact. 

The total Hamiltonian contains apart from (1.1), a term 
describing the interaction of TLSs with the excitations of the 
system, 

where Vn is the operator in the space of system excitation 
variables. 

The deformation of the elementary cell due to the inter- 
action with the excitations shifts An substantially while af- 
fecting little the value of Aon . This familiar result (see, e.g., 
Ref. 3) allows retaining only terms proportional to S: in 
(1.3). 

The system (1.1) of independent TLSs having the param- 
eter distribution (1.2) and interacting with the medium ac- 
cording to (1.3) explains reasonably well the anomalous tem- 

perature dependences of the thermodynamical and kinetic 
properties of glasses at temperatures below 1 K. 

The interaction (1.3) leads, in principle, to an indirect 
interaction between the TLSs. In a dielectric medium, due to 
the virtual acoustic-phonon exchange, this indirect interac- 
tion VI2 falls off at large distances as 1 / ~ : ,  (in a metal there 
is an added indirect interaction via conduction electrons, 
which falls off in the same way but may be much stronger). 
In dielectric glasses, the inclusion of this interaction is found 
to be essential in the nonlinear analysis of sound or electro- 
magnetic radiation absorption (see, e.g., Refs. 4 and 5)  and in 
related problems. 

As will be shown in the present paper, at sufficiently low 
temperatures the indirect interaction between TLSs becomes 
quite fundamental in character. For any pair of defect centers 
with an internal degree of freedom, this interaction leads to a 
coherent dynamic coupling. As a result, low-energy non- 
single-particle excitations appear which involve two or more 
TLSs in an individual transition. It turns out that the density 
of these excitations differs radically from that given by the 
distribution (1.2). 

If the dissipative interaction with medium excitations 
does not destroy the coherent couplings, then the dynamic 
interaction between coherently coupled TLS pairs - taking 
into account the resulting parameter distribution - will inevi- 
tably lead to delocalized collective excitations at sufficiently 
low energy (in an interacting system of the single-particle 
excitations of individual TLSs, delocalized collective excita- 
tions do not appear, see below). 

This strip of phonon-unrelated low-energy excitations 
leads to a fundamentally different relaxation mechanism at 
ultralow temperatures. In the case of dielectric glasses, this 
picture should always realize at sufficiently low tempera- 
tures, since the breakdown of coherent couplings due to the 
irreversible interaction with the phonons weakens as T3  with 
decreasing temperature. In the case of metallic glasses, the 
conservation of coherent couplings occurs only in a transi- 
tion to the superconducting state, when the dissipative inter- 
action with the electrons is being suppressed exponentially 
as temperature is lowered. 
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The change of the relaxation mechanism should be 
clearly manifest in the behavior of the internal friction. In- 
stead of the standard Q,,'-T~ dependence of the phonon 
absorption coefficient, at ultralow temperatures the Q p l -  T 
dependence should be observed. Such a crossover appears to 
have first been observed in Ref. 6 which reports low- 
frequency internal friction measurements ( v - 4 0 0  Hz) on 
classical amorphous Si02 over a fairly wide low-temperature 
range down to T 5  1 mK. Below, a separate analysis of these 
experimental results will be given. 

The appearance of collective delocalized excitations is to 
a large extent related to the 1 /R3  interaction between TLSs. 
This also occurs in lower dimensional systems, as a reflec- 
tion of the fact that the indirect interaction behaves like 
1 / R ~ .  

It should be noted that Yu and I,eggett7 introduced the 
hypothesis that the law l / R 3  for the defect-defect interaction 
in a medium may be responsible for all the spectral charac- 
teristics, as well as for the universality, of the anomalous 
properties of amorphous systems. This hypothesis is not yet 
anywhere near its full development. In the present work it is 
assumed that the initial spectral structure is formed by a sys- 
tem of independent defect centers described by Eqs. (1.1) 
and (1.2), and that the relatively weak interaction between 
the centers is responsible for the secondary spectral structure 
with collective delocalized excitations. 

