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A theoretical expression is derived for the difference AEL(1slI2) - 8AEL(2sIl2) in Lamb shifts 
for the hydrogen atom. The obtained value of the difference is found to be equal to 
- 187.236(11) MHz. The leading logarithmic corrections to the lifetime of the 2pl12 level are 
calculated, and the new value of the lifetime is found to be equal to 
1.596 1887(15) x lop9 s. The existing experimental data on the ratio of the width of this level to 
the Lamb splitting and the radiative corrections obtained in the investigation are used to 
obtain new values of the Lamb shift: E ( ~ s ~ ~ ~ ) - E ~ ~ ~ , ~ =  1057.8576(21) MHz, 
AEL(2slI2) = 1045.0213(26) MHz, and AEL(lsID) =8172.934(24) MHz. 

1. INTRODUCTION 

Recently reports have appeared of new precise measure- 
ments of the frequencies of transitions between the 
hydrogen-atom levels with different values of the principal 
quantum number n,  aimed at refining the value of the Ryd- 
berg The values of the Lamb shift of the Isll2- 
and 2sl12-levels play an important role in processing the 
results of such measurements. The shift of the 2sl12-level is 
found from the experimental data on the 2sl12-2pl12 Lamb 
splitting and the theoretical result for the shift of the 2pIl2- 
level, 

AE~(2sl/2)=[E(sl/2)-E(2~,,)l~,~t 

+ [ A E ~ ( 2 ~ 1 / 2 ) + A E  ~~(2~1/2) l theor ,  

and the value of the Lamb shift of the ground level can be 
extracted with a high degree of accuracy from the following 
equation:4 

+ 8[ A E ~ (  2~ 1/21 + A E ~ ~ (  2~ 1/21 Itheor 7 (2) 

where the labels "theor" and "expt" indicate, respectively, 
theoretical and experimental results. The correction term 
hEBG(2pl12), which originates from the effective Dirac 
equation,5 is usually not included in the Lamb shift. 

From the theoretical viewpoint the difference in the 
shifts of the s-level in Eq. (1) is a considerably simpler ob- 
ject than the values in the difference, since either a consid- 
erable fraction of the corrections to the size of the Lamb 
level shifts are strictly proportional to 8,dn3, as is, for in- 
stance, the leading logarithmic contribution to the Lamb shift 
of order a ( ~ a ) ~ m c ~ l o ~ ~ a ,  or the part not related to the 
given factor is moderate, as is the case, for instance, with the 
Bethe logarithm log ko(nl). (For the Is-, 2s-, and lp-levels 
we have 2.984 ..., 2.811 ..., and - 0.030 ..., respectively.) 

This paper examines all the terms in Eqs. (1) and (2). 
Section 2 discusses the contributions of the one-loop self- 

energy of the electron in the Coulomb field of the nucleus to 
the shift of the p-level and to the difference in the shifts of 
the s-levels. Section 3 considers the leading two-loop correc- 
tions, which in the case of states with 1 # 0 are reduced to 
the known contribution of the electron anomalous magnetic 
moment, and finding the difference in the shifts of states with 
zero orbital angular momentum requires calculating the loga- 
rithmic corrections of order a 2 ( ~ a ) 6 m ~ 2 1 0 g 2  Z a .  

The most exact result for the 2sl12-2p,12 splitting was 
obtained by Sokolov and ~akovlev,%ho directly measured 
the ratio of the splitting to the width of the 2~112-level. 
Later the value of the ratio was revised7 because radiative 
corrections of the relative order of a ( ~ a ) ~  to the lifetime of 
the level were taken into account. However, only some of the 
corrections in this order were allowed for, and Sec. 4 exam- 
ines this aspect. 

Section 5 discusses the results of the study and compares 
them to the theoretical and experimental data obtained by 
other researchers. 

