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The transfer-matrix method is used to calculate the tunneling transmission coefficient of 
disordered superlattices with deep-lying impurity centers inside the potential barriers. The disorder 
arises because the widths of he quantum wells assume random values along the superlattice 
chain. It is established that (a) the maximum value of the transmissivity T of an electron through 
the lattice increases by several orders of magnitude as compared to the value in the absence 
of impurities, and (b) an energy range forms in which T(E)=l ,  where E is the electron energy. 

It is well known that the presence of deep-lying impuri- 
ties in potential barriers can have a strong effect on the tun- 
neling properties of a semiconductor structure (see, e.g., Ref. 
1 and literature cited there and also Refs. 2-6). For instance, 
in order to control the energy spectrum, Beltram and 
capasso2 suggested introducing "impurity planes of deep- 
lying levels" into the potential barriers of a semiconductor 
superlattice; the eigenstates corresponding to these impuri- 
ties are highly localized only along an axis perpendicular to 
the barrier-well interface. The method of creating such 
deep-lying levels is well known.' Beltram and 
capasso2 considered a periodic superlattice. The calcula- 
tions were done using the Kronig-Penney model, and the 
potential of the impurity centers was taken in the form of a 
delta function. The authors of Ref. 2 showed that introducing 
impurities produces very strong broadening and displace- 
ment of the energy minibands. Similar results were reported 
in Refs. 3-5 for other tunnel-resonance structures; the 
transfer-matrix method was used in Refs. 3 and 4. At the 
same time it is important to know the effect of deep-lying 
impurities on the tunneling characteristics of disordered su- 
perlattices, which have been intensively studied lately. In this 
paper we calculate the tunneling spectra (the dependence of 
the electron transmissivity through a superlattice on the elec- 
tron energy) of a disordered superlattice whose potential bar- 
riers contain deep-lying impurity centers. We find that these 
differ dramatically from the spectra of superlattices without 
scatterers. As in Refs. 8 and 9, disorder arises because the 
quantum-well widths assume different values along the su- 
perlattice chain. 

Let us consider a superlattice consisting of a finite se- 
quence of one-dimensional rectangular potential barriers of 
the same height V. Suppose that a flux of electrons with 
energy E is traveling from left to right along the x\ axis, 
with the effective mass of the charge carriers assumed inde- 
pendent of x. Suppose that each barrier contains only one 
impurity plane. The potential of the scattering centers is 
modeled by a delta function: U(x) = f l  S(x -xi), where f l  is 
the strength of the scatterer and xj is its position. The elec- 
tronic states inside the barriers are described by the equation 

where K ~ = ~ ~ ( v - E ) ,  /?=2mfl,  and h = e = m o =  1. The 
solution of Eq. (1) and of the equation describing the states 
of electrons in the quantum wells is of the form 

with kb= - i~ in the barriers. We also assume that the values 
of the wave numbers with the same energy in different quan- 
tum wells are the same (k,= m), and the same is true 
for the barriers independently from the wells. We assume 
that the value of A for the incident wave (in the region in 
front of the superlattice) is equal to unity, and that of B in the 
region back of the last barrier is zero, which corresponds to 
the absence of a reflected wave back of the superlattice. We 
seek the solution to the system of equations for the coeffi- 
cients of the wave functions by employing the transfer- 
matrix method. The matrix transferring the solution across a 
barrier-well interface is1' 

where the subscript n refers the solution to a certain well 
(barrier), for n even we have k, = kb , for n odd k, = k, . The 
matrix transferring the solution across the impurity centers 
islo 

The transmission coefficient of an electron across the super- 
lattice is" 

where the vertical bars designate an absolute value, r is the 
number of barrier-well interfaces (including the first and last 
interfaces), for n even we have R,!,=R,, , and for n odd 
R,!,=R,-,M,, with s= 1,2,3 ,.... 

We calculate the transmission coefficient T(E) via (5) 
for the silicon-silicon-carbide structure, for which 
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FIG. 1. The dependence of the transmission coefficient T on 
the electron energy E for a disordered superlattice based on the 
silicon-silicon-carbide structure with scatterers inside the po- 
tential barriers. The scatterer strengths for curves l ,  2,  and 3 
are, respectively, PI = 0, P2= - 0.1 a.u., and p,= - 0.13 a.u. 
The values of the other parameters are: V=0.4 eV, 1=20, 

57.548 b = 60 a.e., and m = 0.2mo. The scatterers are in the middle of 
the barriers. 

E ,  a.u. 

V=0.4 eV and m =0.2mo (see Ref. 11). Calculations show 
that the transmission coefficient T of the superlattice strongly 
depends on such parameters as the scatterer strength In (or 
p), the positions occupied by the scatterers inside the barri- 
ers, and the number of lattice periods. Here only the results 
of calculations of T(E) as a function of /3 are given; the 
typical behavior found in such calculations is shown in Fig. 
1. To encompass the values of the transmission coefficient in 
the entire range from 0 to V, we plot log T(E) along the 
vertical axis from the minimum value to the maximum on a 
uniform scale (the minimum and maximum values of 
log T(E) are specified in the right part of the figure). The 
barrier thickness is b = 60 a.u., the number of superlattice 
periods 1=20, and the quantum-well width distribution is 
assumed Gaussian with a large spread, sufficient to make the 
width distribution random for all practical purposes. The 
main features of the resulting spectra described below were 
reproduced in each of the 300 realizations considered of the 
random set of well widths. The values of the scatterer 
strengths for curves 1, 2, and 3 are, respectively, PI= 0 (ab- 
sence of scatterers), p2=-0.1a.u. and 
P3= -0.13 a.u. Comparison of these curves shows that the 
tunneling spectra of a disordered superlattice with deep-lying 
impurity centers in the barriers differ considerably from the 
spectra of a lattice without scatterers. More precisely, (1) the 
maximum value of T(E) increases by several orders of mag- 
nitude in comparison to the case where there are no scatterers 

in the superlattice, and (2) an energy interval develops in 
which T(E)-1. The position of this interval on the horizon- 
tal (energy) axis depends on the value of IPI : as 1/31 grows, 
the interval moves toward smaller values of E (see curves 2 
and 3) .  Note that the energies at which T ( E ) = l  are in the 
vicinity of E m ,  which corresponds to a resonant level in an 
isolated (single) barrier, and the maximum transmission co- 
efficient is attained at E = E m  . 

To estimate the accuracy with which the obtained curves 
are reproduced, we note, first, that the maximum values 
T(Em) of the transmission coefficient for 300 realizations 
considered (for given values of the parameters) are greater 
than 0.999 and differ only in the fourth decimal place. Sec- 
ond, the limits of variation of the energy interval AE within 
which T(E)>0.5 in 300 realizations considered are 

In conclusion we note that there are energies at which 
the transmission coefficient is close to unity for a broad 
range of values of the parameters b, I, and /3 of the problem. 
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