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A new electron magnetization condition, which determines the suppression of transport across 
the magnetic field is obtained for the conditions under which the electron mean free 
path is large compared to the scale of the electron temperature variation along the field. For 
stationary conditions, an expression for the electron density perturbation due to a high-frequency 
heating field is obtained and the nonlocal, effective, electron thermal conductivity across 
the magnetic field, having an essential dependence on the transport along the field, is determined. 
The contribution from weakly collisional magnetized electrons to the longitudinal dielectric 
constant of the plasma is obtained. 

1. In Refs. 1 and 2 some results of the analytical theory 
of transport in a completely ionized plasma with rare colli- 
sions are presented. For a plasma with a high degree of ion- 
ization, Z =  leilei 9 1, the conditions considered are such that 
X, the nonuniformity scale of the plasma particle distribu- 
tion, turns out to be less than le i ,  the mean free path of the 
thermal electrons with respect to their collisions with the 
ions, 

where ZlCi= I,, is the mean free path of the thermal elec- 
trons with respect to their mutual collisions. It is in this case 
that the asymptotic solution of the kinetic equation revealed 
that the density perturbation is mainly due to the electrons 
with velocities much less than thermal. Here lies a qualita- 
tive distinction between the weakly collisional regime (1.4) 
and the usual highly collisional regime.5 

The analytical result of Ref. 1 for the electron heat flow 
density in a nonmagnetized plasma (see also Refs. 3 and 4) 
may be written in the form of the following relation 

where e is the electronic charge and KB the Boltzmann con- Sq(k) = - ikGT,(k) ~ ( k )  
stant; T, and n, are the electron temperature and number 

(1.5) 

density, respectively; A is the Coulomb logarithm; between the Fourier transforms of the heat flow perturbation 

U T ~ =  Jz is the electron thermal velocity, and v,, , the @ and the temperature perturbation Here 

electron-ion collision frequency for the electrons whose ve- ~ ( k ) =  K S H [ ~ +  ( a ~ , k ) ~ ] - '  
locities are of the order of the thermal. The electron-ion col- 

(1.6) 

lision frequency for the electron velocity may be described is the Fourier transform of the nonlocal kernel of the electron 

by the formula thermal conductivity 

V ( U ) = ~ ( T / ~ ) " ~ V , ~ ( U ~ ~ / U ) ~ .  (1.2) K(r)= 1 d k  e i b ~ ( k ) .  

This form of dependence of the collision frecluencv on the . > 

velocity suggests that even under the rare-collision condition In Eq. (1.6), written in the form suggested in Refs. 6 and 7, 
(1.1) one can indicate small values of the electron velocity v K s H = C S H ~ ~ ~ T ~ K B ~ ~ ;  is the electron thermal conductivity of 
such for which highly collisional, completely ionized plasma, the coefficient 

Therefore even when for the thermal electrons, with 
v - VT~,  collisions are rare, there are slow (subthermal) elec- 
trons for which, according to Eq. (1.3), collisions are fre- 
quent. In Refs. 1 and 2 it is shown that conditions exist for 
which in the rare collision case (1.1) the main contribution to 
the nonequilibrium electron density perturbation comes from 
that part of the electron velocity distribution for which the 
condition (1.3) is met. As discussed in Refs. 3 and 4, the 
approach of Refs. 1 and 2 enables one to determine the non- 
local electron heat transport by using the notion of the inte- 
gral relation between the electron heat flow density and the 
electron temperature perturbation3; as well as by invoking 
the electron heat transport inhibition ~ o n c e p t . ~  The results of 
Refs. 1 and 2 were obtained for conditions for which 