2. LOW ENERGY COLLECTIVE EXCITATIONS 

In dielectric glasses at T<< OD, the interaction ? in Eq. 
(1.3) ,  as well as the inter-TLS interaction at large distances 
R 9 a (a  being the interatomic distance scale), is determined 
by acoustic phonons. In the general case 

ij n v= y . U i j '  (2 .1)  

where u ~ , = ( d u i / d x j ) ,  is the strain tensor and y; is the de- 
formation potential tensor. The interaction between the TLSs 
may be found directly in second-order perturbation theory in 
H ' ,  Eq. (1.3), or by canonical transformations to new equi- 
librium positions of the normal oscillator coordinates: 

Usually the average over angles is zero, 

(unm)=O. (2.4) 

The charge scale in the interaction (2.3)  can be determined 
from the relation 

(u; , )  = u; . (2.5) 

It is easily found that, within a constant factor, 

where is a certain average value of the square of the 
tensor elements yij,  p is the mass density, and c a certain 
average sound speed. 

The Hamiltonian 

determines the multi-particle character of excitations in an 
amorphous system. Consider an isolated pair of TLSs. The 
Hamiltonian of such a pair has the form 

Let us change to the representation in which the Hamilto- 
nians Hol  and Ho2 are diagonal. In spin space, to such a 
change there corresponds a rotation of quantization axes. The 
relation between the spin components in the old and new 
(3') coordinate system is given by 

s", ( A ~ ~ E , ) S Z , +  (A, ,  I & , ) % .  (2.9)  

Then 

H I 2 =  -E1S; -e2S; -  u ~ ~ [ A ~ s ~ / ( E ~ E ~ ) S ; S ;  

+ ~ o ~ ~ o ~ / ( E ~ E ~ ) $ ~ - A ~ ~ A ~ ~ / ( E ~ E ~ ) $ ~ ~  

+ A ~ A O ~ / ( E ~ E ~ ) S ~ S $ ] .  (2.10) 

In these expressions 

2 112 & , = ( z : + ~ o , )  (2.11) 

is the excitation energy of an isolated TLS. 
In the following we will be interested in up-down tran- 

sitions, when one member of a TLS pair transfers from the 
lower to the upper state, while the second the other way 
around. We shall later show that in the problem we are con- 
sidering the dominant role is played by TLSs pairs with 
E 1,2s T and a distance R such for which, a priori, 
I Ul,21==ST. In this case the third and second terms in brackets 
in (2.10) lead to a negligibly small renormalization in E ,  and 
c 2  respectively, and so may be dropped. The first term in the 
brackets does not change at all in the up-down transition. As 
a result, such transitions can be effectively described by the 
Hamiltonian of a two-level system (1.1)  with an asymmetry 
energy A p  and transition amplitude Aop : 

A , = E ~ - E ~ ;  hop= U 1 2 A o l A 0 2 / ( 2 ~ 1 ~ 2 ) .  (2.12) 

The coherent coupling within the pair, which determines 
A,, , falls of as I / R : ,  with distance. If the magnitude of this 
amplitude becomes less than fi/rph [where rph is the transi- 
tion time in an individual TLS due to the interaction with 
phonons, Eqs. (1.3)  and (2.1)] ,  then the coherent coupling in 
the pair is destroyed. This suggests a cutoff radius R ,  for the 
formation region of coherently coupled pairs. A direct esti- 
mate of rph(&)  for E 5 T ,  using (1.3)  and the relation between 
SZ and S", Eq. (2.9), gives 

l / r p h =  ( A ~ / E ) ~ ~ / T $ '  ; 1 / r $ ) =  ( ~ ~ I ~ C ~ J L ~ ) T ~ .  
(2.13) 

Considering thermal' TLSs with A.  , A  - T ,  taking 1 / T$) to 
be equal to ( l l h ) ~ ~ l R : ,  we find, using (2.6) ,  that 

That we have obtained a finite radius for the coherent inter- 
action region of is extremely significant. 
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Let us evaluate the probability w for an individual TLS 
to find a resonance up-down partner in the coherent region, 
or to form a resonance pair with A,< hop. Let a given TLS 
has parameters A < Ao, and thus Aol /E  - 1,  which is essen- 
tial for the scale of coupling between the TLSs [see Eq. 
(2.12)]. If the second TLS is at a distance R,  then the energy 
difference EZ- E ,  should not exceed the value 

The up-down transitions involve TLSs with energy E ~ - T .  
The probability w, as we will see, is accumulated over large 
distances, where the fractional value of the energy difference 
is small. Therefore, on the right-hand side of this relation 
c 2  can be replaced by E I .  Then 

In this expression we have changed from the variables 
Ao,A in the distribution (1.2) to the variables A0,e;  @ ( x )  is 
the standard, unit switching-on function. 

