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The range of applicability of the quantum (with respect to the internal degrees of freedom) 
kinetic equation for ions in an equilibrium plasma is found. The Dicke absorption line 
narrowing is calculated in the limiting cases of long and short wavelengths compared to the 
ion mean free path. The line shape and the autocorrelation function are obtained. In 
the intermediate case, a simple interpolation formula for the line center intensity is proposed, 
which agrees with numerical results. The inclusion of Chandrasekhar's monotonically 
decreasing velocity dependence of the collision frequency is shown to increase the Dicke effect 
by 60% in the short-wavelength limit while reducing it by 40% in the long-wavelength 
limit. 

1. INTRODUCTION and ~obel'man.~ In this case the average variation of the 
coordinate x vanishes and the variance is found from 

The observation of Doppler broadened spectral lines 
has traditionally been a means for measuring gas or plasma 0; 

temperatures. If one can neglect collisions and the finite (Ax2(t))=s ( ~ t - l + e - " ~ ) .  (4) 

lifetime of excited states, the shape of the spectral line 
depends on the velocity distribution of the particles. The Before the first collision (vt(1) the motion differs little 

line contour I ( R )  is known to be given by the Fourier from the free one, so that the variance is quadratic in time, 

transform of the correlation function @(t)  (Wiener- ( h 2 )  = (vTt/2) 2. After several collisions ( vt> 1 ) the mo- 

Khinchin theorem) tion of the Brownian particle becomes a random walk, and 
the variance grows according to the diffusion law 

1 (Ax2) = 2Dxt, D,= v+/2v. ~ h ;  coherence time, during 
I ( R )  =- Re @(t)eintdt, 

P 
( 1 ) which a substantial reduction of the correlation function 

@(t) =e-'(~*), 
where R is the mismatch of the field relative to the Bohr ( 5 )  

transition frequency. In turn, the autocorrelation function takes place, depends on the radiation wavelength and is 
is found by averaging over the ensemble of atoms, given by 

Here the x axis is directed along the wave vector k. If the 
motion is free (Ax= vt) and the distribution over velocities 
v is Maxwellian with a thermal velocity UT, then 

and from (1) a Doppler line shape with a characteristic 
width kvT is obtained. 

In a sufficiently dense plasma, the Doppler diagnostics 
may lead to erroneous results, however. In elastic collisions 
there is no slip in the phase of the optical electron, so the 
wave trdns from one and the same atom will interfere as 
before. At the same time, if the atom mean free path is less 
than the radiation wavelength, then there is not enough 
time between collisions for the Doppler line shift to form 
for each one of the atoms. In the short mean free path limit 
the atom is localized and does not in fact change its coor- 
dinates. As a result, the autocorrelation function (2) tends 
to a constant, and the line width to zero.' 

The effect of line narrowing in the model of weak col- 
lisions, when the change in velocity of a Brownian particle 
in every single collision is small and the collision frequency 
v does not depend on v, has been investigated by Rautian 

For short-wavelength radiation, when v( kvT, the 
time T is determined by the Doppler shift of the frequency 
of a single atom, and the function @(t) is close to (3). But 
if the wavelength exceeds the mean free path, v>kvT, the 
time T is controlled by diffusion, @(t) =exp(- ~,k2t/2). 
Therefore the spectral width, SR - l / ~ -  k2v$/v, becomes 
much less than Doppler. Since @(0) = 1, the area under 
the line contour ( 1 ) does not depend on the parameters of 
the problem, so the width of the line can also be assessed 
from the value of I(0).  A more slowly decreasing @(t), 
taking collisions into account via Eq. ( 6 ) ,  leads to a greater 
I (0 )  and hence to a narrower line. 

Similar line narrowing results from other constraints 
on the free translational motion of a particle that do not 
disrupt the phase, such as walls at a distance L < l/k in 
hydrogen maser frequency standards; a transverse mag- 
netic field, which splits the ion line into a set of cyclotron 
resonances if the ion Larmor radius is sufficiently small, 
p~ < l/k (see Ref. 3); or the restoring force in an electro- 
static trap.4 

When the scattering of a radiating ion in a plasma is by 
buffer charged particles, small velocity changes dominate. 
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The effective collision frequency falls off sharply for v > v~ 
( v  a: 1/v3) and therefore the weak collision model can only 
be employed for approximate plasma calculations.') 

