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The effect of anisotropy of the magnetized B phase of superfluid 3 ~ e  on the stability of 
coherently precessing half-spin and double-spin states is investigated theoretically. 

1. INTRODUCTION 

Superfluid phases of liquid 3 ~ e  are the low-temperature 
ordered states of the Fermi system with a spin-triplet, 
p-wave Cooper pairing. They are characterized by multidi- 
mensional order parameters which describe rich equilibrium 
and dynamic properties of superfluid 3 ~ e .  The rigidity of 
equilibrium ordered states with respect to the spatial distor- 
tions of the Goldstone degrees of freedom of the Cooper 
condensate generates variety of gapless collective modes. 
These bosonic branches can be excited against the back- 
ground of the equilibrium states of superfluid phases of 3 ~ e .  
Together with the fermionic branch, they describe the dy- 
namic behavior of the ordered Fermi liquid. 

The rigidity of ordered states of the superfluid phases of 
3 ~ e  can be preserved far from the equilibrium, where the 
order parameter is a time-dependent object. Among these 
types of states the uniformly precessing spin states in the A - 
and B-phases of 3 ~ e  are of special interest and are studied 
extensively.'-3 In the case where the precessing spin states 
are stable (rigid) with respect to the decay onto the long- 
wavelength excitations, they are observed as long-lived or- 
dered states. 

In the present study we examine some new aspects of 
coherently precessing spin states in 3 ~ e - ~ .  The starting 
point is a coherently precessing, metastable spin state, which 
was considered in Ref. 4 and which is characterized by a 
nonequilibrium spin polarization. In Ref. 4 it was shown that 
in the case where the spin polarization S of 3 ~ e - ~  is con- 
siderably different from its equilibrium value 
So = (xBIg)Ho, where ,ye is the B-phase magnetic suscepti- 
bility, g is the 3 ~ e  nuclear gyromagnetic ratio, and H, is the 
strength of the applied magnetic field, the new, coherently 
precessing spin-orbit configurations are stabilized. Especially 
interesting dynamic regimes are realized at S=So/2  and 
S = 2S0 [half-spin (HS) and double-spin (DS) cases, respec- 
tively]. Below we will study the effect of magnetic distortion 
of 3 ~ e - ~  order parameter and of superfluid counterflows on 
the coherently precessing HS and DS states. 

2. COHERENTLY PRECESSING HS AND DS STATES IN THE 
MAGNETICALLY DISTORTED 3He-B 

In the absence of spin-orbit coupling the spin-system in 
the superfluid phases of 3 ~ e  precesses with a Larmor fre- 
quency o o = l g l ~ , ,  irrespective of the tipping angle P, of 
magnetization with respect to the direction of the applied 

magnetic field H=H,z. This simple but fundamental prop- 
erty is the manifestation of the fact that in the coordinate 
frame rotating with the Larmor angular velocity cc),,=w,,z the 
magnetic field is eliminated and the spin system restores the 
isotropy. 

A spin-orbit coupling (of dipole-dipole origin) has a 
strong effect on the spin-dynamics of superfluid phases of 
3 ~ e .  As a result of long-range correlations of the cooper pair 
spins and intrinsic angular momenta in the state with spon- 
taneously broken spin-orbit symmetry, the small (on the 
scale of the condensation energy) dipole-dipole interaction 
between nuclear magnetic moments of 3 ~ e  atoms (partially) 
lifts the degeneracy of the ordered states with respect to an- 
gular (Goldstone) degrees of freedom and the specific spin- 
orbit configuration is established. In this way the dipole- 
dipole coupling perturbs, in general, the simple Larmor 
precessing state and this perturbation is observed as the 
NMR frequency shift from o,,. 

The dipole-dipole energy density FD depends on the 
components APi of the order parameter of the superfluid 
state. In general, APi can be represented in the form 

A .=R(S$~;)A(?)= (R(S)a(O)R(L)-l) . 
L" P "I PI ' (1) 

where R ( ~ )  ( R ( ~ ) )  describes the 3D rotations in spin (orbit) 
space, and A$) corresponds to a particular (say equilibrium) 
ordered state of liquid 3 ~ e .  Rotation matrix R ( ~ )  ( R ( ~ ) )  can 
be parametrized in terms of the Eulerian angles as , p s ,  ys 
(aL ,P,, yL), which for the dynamic states are time- 
dependent variables. 