Taking advantage of the small value of Aop, it is directly 
found that 

For all known glasses 

(for example, for Si02 we have PoU,=10-3). Generally, 
w e 1  even for very low temperatures. This means that at 
distances R 9 R ,  the coherent oscillations die away exponen- 
tially. Therefore under these conditions no spin-wave type 
delocalized states occur, in contrast to what a number of 
studies8-lo have suggested. For the same reason there is no 
anomalous diffusion of the type described by ~evi tov"  for a 
chaotic system of particles with 1/R3 interaction. Delocaliza- 
tion can only result from the interaction of complex excita- 
tions involving two or more TLSs simultaneously (cf. Ref. 
12). 

The result (2.16), (2.17) is essential for the discussion of 
the more complex picture of many-particle excitations since 
it suggests that, for w< 1 ,  an individual TLS surely does not 
have two or more resonance partners. 

Let us calculate the distribution in Ap ,AOp, Eq. (2.12), 
for effective two-level systems formed by TLS pairs in the 
coherent region. Since we are considering excitations related 
to up-down transitions, we must introduce statistical factors 
accounting for the fact that one TLSs is in the lower, and the 
other in the upper state. Again changing in Eq. (1.2) to the 
variables A. and E,  Eq. (2.11), we find 

For the present problem, the sign of the transition amplitude 
in the pair does not play a role. In fact, as in Eq. (1.2), we are 
interested in the distribution in the modulus of Aop. There- 
fore the argument of the S function in (2.18) involves 
lu121. Integration over d 3 ~  leads to the result: 

After substituting (2.19) into (2.18), the integration over 
dAoi is trivial. In what follows we will be interested in the 
low-energy spectral properties for Ap,AOp<T. From Eq. 
(2.18) it then follows that the corresponding pairs are formed 
from TLSs with E ~ = = A ~ ~ - T .  Also, it is seen that to the 
effective pair size there corresponds the inequality 
Uo / R 3 4  T. Thus we find satisfied all the conditions that led 
to the simplification of the Hamiltonian (2.10) and thereby to 
the result (2.12). 

Finally, for the distribution (2.18) we obtain 

The most essential point about this distribution is the sharp 
increase in the number of pairs with a small transition am- 
plitude 

This result is universal in character. It retains it truth in sys- 
tems of arbitrary dimensionality and does not depend on the 
form of the parameter distribution of the initial system of 
TLSs. 

Comparing (2.20) and (1.2), we see that for 
Aop<T(PoUo) the density of pair excitations becomes 
larger than the density of the excitations of isolated TLSs. 
Since the correlation volume increases with decreasing tem- 
perature as I / T ~ ,  this result, as well as the sharp increase in 
the density of pair excitations with decreasing Aop, will be 
determined, for low enough T, by pairs with a stable coher- 
ent coupling. 

3. DELOCALIZATION OF COLLECTIVE EXCITATIONS 

The next step is to consider the resonance interaction 
between the pairs. The distribution (2.20) has a remarkable 
feature. For any value of Lop ,  in the interval 
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(AOp - AOp /2 ,AOp+ AOp 12) there will be one and the same 
' 

number of pairs with resonance parameters Ap<A)Op,  

(per unit volume). The distance between such pairs is deter- 
mined by the relation 

The interaction between resonance pairs in each energy in- 
terval is characterized by the quantity 