The purpose of the present work is to calculate the 
Dicke narrowing in a plasma and to investigate the influ- 
ence of the v(v) dependence on this narrowing. Section 2 is 
devoted to the derivation of the quantum kinetic equation 
for the spectroscopic density matrix in the case of a Cou- 
lomb interaction between the particles. A brief derivation 
of the kinetic equation is given in Ref. 6, but the range of 
applicability of the equation is not discussed in sufficient 
detail there. In Sec. 3, we calculate the narrowing from 
perturbation theory for v( kv,, when the Dicke effect is 
small; and an expression for the function @(t), which may 
prove useful for comparison with experiment, is obtained.') 
A more complicated limiting case of a high-density plasma 
is analyzed in Sec. 4. The complexity of the calculation has 
to do with the decreasing nature of the v(v) dependence. 
Even when slow ions are highly collisional, the fast ions, 
because of the strong dependence of the Rutherford cross 
section on the velocity, are as before in the rare collision 
regime. In Sec. 5. the results of the numerical line narrow- 
ing calculation are presented and an interpolation formula 
valid for v- kvT is obtained. 

The limiting cases of Secs. 3 and 4 have been given in 
a recent ~ o t e , ~  where for the sake of brevity we restricted 
ourselves to an exposition of the calculation scheme used. 
In the present study we discuss in detail a somewhat dif- 
ferent approach to high-density plasma calculations, one 
that makes it possible to increase the accuracy of the pre- 
vious result obtained by the collision frequency renormal- 
ization method. What is new is the analysis in Sec. 5 of an 
intermediate case presumably realized in experimentally 
measuring the line width of an x-ray laser1' on multiple 
selenium ions. In such a system, plasma is obtained by 
exploding foil in the focus of a high-power solid state laser. 
The hypothesis of appreciable collisional narrowing in such 
a plasma has been introduced in Refs. 11 and 12, in which, 
for estimation purposes, weak collision formulas are em- 
ployed. While calculating the line narrowing using the 
Landau integral is more accurate than for weak collisions, 
application to the selenium plasma should be made with 
great caution because a high-density laser plasma is, ac- 
cording to estimates, a weakly nonideal and strongly tur- 
bulent plasma. 

2. QUANTUM KINETIC EQUATION IN THE CASE OF THE 
COULOMB INTERACTION 

There are three types of quantum effects recognizable 
in the problem of the interaction of light with plasma ions: 
the quantum fluctuations of the field; the quantization of 
the translational motion, particularly with inclusion of the 
exchange interaction; and transitions between the internal 
states of the ion. In plasma spectroscopy, as in the case of 
atomic or molecular gases,'3 it is usually this last effect 
which is of importance. Therefore in what follows we de- 
scribe the derivation of a quantum kinetic equation for the 
spectroscopic density matrix, which is a matrix for the 
internal ion states and the Wigner function for its transla- 

tional states. The field will be considered classical, and the 
spontaneous decay of the states will be accounted for by 
introducing relaxation constants. 

Like its classical prototype, the quantum kinetic equa- 
tion is derived by the method of ~ o ~ o l y u b o v . ' ~  For a short- 
range interaction potential that is weak compared to the 
kinetic energy of structureless Bose particles, the corre- 
sponding kinetic equation was first developed by 
Bogolyubov and ~urov . "  The equation for the long-range 
Coulomb potential was found by Klimontovich and 
~ e m k o ' ~  and solved by ~i1in.l' 

A collision term for the classical kinetic equation for a 
plasma, which generalizes the Landau integral1' to the 
multiparticle interaction, was found by ~a lescu , '~  
~ e n a r d , ~ '  and ~ u e r n s e ~ "  simultaneously. However, as 
shown by ~ o ~ a n , ' '  the inclusion of the effect of many 
perturbing particles on the probe particle does not alter the 
binary character of the scattering, i.e., on the average mul- 
tiple scattering imitates pair scattering. This equivalence is 
a consequence of the overlap of the ranges of applicability 
of the pair and multiple scattering concepts. 

Let us derive a collision integral for the quantum ki- 
netic equation for ions with internal states by considering 
transitions between the levels while neglecting exchange. 
The condition for nondegeneracy is fulfilled in gas- 
discharge, thermonuclear, and cosmic plasma. To zeroth 
order in the plasma parameter l/Nd ( N ~ = ~ T N & )  1 is 
the Debye number, rd the Debye scale), the equation for 
the one-particle density matrix reduces to the quantum 
Vlasov equation 

where the are the number density operators of a- or 
b-type particles, a isathe probe ion, b refers to the buffer 
ions and electrons, $ is the internal Hamiltonian of the 
a-type particle, and H A  the operator for the energy of the 
ion in an external field. This last may be represented as a 
sum of the operator 9, the resonance interaction with the 
light wave field inducing transitions between the internal 
states, and the operator 6 of the ion energy in the external 
static (or quasistatic) electric and magnetic fields, which 
does not affect the internal degrees of freedom but changes 
the ion's translational velocity. The interaction of the 
probe ion with buffer charged particles enters as the trace 
of the product of the Coulomb interaction energy Wab and 
the number density of the field particles (the mean field). 