2. CONTRIBUTION OF THE ONE-LOOP SELF-ENERGY OF 
THE ELECTRON IN THE COULOMB FIELD OF THE 
NUCLEUS 

It is customary to represent the contribution of the one- 
loop self-energy operator of an electron in a Coulomb field 
as 

where m is the electron mass, m, the reduced mass, Z the 
charge of the nucleus in units of electron charge (it is equal 
to unity for the hydrogen atom but is customarily retained to 
allow for classification of contributions), and the function 
F ( Z a )  is the following series in Z a :  
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The expansion coefficients in (4) for the hydrogen levels 
n = 1 and n = 2 were examined in detail by Sapirstein and 
~ e n n i e . ~  An important property of this series is that a con- 
siderable fraction of the coefficients (A 41 , A 5n, and A 62) are 
proportional to SIo and independent of the principal quantum 
number n. Until recently, all the coefficients written explic- 
itly in (4) for the levels n = 1 and n = 2 were known except 

A60. 
In addition to the results for the expansion coefficients, 

the values of the function F ( Z a )  for hydrogenlike ion are 
known through numerical integration, without resorting to an 
expansion in the parameter Z a .  The common approach to 
processing such results is the following. First, all the known 
quantities are subtracted from F ( Z a ) ,  and the difference 
function [customarily denoted by C(Za) , ]  which includes 
A,, and higher-order terms in Z a ,  is approximated by the 
following formula (see, e.g., Refs 10 and 11): 

The more involved approximations incorporate higher-order 
terms in Z a .  

As Ref. 4 notes, the coefficients A,, must be propor- 
tional to Slo and independent of the quantum number n.  The 
logarithmic term is expected to be the correction related to 
the Dirac wave function 

that is, the correction to the contribution of order 
a ( ~ a ) ~ m c ~  that contains no logarithms; hence, 

A,,= 2 4 % -  log 2)S1, (7) 

(cf. the results for the vacuum-polarization contribution"). 
Because there is no logarithmic term in (5) in the case of 

the hydrogen atom ( Z =  I) ,  it is possible to find the quantities 

with greater accuracy than by fitting the function F ( Z a )  via 
three parameters. Equation (8) agrees well with Pachucki's 
results.12 

3. CONTRIBUTION OF THE TWO-LOOP SELF-ENERGY OF 
THE ELECTRON IN THE COULOMB FIELD OF THE 
NUCLEUS 

Now we consider second-order corrections in a to the 
Lamb shift. The general expression for them is13 

where C ~ ) ( E )  is the r-loop one-particle-irreducible operator 
of the electron self-energy in the Coulomb field of the 
nucleus, Inljm) and Enljm the wave functions and the ener- 
gies of states in the Dirac hydrogen atom, and G,(E) the 
reduced Coulomb Green's function. 

Similar to (3), we can write an expansion in powers of 
Z a  for (10). We can easily verify that the radiative 
corrections1) of order a 2 ( ~ a ) 5 m ~ 2  and 
a 2 ( z  a)6m c210g"z a )  (see Ref. 15) are proportional to 
S1,n-? Corrections of the leading order ( ~ ~ ( ~ a ) ~ m c ~  con- 
tain only one term that is not proportional to SI,y-3, is re- 
lated to the anomalous magnetic moment, and is well known 
(see, e.g., the review paper of Sapirstein and yennies). Still, 
for s-levels this contribution is proportional to n-" while for 
p-levels it is nonzero and constitutes the leading two-loop 
contribution. The leading contribution to the difference of 
s-levels AEL(l~112- 8AEL(2s is of order 
a Z ( z  a)" c210g2(Z a).  

We can easily verify1, that, in the Fried-Yennie 
gauge16 for radiation photons, only the first term on the 
right-hand side of (10) contains triple-logarithmic correc- 
tions, and only the terms with one Coulomb exchange in 
each mass operator 2L1) contribute, that is, only Feynman 
diagrams with two form-factors are essential here: 

~ ~ ( n l j r n )  = 
n ' l ' j ' m '  +nljm 

where the reduced Coulomb Green's function G,(E) is rep- 
resented in the form of a sum over all states of the discrete 
and continuous spectrum. 

We can now verify that the corrections to the shift dif- 
ference that contain the square of a logarithm originate from 
the same diagrams represented by (11). The contribution of 
the discrete spectrum in the sum over the states in (11) is the 
simplest to calculate. As noted in Ref. 15, this contribution 
contains only the square of a logarithm, with both logarithms 
originating from matrix elements between s-states: 

where i+bnlrn(r) are the Schrodinger wave functions of the 
respective states in the coordinate representation. 
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Next we examine the sums over s-states and drop the 
Kronecker symbols. Substituting (12) into (11), we arrive at 
an expression for the discrete-spectrum contribution: 

where 

This sum can easily be calculated: 

In terms of the dimensionless variable z the formulas for the 
continuous spectrum become less cumbersome. 