For resonance pairs with A o p = A * ,  in the transition ampli- 
tude expression (2.12) the factors A~;)IE~?- 1. Because of 
this, A.  determines the scale of the coherent coupling be- 
tween such pairs for R , > R * .  At the same time, this latter 
inequality guarantees the stability of the coherent coupling in 
the pairs themselves. Under these conditions, the resonance 
pairs with AOp-A* form an infinite coherent-coupling clus- 
ter, which enables delocalized excitations to appear. For 
A O p 9 A * ,  since the interaction between the pairs remains as 
in Eq. (3.3), an infinite cluster does not form and the excita- 
tions turn out to be localized. For A O p G A * ,  the interaction 
between resonance pairs at an average distance R *  is large 
compared to AOp . In this case the up-down transition ampli- 
tude is no longer given by Eq. (2.12) but has a much smaller 
value of 

Thus, the resonance coupling does not form at the average 
distance. It forms between pairs at the distance R(AOp) de- 
termined by the relation 

As a result, in each energy strip (Aop - 
AOp /2 ,AOp+ AOp 12)  an infinite cluster of resonantly coupled 
pairs forms and in this cluster, consequently, delocalized col- 
lective excitations propagate. 

Now since R(Aop)>R*,  the number of pairs with a 
resonance coupling in such a cluster is less than N,, Eq. 
(3.1), in proportion to A o p / A . .  At the same time, for an 
arbitrary pair, the probability of finding a resonant pair in the 
coherent region can be calculated; this is analogous to Eq. 
(2.15), but with P replaced by P ( ~ ) .  It is easily shown that 
for AOp<A* any pair belongs to an infinite resonance cluster. 
This means that in each energy strip actually all the N, pairs 
participate in the formation of delocafized excitations. 

The requirement R * < R , ,  from Eqs. (2.14) and (3.2), 
places a restriction on the temperature, 

Physically, the temperature restriction relates to the require- 
ment that the coherent region be sufficiently large for delo- 
calized excitations to form. In this connection, the following 
remark should be made. As should be clear from the discus- 
sion above, the phenomenon of delocalization has been ana- 
lyzed in terms of concepts inherent in the theory of the 
Anderson locali~ation.'~ For T f- 0, the interaction with 

phonons is conserved on a limited scale. Delocalization then 
implies the possibility for a local perturbation to go away to 
infinity in a diffusive way. 

To the scale A * there corresponds the characteristic time 

In this time, for A * <  T 4  To practically all the pairs in the 
energy strip with AOp=A* will change their state. The num- 
ber of such pairs is N,, Eq. (3.1). As will be seen, a change 
in the state of about N, TLSs leads, statistically, to a shift in 
the level splitting A; on the scale - A  * over the entire en- 
semble of the initial TLSs. This means that in a time of order 
T* , the resonance pairs with A p 5  A,,= A * will have their 
resonant couplings broken and become unable to form an 
infinite resonance cluster. The same will occur to the clusters 
formed by the pairs with AOp< A * . But in these latter, the 
characteristic time of change of state is determined by the 
quantity h / A o p .  Therefore, in the time T* the probability of 
a real transition is ( A , , T * ) ~ <  1 .  This allows an estimate that 
the total number of resonance pairs undergoing transitions in 
the entire interval A,,< A * does not exceed N, . 

4. RELAXATION TIMES 

In transitions involving a finite number of two-level sys- 
tems distributed uniformly in space, the change in the strain 
field that results causes a change in the level shift A ,  of 
individual initial TLSs. Since the parameters Aoi remain 
practically unchanged, it follows that, in principle, intra- and 
interpair resonant couplings should break down while at the 
same time new resonant couplings will form. Relaxation pro- 
cesses in the system are to a considerable extent dependent 
of the nature and scale of such rearrangement. 

Let the density of TLSs that have undergone the transi- 
tion, N, be small compared to the total density of TLSs, 
No. The change in the parameter A i  of an individual TLS 
will be written as 

Here the prime indicates than the summation is only over the 
positions of those TLSs having undergone the transition. For 
the probability density for the change in the level shift we 
then have 
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Here (. . . . ) denotes an average over the positions of those 
TLSs having changed their state and, independently, over the 
distribution in uoj (recall that (uoj)=O). The first distribu- 
tion, assuming a statistical independence of individual TLSs, 
is carried out directly giving 

Here x = N/No and we have used the fact that x+ 1.  Chang- 
ing from the summation on j to the integration J d 3 r ~ o  and 
assuming that the distribution in u is an even function of u, 
it is found that 

Substituting this into (4.1) we obtain 

The average value of the modulus is close to Uo. 
Thus, due to the l /R3  interaction between the centers, 

we have a Lorentzian type distribution for level shift changes 
following the transition of a part of the TLSs into a new state 
with a width dependent on the number of such TLSs. 