CsH= 1 2 8 1 3 ~  for Z+  1, and A,= (21,~1, , /9~)~ '~ .  The ana- 
lytical theory of Ref. 1 yields a =  21.1 and P= 1017. These 
values are not inconsistent with approximate numerical re- 
sults available from a large number of papers on nonlocal 
heat transport in a plasma. Note, however, that the values 
that have been reported are p=27 ,  P= 18, ~ = ( 4 / 3 ) ~ , ~ , ~ ,  
p =  1.448,10, P= 1.148'~. Whereas the value from Ref. 7, 
corresponding to the Pad; approximation, stands out some- 
what among the others, these latter, while showing some 
degree of scatter, group around the analytical-theory value, 
/3=(10/7)'. In the literature there is still no agreement on 
the value of the coefficient p in Eq. (1.6). However, it has 
been argued that only the values 413 and 1.44 are consistent 
with numerical electron heat transport studies for a plasma 
heated by high-frequency electromagnetic radiation via the 
inverse-bremsstrahlung absorption m e c h a n i ~ m . ~ . ~ . ' ~  In this 
connection it should be stressed that the value P=10/7 
=1.42857 ..., obtained from the theory of the effect of a high- 
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frequency plasma-heating field,' is very close to numerical 
simulation results. The argument of Ref. 12 that the theory of 
small perturbation may lead to P= 1 is in conflict with the 
analytical theory of Ref. 1. This argument could be of rel- 
evance in a nonlinear analysis of the electronic inverse- 
bremsstrahlung absorption and heat transport, of the kind 
performed, for example, in Ref. 13. The theory of Ref. 1 is 
linear and neglects all the nonlinear effects of Ref. 13 (see 
also Ref. 14). In such a linear theory the main effect comes 
from the electrons with subthermal velocities, whereas non- 
linear approaches have exhibited a considerable redistribu- 
tion of the superthermal electrons. At the same time it should 
be stressed that while for stationary processes we know from 
Ref. 3 that Eq. (1.6), with P= 1017, does indeed describe 
heat transport that determines the temperature distribution 
for a nonuniform plasma heating, for nonstationary processes 
it does not. In fact, based on the results from the nonstation- 
ary theory of Ref. 2, it has been shown15 that the use of Eq. 
(1.6) with P= 1017 leads to an incorrect expression for the 
damping factor of ion-acoustic waves in a weakly collisional 
plasma. This, in our view, is due to the insufficient under- 
standing of precisely in what transport equations the use of 
the expression (1.6) is permissible. In the highly collisional 
limit the answer is obtained within the framework of the 
Hilbert-Chapman-Enskog method in the derivation of the 
hydrodynamics equations in the usual way. In the weakly 
collisional limit, Grad's equations of moments are often ap- 
plied. It is the danger of using such system of equations 
which is the message of Ref. 15. Therefore it seems, in par- 
ticular, that further work on problems in the kinetics of a 
weakly collisional plasma would be worthwhile. In this 
work, the theory of asymptotic expansions developed in 
Refs. 1 and 2 for fractional negative powers of the Knudsen 
number (Xei/h) is applied to conditions different from those 
considered originally. 

Specifically, the results describing the effect of a static 
magnetic field on the nonequilibrium electron density pertur- 
bation are presented. Also, new conditions determining the 
effect of a magnetic field on transport in a weakly collisional 
plasma are established. 

2. For simplicity we will assume, as in Refs. 1 and 2, 
that the high-frequency electromagnetic field heating the 
plasma has a frequency w0 much greater than the electron 
gyroscopic frequency a , .  At the same time we assume that 
the magnetic field is sufficiently strong to exert an appre- 
ciable influence on plasma perturbations, which vary in time 
and space according to the law 

Assuming the electron distribution function f = f M +  Sf to 
differ little from the Maxwellian f M ,  for the perturbation Sf 
we adopt, following Refs. 1 and 2, the expression 

X(Ei  E j Y  +Ei*E,- 5 S i j l ~ 1 2 ) .  (2.3) 

Here it is assumed that the nonequilibrium perturbation of 
the electron distribution is due to the high-frequency electro- 
magnetic field and the nonequilibrium electric-field potential 
Sp. Then the electron kinetic equation for the function Sf, is 

=Yo+Ya,  (2.4) 

where B is the static magnetic field and 

Let us express the perturbation Sf, in the form 

Sfc=Jfo+ Sfa 9 (2.8) 

where 8fo=(Sfc) is the isotropic part of the perturbation, 
obtained by averaging Sf, over the angles, and 
Sf, = Sf, - (Sf,) is the anisotropic part of the perturbation. 
Averaging (2.4) over the angles gives (cf. Ref. 2) 

- iw6fo+i (kv8fa) -J , , [8 fo]=Y, .  (2.9) 

The anisotropic part Sfa of the electron distribution pertur- 
bation obeys the equation 

-iw6f,+ikvSfo+i(kvSfa-(kvSf,)) 

The last equation will be solved approximately. The degree 
of ionization is assumed to be high, 

This enables one to neglect the electron-electron collision 
integral J , ,  in Eq. (2.10). In the electron-ion collision inte- 
gral we neglect small terms of the order of the electron-to- 
ion mass ratio. Then 

Apart from the inequality (2.11) we also assume the con- 
dition 

where 
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This permits to neglect the terms i ( k v S f a - ( k v s f , ) )  in Eq. 
(2.10). Then it is readily shown that retaining the right-hand 
side of Eq. (2.10) does not contribute to (kvSf , )  and thus the 
following approximate equation can be used: 