The contribution of the continuous spectrum, obtained 
via an analytic continuation of (13), yields a cubed loga- 
rithm." The expression for the cubic contribution has the 
form 

Two logarithms originate from the matrix elements [cf. Eq. 
(12)], and the third appears as a result of logarithmic inte- 
gration over momenta. In view of this, the contribution is 
provided by the intermediate states with nonrelativistic wave 
numbers k substantially larger than the characteristic atomic 
momenta: 

The expression for the leading part of the contribution of 
the continuous spectrum can be obtained via analytic con- 
tinuation of (13). Indeed, the wave functions of the s-states 
of the discrete and continuous spectra have the form2) 

(17) 

and 

1 
GkUkoo(r)= CkO exp G 

(18) 

where 

k is the wave vector of states from the continuous spectrum, 
F(a,P,x)  the confluent hypergeometric function, which is 
equal to unity at zero values of x, and the normalization 
constant Cko is specified by the following relation: 

Comparison of (17) and (18) readily shows that the above 
wave functions differ only by the normalization condition 
and the substitution 

Hence, the argument of the logarithm in the matrix element 
is the dimensionless momentum k, rather than y, as in the 
case with the discrete spectrum [see Eq. (12)l. 

The leading contribution in (23) contains the cube of the 
low-energy logarithm.'' To obtain it we must expand the 
integrand in the logarithmic range ylm <z< 1: 

The first term on the right-hand side leads to a nonlogarith- 
mic contribution of order a 2 ( ~ a ) ' m c 2  (see Ref. 14), and the 
second, after logarithmic integration over momenta, leads to 
the triple-logarithmic contribution'' 

Clearly, states with nonzero values of the orbital angular mo- 
mentum 1 correspond to nonlogarithmic matrix elements, and 
in this case there can be neither the cube nor the square of 
the logarithm. 

Obtaining the double-logarithmic contributions to the 
energy of the s-levels is somewhat difficult and cannot be 
directly reduced to calculating the analytic continuation dis- 
cussed above. It has proved convenient to seek directly the 
corresponding contribution to the difference 

n--t - iz. (22) The integrand can be conveniently transformed into 
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Obviously, the double logarithmic contribution can 
originate from two sources. First, the square of the logarithm 
can be contained in the low-momentum (k- y) contribution 
with the logarithmic matrix elements. Second, such correc- 
tions appear as a result of logarithmic integration 
( y e k e r n )  that allows for the nonlogarithmic part of one of 
the matrix elements. Partitioning the integrand in the form 
(27) separates these two contributions. Clearly, the first term 
in (27) does not lead to contributions of the orders discussed 
in this paper. 

Let us consider the second term. The difference in the 
energy denominators leads to a situation in which only the 
nonrelativistic energy range, k= y, is essential for the inte- 
gral and, hence, the matrix elements can be found to within 
logarithmic accuracy [see Eq. (12)l. As a result we get (cf. 
Ref. 15) 

where o is the transition frequency, and d12 the dipole matrix 
element corresponding to this transition. 

The relativistic corrections of the relative order (Za12 to 
(32) were found directly in Ref. 6. Allowing for the high 
accuracy of the measurements, we must also consider 
second-order corrections in a. These can be found by calcu- 
lating the imaginary part of (10). A simpler approach consists 
in examining the QED corrections to the dipole formula. 
Pal'chikov, Sokolov, and yakovlev7 found some of these 
corrections. The result is697 

Obviously, the corrections to (32) are corrections to the tran- 
This integral can easily be evaluated (see formula 3.415.1 in sition frequency (allowance for the Lamb shift of the initial 
Ref. 18): and final states) and corrections to the dipole matrix ele- 

ments. It can easily be verified that in (33) we allowed only 
I=-;(log 2 + 3 .  (30) for the corrections to the transition energy; we must also 

- ~ 

examine the matrix elements. 
Thus, the contribution of the double-logarithmic corrections The corrections to the energy levels contain the Lamb 
to (1) amounts to logarithm log Za.  In what follows we consider only logarith- 

SE,( 1~112)- 8SE~(2~1/2 )  
mic contributions. Within the Fried-Yennie gauge16 for ra- 
diation photons such contributions can appear only if we 

6 4 c ~ ~ ( ~ a ) ~ m c ~  allow for the correction to the wave function of the final state 
- - - 