We have found earlier that in the energy strip of delocal- 
ized excitations, in the time T* , Eq. (3.6), about a number 
N,, Eq. (3.1), of TLSs will change their state. Noting that 
N,Uo = A * , Eq. (4.3) implies that in the time T* the charac- 
teristic scale for the change in Ai in individual TLSs will 
exceed A*.  Since there is no change either between or 
within the pairs forming the infinite resonant cluster, this 
change in Ai leads to a breakdown of such a cluster in a time 
of order T* . However, due to (4.3) and the uniform distribu- 
tion of the pairs in A,, Eq. (2.20), and also because of the 
uniform distribution of the initial TLSs in A, it follows that 
during the same time, an infinite resonance cluster consisting 
now of other pairs will form. As a result a self-consistent 
picture arises which leads to a continuous growth of the 
number of TLSs, N, that have undergone a change of state. 
The kinetics of the process is described by the simplest equa- 
tion 

dNldt= 2N,A * l h .  (4.4) 

As we have seen in the derivation of the expression (2.20) 
for the function P ( ~ ) ,  pairs with A,, AOp4T are formed 
primarily by two-level systems with A,&- T. The number 
of such TLSs is, from (1.2), POT. As the self-consistent time 
evolution proceeds, all of these TLSs will change their state 
after passing through the stage of their staying in the infinite 
delocalized cluster. 

In order to see this, let us assume first that, having left 
the resonance strip A * , pairs do not ever come back; neither 
do individual TLSs, these latter forming resonance pairs with 

their likes. Then the relaxation time TO for the system of 
P O T  thermal TLSs is found, from (4.4) and (3.1), to be 

In this time, the characteristic distribution width (4.3) 
reaches a value of 

As the above value corresponds to the interaction of thermal 
TLSs at their average separation, it determines the limiting 
scale of r .  Let us estimate the probability for an individual 
pair to return back to a resonance state. Let us divide the 
time t- t' (as measured from the instant t '  at which the pair 
moved out of the resonance) into intervals T* . At an arbi- 
trary instant m r * ,  in the time T* , an individual resonance 
pair may return from the nearest energy interval 
r o - ( 2  .rr2/3)A * with a probability close to (A * lnTO) 
X(1lm) [cf. (4.3); estimates for an individual TLS and for a 
pair are in fact identical]. The factor of l / m  comes from the 
inclusion of the linear growth of r with t, this growth lead- 
ing to a decrease in the probability distribution. The total 
reentering probability by the time t is 

or, on averaging over the time t ' ,  

For  TO, the argument of the logarithm is of order 
l / (PoUO).  Even if we take for the parameter PoUo the 
Si02 value of w ~ ( T ~ ) < ~ .  This means that, as an ap- 
proximation, we may ignore pair reentering. Even for ex- 
tremely small PoUo,  such that reentering starts to contribute 
at times less than TO, a self-consistent estimate shows 
wb(t) to increase with time no slower that tlln(t/~,). This 
means that the conclusions to be reached in the following 
would not change much. 

Now let us estimate the number of pairs formed by an 
individual TLS with A, ,A - T with initial two-level systems 
with similar parameters under the conditions that 
I A ' - A 1 5 PoUoT and that we have localization in the inter- 
val R , + R , / 6 .  The former condition secures entering dur- 
ing the time TO in the resonance interval A,, whereas the 
latter means that the given TLS forms a resonance pair with 
hop- A ,  and thus can belong to an infinite resonance clus- 
ter. Using Eq. (1.2) for this estimate we find [cf. Eq. (3.2)] 

Thus one can argue that once having left the infinite reso- 
nance cluster, a TLS will not come back in time 7,. This 
confirms the validity of the assumptions that led to Eq. (4.5) 
and proves that TO given by that expression does indeed char- 
acterize the relaxation time of the thermal resonance TLSs. 