Changing to the energy representation for the internal 
variables and to a classical picture for the translational 
motion by making use of the Wigner representation allows 
one to replace the commutator of the density matrix and 
the quasistatic field by the Poisson bracket. As a result one 
~btains an equation, with a self-consistent field 
U= U+Trb( WabCb), for the spectroscopic density matrix 
p=pa: 
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where I . , . )  is a Poisson bracket. If the perturbing particles 
are ground-state ions, then jib goes over into the classical 
distribution function fb ,  and the trace operation, into a 
phase space integration and a summation over the perturb- 
ing species. Let us consider the case of a nonrelativistic 
plasma with no external fields, i.e., a Hamiltonian account- 
ing for the interactjon of the probe particle a with the 
plasma microfield, ~ , = ~ : / 2 m  + ( Wab) b ,  in which the par- 
ticle interaction potential obeys the Coulomb law 

Here Z g  and Zbe are the charges on the probe ion in 
question and the perturbing ion. 

In order to obtain the matrix density kinetic equation, 
let us take an average of Eq. (8 )  over fluctuations follow- 
ing, for example, the technique discussed in detail in Refs. 
23, 23, and 25 for the classical equation, and in Ref. 26 for 
the (translationally) quantum mechanical equation for the 
Wigner function. These procedures can only be applied 
when characteristic fluctuation times are much less then 
other characteristic times involved. 

Let us present estimates for the characteristic times for 
various processes in a gas-discharge plasma with an elec- 
tron concentration of Ne= 1014 cmP3 and electron and ion 
temperatures of Te-5 eV and Ti- 1 eV, respectively. The 
characteristic fluctuation time over which the average is 
taken is of the order of the reciprocal of the electron 

1/2- plasma frequency rf= m i 1  = ( 4 r ~ ? ~ ~ r n , )  - - 1 ps. This 
interval is much less than either the time of the change in 

1 the ion momentum, rp=v- = (NmT) = 1 1~~~ or the 
time of interaction of an excited ion state with the light. 

In fact I VI , the characteristic magnitude of the probe 
ion-light interaction matrix element is of the order of the 
Rabi oscillation frequency KtR = Jm (for 
CL(kvT). Here G=Ed/2fi is the frequency of the induced 
transitions due to the atom-light interaction at the exact 
resonance; E is the amplitude of the light field; and d the 
matrix element of the field-induced dipole moment. At an 
exact optical-wavelength resonance in the field of a rela- 
tively high-power (but not maximally so) cw laser with a 
flux density of 3X lo2 w/cm2 we have I VI -lo9 s-', 
hence the induced transition time 7,- 1 nsec. If the fre- 
quency mismatch becomes comparable to the Doppler 
width (a-kvT), then for an ion mass of 40 a.u. in a 
gas-discharge plasma we will obtain 7,-0.1 nsec, which is 
also much longer than the characteristic electron fluctua- 
tion time in a plasma. 

In the plasma of a laser with neon-like selenium ions 
(Z,= 24) (Ref. lo), one achieves ion and electron densi- 
ties of Ni-2 X 1019 cm-3 and Ne- 5 X lo2' cm-3 (about 
six orders of magnitude higher than in a gas discharge), 
and temperatures of Ti- 400 eV and Te- 900 eV. Never- 
theless, the time scales for momentum changes, spontane- 
ous radiation ( rp-~, - l  ps), and Doppler dephasing 
( l/kvT-0. 1 ps) remain substantially greater than the 
characteristic plasma fluctuation times T ~ =  ape1 - 1 fs. 

Because the characteristic times of photon emission 
and absorption processes are far in excess of plasma fluc- 

tuation times, Eq. (8) may be treated in the continuous 
medium approximation, i.e., by considering that plasma 
particle interactions reduce to instantaneous (relative to 
the optical times) screening. In this case the derivation of 
the quantum equation is analogous to the derivation of the 
classical one. As for the resulting equation i t ~ e l f , ~  it differs 
from the classical one by having on its right-hand side a 
commutator describing transitions between the internal 
states of the particle: 

Here Ud is the Lenard-Balescu kernel and fb(vb) is the 
buffer particle velocity distribution. 

Only in sufficiently strong fields, when f lR )  1012 sec- ', 
or under the action of picosecond pulses, when the pulse 
duration is comparable to plasma oscillation frequencies, is 
it impossible to average over the microfield fluctuations 
assuming all other processes in the system to be slow. In 
this case the applicability of the kinetic equation (10) is 
violated. 