The dipole-dipole interaction potential 

FD= const ~ 1 ~ [ ( T d ) ~ + T r ( a ~ ) ] ,  (2) 

which is proportional to the square of the characteristic di- 
polar frequency R,  is an intricate function of the Eulerian 
angles, but in the case of a strong magnetic field with oo*R 
(which will be considered below) we can average 
F, = F,[A ( t ) ]  with respect to "fast" angular variables (on 
the time scale R-l). The number of relevant variables is 
therefore reduced (only "slow" variables remain after aver- 
aging), and the problem of solving the equations for spin 
dynamics becomes manageable.5 The key point in what fol- 
lows is that the final result for the average dipole-dipole po- 
tential (FD) depends essentially on the magnitude of spin 
polarization S = p S o ,  where p is the fraction of the equilib- 
rium value So .  For the conventional case with p = 1, the dy- 
namic regime is realized when the off-diagonal spin order 
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parameter executes a precessional motion around the instan- 
taneous direction of B(t)=S(t)-So in such a resonating way 
that ysi/,= - cis and the variable +=as+ ys turns out to be 
"slow". In this case (FD) depends on the spin projection 
s,=cosps, the orbital angular momentum projection 
l,=cosp, , and the phase +. 

A completely different, resonating, coherent, spin pre- 
cessing regime develops in the case in which p = 112. In this 
HS case we have yS= - (1/2)(YS and, besides, s, and I,, the 
average (FD), depend on the new, "slow" variable 
$=as= 2 ys . This metastable HS case can be realized in the 
B phase4 and in the A phase.6 In addition, for 3 ~ e - ~  the DS 
( p  =2) coherent regime takes place with the relevant angular 
variable $=2cus+ ys (this resonance is absent in 3 ~ e - ~ ) .  

In Ref. 4 it was demonstrated that for the isotropic B 
phase the HS and DS regimes are characterized by the fol- 
lowing average dipole-dipole potential [measured in units of 
(2/1s)~B(nB/g)21: 

( f D ) = ~ [ l - S : ) ( 1 - 1 : ) + 2 S : 1 : + $ J ~  

x ( 1  + s,) R ( l +  l,)cos$]. (3) 

The stationary spin-orbit configurations can be deter- 
mined by minimizing the thermodynamic potential 

which is constructed in the coordinate frame rotating with 
the angular velocity o = w i ,  where w is the frequency of the 
transverse rf field applied to the spin system. In Eq. (4) F is 
the sum of the dipole-dipole potential and the Zeeman en- 
ergy term: 

Using dimensionless units [as in (3)], we can minimize 
the expression 

where the so-called spectroscopic term 

with 

For the case w=wo (w =0) the spin-orbit configurations 
of coherently precessing HS and DS spin states can be found 
by minimizing the dipole-dipole potential (3). It was shown4 
that each case (with p=1/2 and p = 2 )  has a pair of degener- 
ate metastable states: 

which are shown in Fig. 1. 
The goal of the present research is twofold. First, we 

shall explore the influence of anisotropic distortion of the 
order parameter of 3 ~ e - ~  under the action of a strong mag- 
netic field on the stability of HS and DS precessing states. 
This influence is manifested through the modification of 
dipole-dipole potential (3), which corresponds to the isotro- 

FIG. 1. The level contours of average spin-orbital potential (f) [Eq. (3)  at 
d , = ~ ] .  Two degenerate stationary points, which are seen at the upper right- 
hand corner, correspond to states (9a) and (9b). 

pic (undistorted) B phase. Second, the action of superfluid 
counterflows on the spin-orbit structure of HS and DS states 
will be elucidated. 

The order parameter of the magnetized B phase can be 
represented as in (1) with 

where AII(AL) is the energy gap component parallel (perpen- 
dicular) to the direction of applied magnetic field 
(h = HIH, =i). Expression for the magnetically distorted 
B-phase order parameter can now be written in the form 

where the orthogonal matrix of relative spin-orbit rotation 
R = R i S ) . ~  iL)kl and q=All/A,. 

Taking into account the general expression for the 
dipole-dipole energy density of the B phase 

where Ao(T) is the energy gap of undistorted 3 ~ e - ~ ,  and 
using, (11) we obtain the dimensionless dipole-dipole poten- 
tial of the magnetized B phase 

f - F ~ B )  
D- D J ( ~ / ~ ~ ) X B ( ~ ~ B / ~ ) ~ ( A ~ / A O ) ~  

= ~ [ ( T ~ R ) ~ + T ~ ( R ~ ) ] -  ( 1  - q ) [ ~ r ~ ) p , , +  (i2),] 

+ ( I  -q)2~;z.  (13) 

Using the identities 

we obtain the following expression for f D  

-(1-q2)Pzz. 