In analyzing the relaxation caused by the delocalization 
of collective excitations in a system of TLSs, it is implicitly 
assumed that the temperature is sufficiently low that we may 
ignore the relaxation due to the interaction with phonons. For 
this it suffices that the temperature be less than the value 
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T' as determined from the relation r $ ) ( ~ ) = r ( T ) .  From the 
expressions (2.13) and (4.5) and the definitions (2.6) and 
(3.5) we find 

The requirement T< T' automatically implies T< To. Thus 
the linear dimension of the coherent region, R,, will be 
much greater than R, , and the problem turns out to be com- 
pletely self-consistent. 

Thus, for T < T t  a radical change of the relaxation re- 
gime occurs: the classical law T-' - T~ changes into the lin- 
ear T- - T law. 

The relaxation we have discussed so far is actually the 
fastest in the system. Really there exist a whole ensemble of 
non-resonant TLSs with A,, /E < 1 (E < T) each of which will 
also relax, but more slowly. This is readily seen by consid- 
ering the possibility for a given TLS, with fixed AO and E, to 
form an up-down pair with another TLS, with Ah and E' ,  
under the condition 

Under this conditions, we have seen earlier that in time rO,  
Eq. (4.5), such a pair will inevitably find itself in the energy 
strip 

The interaction with the collective excitations in an infinite 
cluster provides, in this case, the possibility of a real up- 
down energy-conserving transition in the pair. The probabil- 
ity of such a transition is 

(Aop7* 

where [cf. Eq. (2.12)] 

(AOp<A, , see below). The effective relaxation time will be 
determined by the pair with the maximum value of bop. 

Let us evaluate the pair distribution function by keeping 
the parameters of one of the TLSs fixed. To this end we use 
the expression (2.18), removing the integration over dAol 
and d c l  together with the statistical factor (specifically, let 
the TLS we have fixed be in the lower state E < T). Then 

Integrating this over A, within (POUO)T, for the total num- 
ber of pairs with transition amplitude of order AOp we find 

Equating this to unity we find the maximum value of A,, , 
for which the corresponding pair forms with probability 
about unity, 

Thus hop is indeed less than A, . The structure of the ex- 
pression (4.12) corresponds to the fact that the optimum size 
of the pair is R, , the second TLS being a resonant one. If 
the TLS under study is resonant (A, - E), in particular ther- 
mal (AO- E - T), then the characteristic transition amplitude 
equals A, , as it must. 

Reentering the interval (4.9) in the course of the evolu- 
tion process occurs in time of order TO. Consequently the 
inverse relaxation time for a non-resonant TLS is determined 
by 

~ - ' ( A ~ , E ) ~ ~ ~ ~ ( A ~ ~ ~ * ) ~ = ~ ~ ~ ( A ~ / E ) ~ .  (4.13) 

Since the size of the pairs responsible for the transition is 
R, , the condition for the realization of coherent coupling, 
R,<R,, and hence the restrictions (3.5), also hold for 
(4.13). The identical dependence of rph, Eq. (2.13), and r ,  
Eq. (4.13), on the ratio (A0/&) has a consequence that the 
temperature T', Eq. (4.8), of relaxation regime crossover is 
common for the resonant and for the slower nonresonant 
TLSs. Thus, on going over to the relaxation regime due to 
collective excitations in the infinite resonance cluster, we 
have the spectrum of relaxation times cut off from below by 

5. ANOMALOUS SOUND ABSORPTION MECHANISM 

A radical change of the relaxation mechanism at T< T' 
[see Eq. (4.8)] should alter the nature of internal friction at a 
frequency 

Let us employ the standard formula for internal friction in an 
amorphous medium (see, e.g., Refs. 3, 4, and 6) 

Let 

Then, from Eqs. (4.14), (4.13), and (2.11) it is found that 

Thus, for T<T', the internal friction due to collective exci- 
tations in the system of TLSs leads to the temperature depen- 
dence of the form [see Eq. (4.91 

Q-*-T. (5.5) 

If the condition (5.3) (with the replacement r o a r $ ) )  holds 
also for T>T', then upon decreasing temperature the inter- 
nal friction due to phonons, with 

will go over to a phononless absorption regime with a linear 
temperature dependence. 