The solution to this equation has the form 

+ %(b[kvl )+  [ - i w +  2 v ( v  ) l(kCb[vbll)  1 . (2.15) 
~ : + [ - i w + 2 v ( v ) ] ~  

On substituting (2.15) into (2.9)  we obtain the following 
equation for the symmetric part Sfo of the electron perturba- 
tion: 

From now on kll everywhere denotes the absolute magnitude 
of the longitudinal wave vector component. Using 

9 7r1I2 
S f ~ ( v ) = - - n  f ~ ( c ) F  

8kll lei 

and 

Eq. (1.6) may be written in the form 

where (cf. Ref. 2)  

In contrast to Refs. 1 and 2, the parameter NII  is only deter- 
mined by the longitudinal (along the magnetic field) wave 
vector component, kll . The solution to Eq. (2.19) will be 
carried out in the asymptotic limit 

when, as readily seen from Ref. 1 (see also Ref. 2),  we can 
assume in determining the electron density perturbation that 

3. We start by deriving an electron magnetization condi- 
tion for a weakly collisional, completely ionized plasma. To 
this end consider Eq. (2.20) in the stationary case, when it 
can be written as 

k: 1 R = l + -  
kk; 1 + ( 1 6 ~ : / ~ . r r v : ~ ) ~ ~ '  

The presence of the x3 dependence is due to the dependence 
on the electron velocity v of the collision frequency (1.2) .  
The theory of Refs. 1 and 2 predicts that the main contribu- 
tion to the electron density perturbation comes from that part 
of the electron velocity distribution for which it turns out that 

Here, in contrast to Refs. 1 and 2, the quantity Nil is used 
which manifests, first of all, a formal difference of the theory 
of a magnetized plasma. A real difference arises when in- 
stead of the no magnetization ( R , = O )  limit of Eq. (3.1) ,  

k; k2 
R - I + - - = -  
" kk; kk; 

the opposite limit is realized, in which (3.1)  differs little from 
unity. This is clearly possible in the strong field limit. In the 
ordinary theory of a highly collisional plasma this limit is 
determined by the inequality 

due to the fact that perturbations are usually formed by ther- 
mal or superthermal electrons. Our situation is qualitatively 
different in that the low velocity part of the electron distri- 
bution turns out to be by far predominant. In view of the 
relation (3.2) ,  the strong field limit is found to be determined 
by the inequality 

when Eq. (3.1)  takes the form 

With the condition (3.5) fulfilled, the right-hand side of Eq. 
(3.6) differs little from unity at x - N ~ ~ ' ~ ,  and it is this cir- 
cumstance which manifests perturbation suppression across 
the magnetic field. Comparing the inequalities (3.4) and (3.5)  
it is readily seen that in the case of a weakly collisional 
plasma, much higher magnetic fields are required in order to 
suppress the transverse transport. 

4. Consider the electron density perturbation in the sta- 
tionary limit o = 0 ,  when 
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and when also the electron magnetization condition (3.5) for 
a weakly collisional plasma is met. Then, using Eq. (2.24) 
and (3.6) we obtain from Eq. (2.19) 

In Ref. 1 this equation is solved for C = 0, which enables the 
following asymptotic solution for Nil%= 1 to be written: 

where 5=xN2I7, r ( z )  is the r function. and KlI7(z )  is the 
Mcdonald function. Assuming a small effective influence of 
the constant C,  its role can be accounted for in first-order 
perturbation theory. Then the approximate solution to Eq. 
(4.2) may be written in the form 

F ( X )  =F0(6)  -C ~ ~ / ~ + ( 5 , [ ~ ~ ( 6 ) 1 ) ,  (4.4) 

where we have used the functional 

Equation (4.4), using Eqs. (2.2), (2.8), and (2.17), yields for 
the electron density perturbation 

where p,=u,/fl,, and the numerical coefficient p, is de- 
termined by the relation 

The smallness of the last term on the right-hand side of Eq. 
(4.6) in comparison with the last but one term follows from 
the inequality (3.5). 

5. We use Eq. (4.6) to determine the longitudinal and 
transverse components of the effective thermal conductivity. 
To this end we use the fact that the Ohmic collisional heating 
of the plasma by a high-frequency field in the stationary 
regime is balanced by the electron heat transport, 

e2n v . 
div q= ------ IEI2. 