Since 
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and 

where a= as - aL and y= ys - yL , from (15) we can calcu- 
late the average dipole-dipole potential (f,) for various uni- 
formly spin precessing regimes (various values of p). For the 
conventional case with p = 1, (fD) was constructed and ana- 
lyzed in Ref. 7. Here we consider the metastable spin pre- 
cessing HS (p = 112) and DS (p = 2) cases. Simple calcula- 
tions show that for these regimes (up to a constant additive 
term) we have 

On the second line in (18) the upper (lower) row in square 
brackets refers to the HS (DS) state. 

Inspection of Eq. (18) shows that on reaching the so- 
called planar state (q =0) the resonance (i.e., the explicit de- 
pendence of (fD) on the slow variable $=2a+ y) disappears 
for the case of DS state and the stationary spin-orbit solution 
[which is realized at the minimum of (18)] is given by 

These states are obtained from the pair of initial solutions 
(9a) and (9b) upon a gradual change in q = AI1/A1 from q = 1 
(corresponding to the undistorted B phase) up to q=O (for 
the planar phase). An example of a magnetically deformed 
DS precessing state at q=0.3 is shown in Fig. 2. In this 
figure the tendency of displacement of the precessing spin- 
orbit configurations (9a) and (9b), shown in Fig. 1, toward 
the states (19a) and (19b) is clearly seen. 

The absence of the $ resonance at p=2 for the planar 
phase (q =0) is analogous to the absence of a corresponding 
resonance for 3 ~ e - ~  (Ref. 6) (see also Appendix I). 

A completely different behavior with q of the precessing 
spin state has been observed for the HS case. Direct con- 
struction of &)= f(s, ,I,, &= T )  shows that two degenerate 
solutions, (9a) and (9b), begin to approach each other. At 
9 ~ 0 . 9 ,  they merge and upon subsequent decrease of q the 
minimum of (fD) at s,= 1,--0.5 3 progressively deepens (at 
q=O the deepest minimum is attained). The above- 
mentioned changes of the precessing HS states with dimin- 
ishing q are illustrated in Figs. 3 and 4. 

3. EFFECT OF SUPERFLUID COUNTERFLOWS ON THE 
COHERENTLY PRECESSING HS AND DS STATES 

The magnetic distortion of the isotropic B phase pre- 
serves spin-orbit symmetry of the dipole-dipole potential (in- 
variance with respect to s,ol,). On the other hand, the spec- 

FIG. 2. The level contours of average spin-orbital potential (f,) [Eq. (8) at 
&,=P and q=0.3] in the case of double-spin states. The tendency of the 
displacement of coherently precessing spin-orbital configurations toward the 
states (9a) and (9b) is seen. 

troscopic term f, violates the spin-orbit symmetry of the 
thermodynamic potential f '  [see Eq. (6)]. Another source of 
violation of the S,H 1, invariance is the anisotropic contribu- 
tion to the hydrodynamic energy of the magnetized B phase, 
which is manifested in the appearance of an additional flow 
term f in f '  . 

Uniaxial orbital anisotropy of magnetized 3 ~ e - ~  is dis- 
played in the tensorial nature of the superfluid density 

pjf)=Pl"iiij+Pis)( 8.- ' J  i.i.1 1 1 '  (20) 

where i is the anisotropy axis, so that in the presence of 
superflow with the counterflow velocity v=v,-v, an I- 
dependent contribution to the kinetic energy density appears: 

FIG. 3. The level contours of average spin-orbital potential (f,) [Eq. (18) at 
@,,= P and q =0.9] in the case of half-spin states. It is seen that at this value 
of the anisotropy parameter q two distinct stationary configurations for q =O 
(shown in Fig. 1) have merged at s,=I,--0.53. Upon further decrease of q ,  
the minimum of (f,) deepens and reaches the largest depth for the planar 
phase with q=O (see Fig. 4). 
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FIG. 4. The 3D picture of average spin-orbital potential (f,) [Eq. (18) at 
q5 = 77 and q =0] for the half-spin states. A deep minimum at s,= 1,=0.53 is "4 ind~cated by a tiny "leg". 