In their internal friction study at v=400  Hz in amor- 
phous SO2, Esquinazi et ~ 1 . ~  were the first to observe that at 
low enough temperature a regime crossover occurs, mani- 
festing itself in the change from the dependence (5.6) to 
approximately (5.5). It is of interest to compare theoretical 
estimates with experimental results. 

If one writes r in the form rphl  AT^ then, as shown in 
Ref. 6, A = 8 . loP! l )  Analysis of the body of experimental 
data suggests the conclusion that the dimensionless param- 
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eter pouo has a value close to 3 . 1 oP3.  Equating h . 1 ~ ~ ~  to 
A,  as given by Eq. (3.3) for the temperature To from Eq. 
(3.3, we have 

Using the above-quoted values of A and PoUo,  an estimate 
for To is To-0.2 K. Then, according to Eq. (4.8), 

Upon a considerable increase in o we enter, in a natural 
way, a regime which corresponds to Eq. (5.7). In this case, 
the internal friction does not depend on the relaxation time at 
all, and does not differ from the phonon absorption case. 
Therefore, under these conditions it is impossible to trace the 
relaxation mechanism crossover. 

However, the crossover to a new regime manifests itself, 
under these conditions, in the renormalization of the sound 
speed. In fact, for wrrnin< 1,  the relaxational renormalization 
of the sound speed is determined by (see, e.g., Refs. 3 and 6) 

This value is close to the temperature of the crossover to the 
linear regime predicted in Ref. 6. 

At sufficiently low T the condition (5.1) should break 
down. The characteristic width of the collective excitation 
quasiband is of order A,  . The corresponding temperature 
bound may be determined from the relation 

This estimate is in reasonable agreement with the experimen- 
tal value of T,-2 mK. 

Under the condition opposite to (5.3), integration in (5.2) 
yields the familiar expression 

Experimentally, we here have a plateau in the temperature 
dependence of the internal friction coefficient. The ratio of 
the internal friction (5.4) for T= T' to the expression (5.7) is 
(2/.rrwr0). Using the expression for TO, Eq. (4.9, and the 
quoted value for PoUo,  the ratio is found to be 0.27. The 
predicted value again turns out to be close to the experimen- 
tal one. Thus we ascertain a reasonable agreement between 
theoretical and experimental results. 

There is one point to note, however. Throughout the pa- 
per, and entirely for the sake of simplicity, we have used a 
single effective value for each the sound speed and the quan- 
tity yo. However, when comparing absolute absorptions, we 
must remember that experimentally one measures the ab- 
sorption of the longitudinal sound, whereas the indirect in- 
teraction between two- level systems is to a large extent de- 
termined by transverse phonons. Consequently the ratio 
yilpc2 entering Eqs. (5.4) and (5.7) turns out to be much 
less than Uo , Eq. (2.6). This is presumably the reason for the 
discrepancy between the above cited value of PoUo and the 
effective value of its analog for the longitudinal sound, the 
latter being deducible from the value of internal friction in 
the plateau region. 

The crossover of the relaxation regime at T-T' is accom- 
panied by a decrease in the coefficient of ln(T) by a factor of 
three. In all cases there simultaneously occurs a resonant 
sound renormalization associated with the interaction with 
the initial TLS structure, 

As a result, the total sound speed renormalization, rather than 
changing the sign of its temperature derivative on achieving 
the condition wrrnin- 1 at T > T t ,  undergoes a sign- 
conserving change of the derivative in the region T< T'. The 
behavior of the dependence of Aclc on ln(T) in the latter 
case is reminiscent of sound speed renormalization in a 
metal." 

Recently, the Q - ' - T behavior has also been found in 
superconducting polycrystalline Nb in the temperature range 
T 5  100  mK (Ref. 14). That the crossover temperature T' is 
higher than in Si02 may result from the inter-TLS interaction 
being stronger due to the indirect exchange by virtual 
electron-hole pairs. 
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