97T2 
log 2 - L  [: -log 21, (31) (lsIl2), while the corrections to the initial state and radiation 

Z a  2 operator contain no logarithm. 

or - 14.2 kHz. The correction to the wave function of the Isll2-state 
has the obvious form 

4. THE LIFETIME OF THE 2p,,,-level and the Lamb splitting 
for n=2 in the hydrogen atom 

(qsIzL!)lls) . 
S r  S r  Els-Eqs 7 (34) 

q +  1 
The most exact value of the Lamb splitting 

E(2sl12)-E(2pl,) in the hydrogen atom was obtained by 
Sokolov and ~ a k o v l e v , ~  who directly measured the ratio of note that the matrix elements of the one-loop self-energy of 
the width of the 2pl12-level to the Lamb splitting. It is the electron in the Coulomb field of the nuclei were dis- 
known (see, e.g. Refs. 19 and 20) that the level width is cussed earlier [see Eq. (12)l. It is also easy to obtain the 
determined to the first approximation by the dipole radiation: correction to the level width: 
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4 1 
Srwf= To - a ( ~ a ) ~ m c ~  log - 

3 a  (zffI2 

where the sum is taken over all the states of the discrete and 
continuous spectra, and the quantity 

1 
log 2+- +0.865(21) 

140  1 1 
is normalized to unity for the ground state, 

and for n # 2, and 

c u ( ~ a ) ~  4 
AEL( 2~ 112) = me2[ 2) '1- log ko(2p) 

The dipole matrix element between the s-state of the 
continuous spectrum and the 2p,,2-level is obtained via ana- 
lytic c~ntinuation.~) Substituting the explicit values of the 
wave functions (21) and the expressions for the matrix ele- 
ments readily yields 

where M is the mass of the nucleus. In units of frequency 
the corresponding results are 

AEL(1~1/2) - 8AEL(2~112) = - 187.236(11) MHz (44) 

where 

and 

AEL(2plI2) = - 12.8335(15) MHz. (45) and the variable z was introduced earlier in Eq. (20). 
Numerical integration and the summation in (11) yield 

the following result for the width: The errors in these expressions are determined by two uncal- 
culated contributions4) of order ( ~ a ) ~ ( m / ~ ) m c ~  and 
a2(~a)6mc210g Za,  respectively. These contributions are es- 
timated at 1 kHz for (45) and 8 kHz for (44). 

As noted in Sec. 4, the best result for the Lamb shift for 
n = 2 in hydrogen can be found in Ref. 6 if one knows with 
sufficient accuracy the lifetime of the 2pl,2-level, which ac- 
cording to Eq. (41) amounts to 

Here we have discarded the nonlogarithmic part of the cor- 
rection to the transition frequency, since it amounts to only a 
fraction of the result and retaining it would mean exceeding 
the accuracy. 

the associated splitting is 

5. DISCUSSION 
The "theoretical" part of the error of the given quantities 

is completely determined by the uncalculated nonlogarithmic 
radiative corrections of order a ( ~ a ) ~ .  The logarithmic terms 
found above contribute - 5.1X 10-l5 s to the width and 

Let us go back to Eqs. (1) and (2). The "theoretical" 
terms in these equations are found from the following ex- 
pressions [see Ref. 8 and Eqs. (8), (9), and (31)l: 
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-2.91 kHz to the splitting. Accordingly, we estimate the 
constant contributions at 1.5X 10-l5 s and 1 kHz. The ex- 
periment described in Ref. 6 introduces an error of 1.9 kHz 
into (47). 

The above result for the Lamb splitting agrees both with 
the results of other measurements: 

according to Ref. 22 and 

according to Ref. 23, and with results of theoretical 
c a l ~ u l a t i o n s ' ~ ~ ~ ~ ~ ~ ~  

with the value of the charge proton radius taken from Ref. 
24. 

It is fairly easy to obtain the values of the Lamb shifts of 
the s-levels in the hydrogen atom specified by Eqs. (1) and 
(2): 

The result for the ground state has a higher degree of 
accuracy compared to the theoretical 

and to the results of measurements done by Weitz, Schmidt- 
Kaler, and ~ a n s c h , "  

and those reported in Refs. 1 and 2, 

AEL(ls In)= 8172.804(83) MHz. (55) 
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Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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