Here 6p',~)=p~)-pf)>0 and fi is the unit vector directed 
along v,-v, . In the case where Gli, the dimensionless flow 
term f f lOw=u1~ with 

should be taken into accounts [the last equality in (22) refers 
to the case 6, = 1 - qG l and vD is the dipolar velocity on 
the order of 1 mm/sec]. In analyzing the possible stable spin- 
orbit configurations of uniformly precessing spin states we 
must take into account the relation 

Here we explore the influence of superfluid counterflows 
(u Z 0) in the absence of the spectroscopic term (@=coo) on 
the HS and DS precessing spin states in the case of a weak 
magnetic distortion (dB+ 1)  and v S v D .  In this case we can 
use ( f D )  calculated for q = l ,  and the topographic profiles 
(level contours) of f '  = ( fD) ,= + u1,2 were constructed nu- 
merically for various values of the flow parameter u .  Some 
of the results are shown in Figs. 5 and 6. We see that the 
gradual increase of the superfluid counterflow destroys the 
spin-orbit configuration, (9b). As to the precessing state (9a), 
it is displaced from the initial position, although it still sur- 
vives as a stationary precessing solution. It can be shown that 
for w >O the spectroscopic term has an opposite effect on the 
(9a) and (9b) spin precessing states. The analysis of com- 
bined action on the spectroscopic term and the counterflows 
on the HS and DS states will be given in a separate publica- 
tion. 
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FIG. 5. A fragment of the level contours of (f,)+ul: at q = l  (the isotropic 
B phase) and u =0.02. 

APPENDIX I 

In Appendix I we consider some aspects of coherently 
precessing spin states in 3 ~ e - ~ .  Superfluid 3 ~ e - ~  can be 
visualized as a mixture of Cooper condensates with spin con- 
figurations tt and II, which are characterized by the gap 
functions AT and Al . In the presence of a magnetic field we 
have AT #Al.  The corresponding order parameter is 

where A2=(A;+A $12, and a,z(At?Al)/2A. In (Al) the 
pairs of orthogonal unit vectors ,. ,. (dl ,dz) and ( i l  , i 2 )  define 
the quantization axes s"=dlxd2 and I = i l x i 2  of, respec- 
tively, the spin and orbital angular momenta of the Cooper 
pairs. 

FIG. 6. A fragment of the level contours of ( f , )+ul:  at q=l and u =0.035. 
For this value and for higher values of the superflow parameter u only one 
stationary spin-orbital configuration survives (as shown at the lower right- 
hand comer of the figure). 
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For the superfluid A2 phase (Al) the dipole-dipole en- 
ergy density is 

where /3=ATb1/A2. This parameter has the meaning of the 
internal Josephson coupling of the f f and J.1 Cooper con- 
densates (OGpGl). At P=O, the A, phase with the Cooper 
pairing in the single spin projection configuration is realized. 

Using the parametrization 

l A = i  cos PL+i  sin P L ,  

2, =@i,  i2=$s0j, 

taking into account, as before, the case with w 0 % a A ,  and 
averaging over the "fast7' Eulerian variables, we can easily 
construct a dimensionless dipole-dipole potential 

( f ~ )  = ( F D ) / ( ~ / ~ ) x N ( ~ A / ~ ) ~ .  (A41 

For the case in which S =So (p = 1 )  we have6 

with the "slow" variable $=as + ys . Note that, in contrast 
with 3 ~ e - ~ ,  the dipole-dipole potential of 3 ~ e - ~  has 
nospin-orbit symmetry for the stationary values +st = 0, .rr we 
have 

where 

and 

The stability condition a2(1,)<0 of a nonuniformly pre- 
cessing spin state is realized for (see also Ref. 9) 

so that the Leggett orbital configuration, 1,=0, is unstable 
with respect to the decay onto the long-wavelength spin ex- 
citations of uniform spin precession.10 

The stationary value of I ,  depends on the sign of the 
coefficient b2(s,). For bz<O, which is realized at 

the minimum of (A6) is at 1,=0 (an unstable case). On the 
other hand, for b2>0 the minimum is reached at 1,=?1, 
which is within the stability region, (A8). This occurs in the 
"window'' of S, values 

Relation (A10) extends the result obtained in Ref. 11 to the 
A, phase with P<1. 

Turning to the HS state (p= 1/2), we find that (for P = l )  

x ( l + s , ) r n  cos 41, (All )  

where 4 = a s + 2 y , .  For 1,<0(>0) we have 4,,=0(.rr), and 
the stationary spin-orbit configurations can be obtained by 
minimizing 
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