2 me W o  

We assume, further, that the sum of the plasma pressure plus 
the Miller force pressure remains unchanged. This suggests 
that the density perturbation Sn, and the temperature pertur- 
bation ST, are related by (cf. Ref. 3) 

This, using Eq. (4.6), yields for the electron temperature per- 
turbation 

Here we have neglected the perturbation in the electric po- 
tential which, in the stationary regime being considered here, 
gives a relatively small contribution -2-'. 

Turning now to the longitudinal and transverse compo- 
nents of the effective thermal conductivity, for their Fourier 
transforms Eq. (5.1) gives 

eLn v . 
( ~ ~ K I I  + k: KL ) ST, = --- " IEI2 

2m,wo 

Substituting the temperature perturbation (5.3) this yields 

k: K~~ +- K - 
"I1 k i  ' - 3 1 , 7 ~ i ' ~  - 4 8 n - " 2 p , ~ ~ ~ i 7 k " , P ~  ' (5.5) 

In the denominator on the right we shall add unity, which 
will allow us to obtain an interpolation formula for the lon- 
gitudinal effective thermal conductivity. Noting the small 
value of kTp; we find 

Equation (5.6) resembles Eq. (1.6). However, the difference 
of the expression (5.6) from the formula of the type (1.6) in 
Ref. 1 lies in the appearance of the longitudinal wave vector 
component kll-which is natural, even though for qualita- 
tively new conditions given by Eq. (3.5). The expression 
(5.7) for the transverse component of the effective electron 
thermal conductivity in the weakly collisional limit (1.4) has 
not been published earlier. While according to Eq. (5.6) the 
nonlocal longitudinal heat transport under the conditions 
(2.23) is considerably smaller than in the theory of weakly 
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collisional transport, from Eq. (5.7) the effective transverse 
electron heat conduction by far exceeds that from the weakly 
collisional theory. This enhancement is the larger the greater 
kll , indicative of the nonuniformity in the direction along the 
magnetic field. 

6. We now turn to consideration of the density perturba- 
tion due to the the electric potential. For this perturbation the 
right-hand side of Eq. (2.19) is of the form 

Taking the frequency w to be small, 

and assuming also the strong magnetic field condition (3.5), 
we neglect the departure of (2.20) from unity. Then Eq. 
(2.19) gives 

In accordance with Ref. 2, the solution to this equation can 
be written in the form 

where 

It is natural that the departure from the treatment of Ref. 2 is 
due to the magnetic field and that it manifests itself in the 
appearance of the expression (2.18). The solution (6.4) yields 
the following formula for the electron density perturbation: 

This formula makes it possible, in particular, to write down 
the following expression for the electron contribution to the 
complex longitudinal dielectric constant of the plasma: 

Here, for comparison, we have also included the contribution 
from the collisionless Cherenkov wave absorption due to 
electrons. It is evident that the collision effects dominate the 
electron dissipation for 

Presenting the result (6.7) we wish also to emphasize that 
such an expression for the electronic contribution to the di- 
electric constant is not obtainable from the equations of two- 
liquid hydrodynamics (based on the Grad method, for ex- 
ample), these equations employing an electron heat flux 
density expression dependent on the effective thermal con- 
ductivity (5.6) alone. This is indicative of the unusual situa- 
tion obtaining in the weakly collisional transport regime. 

7. To summarize, by means of our theory of a high-Z 
plasma in the weakly collisional regime with 

a new condition, Eq. (3.5), has been established, which pre- 
dicts the value of the (strong) magnetic field securing the 
suppression of the transverse relative to longitudinal trans- 
port in a static magnetic field. Having solved the kinetic 
equation it proved possible to determine the static electron 
density perturbation due to the heating high-frequency field. 
When obtained from this perturbation, the Fourier transforms 
of the longitudinal and transverse components of the effec- 
tive thermal conductivity are both found to depend on the 
modulus of the longitudinal wave vector component. While 
in the limit (7.1) the longitudinal conductivity turns out to be 
less than Spitzer-Harm thermal conductivity, for the trans- 
verse thermal conduction the reverse situation obtains. It is 
the nonlocality of the transport along the magnetic field 
which enhances the transverse thermal transport compared to 
the theory of a weakly collisional plasma. 

The expression obtained for the electron contribution to 
the dielectric constant, Eq. (6.7), determines the wave vector 
region Eq. (6.8) in which collisions dominate. At the same 
time, Eq. (6.7) reveals the limited applicability of the con- 
cepts of effective thermal conductivities in a weakly colli- 
sional plasma. 

The work was performed within the framework of the 
Project No. 94-02-03631 of the Russian Fundamental Re- 
search Foundation. 
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