For an isothermal plasma the Lenard-Balescu kernel 
reduces to the Landau kernel3) 

Here u=va-vb is the relative velocity and the Coulomb 
logarithm L arises from the cutoff of the integral at large 
k - ~ " ~ ,  corresponding to small impact parameters for 
which the continuous medium assumption for the plasma 
breaks down. The collision operator $= -divv4 on the 
left-hand side of ( 10) is the divergence of the ion flux $ in 
velocity space and may be represented as a sum of two 
terms describing damping and diffusion, 

The Maxwell distribution renders the ion flux zero. Be- 
cause of its divergence form the operator conserves the 
number of particles. 

Simple estimates show that for T,- Ti, the sum over 
the species b in the expression ( 11 ) is dominated by scat- 
tering by ions.28 Scattering by electrons is small in terms of 
the parameter vTi/vTe because only a small fraction 
( - vTi/vTe) of electrons whose velocity components along 
the wave vector are small @cv,=kv- kvTi, Eq. ( 12)] can 
take part. The electron contribution to the collision term 
might only show up in an extremely nonisothermal plasma. 
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Thus, for an electrically neutral plasma with equal ion 
and electron concentrations, the quantum (for the inner 
degrees of freedom) kinetic equation has the same 
Balescu-Guernsey-Lenard type collision integral as the 
classical equation. The integral has proven to be the same 
in the equations for the populations and for the off- 
diagonal density matrix elements. Since the main contribu- 
tion to the effective cross section comes from small-angle 
scattering in the impact parameter range N- 'I3 4 b 4 rd,  
where both pair and multiple scattering concepts are ap- 
plicable, there are two ways to interpret this fact. From the 
pair collision viewpoint, it is explained by the equality of 
the Coulomb scattering amplitudes (whose cross section 
depends on the total charge alone) for different internal 
quantum states of the atom. From the point of view of 
multiple scattering, it results from the acceleration of the 
ion as a whole in the chaotic plasma microfield. The mo- 
mentum of an ion changes adiabatically slowly compared 
with the Bohr frequencies of transitions between levels, so 
that the acceleration has no effect on the state of the inter- 
nal Hamiltonian. 

As shown in Sec. 2, in the Coulomb interaction case 
the collision integral in Eq. (10) may be written in the 
form of a differential operator 

If the velocity distribution of the buffer particles and 
excitation function A j  has, or differs little from, a Maxwell- 
ian form, it is possible to obtain explicit expressions25 for 
the dynamic damping and diffusion tensor corresponding 
to the Landau integral (13). Setting Tia= Tib= T, 
m = mia=mib in the following analysis, from Eqs. ( 1 I) ,  
(13), and (14) we obtain 

3. SHORT-WAVELENGTH APPROXIMATION 

Intra-atomic transitions will be considered in the two- 
level approximation, in which case the matrix element for 
the dipole interaction with the field of a traveling mono- 
chromatic wave is described by the function 

Let us complete the kinetic equation (10) with terms ac- 
counting for radiation and collision relaxation, and for the 
excitation of the levels usually produced by electron impact 
from the ground or a metastable state. Denoting the relax- 
ation constants of the levels by Pi, and that of polarization 
by r ,  for the off-diagonal matrix element pmn(v,r,t) 
= p(v)exp(ikr -ifit) and the diagonal matrix element pji 
we obtain the following stationary homogeneous equations: 

Here Aj(v) is the excitation function of the jth level. For 
weak fields ( I G2 I (err,), one can neglect saturation and 
consider only the polarization equation ( 15), with 
the population density AN=Am(v)/I 'm-An(v)/~, 
A,(v) =Qj W(v) on the right-hand side. The central prob- 
lem of plasma spectroscopy reduces to the evaluation of an 
off-diagonal element of the density matrix p, the integral of 
the element over velocities being expressed in terms of the 
observable absorbed power per unit volume as 

where ca= va/vT is the a-component of the dimensionless 
velocity, 

is the effective transport frequency of ion-ion collisions, 
and Ni is the ion concentration. If the plasma contains ions 
of different degrees of ionization Zb, then the frequency v 
involves the effective charge Ni= zbz2flb. The functions 

are expressed in terms of the Chandrasekhar function 
g(g) = [erf(g) -c erf' ({)]/2c2 and are related by 

At high velocities, the damping force and the longitudinal 
(with respect to the velocity) diffusion become unimpor- 
tant and a dominant role is played by the transverse (with 
respect to angles in velocity space) diffusion. In a coordi- 
nate system with the z axis along the probe ion velocity, the 
diffusion tensor (18) is diagonal, and for ((1 it is also 
isotropic. 

Let us investigate the change in the shape of the spec- 
trum due to ion-ion scattering. The collision integral ( 17) 
is most conveniently written using a spherical coordinate 
system with the z axis along the wave vector k: 

1 1 a 
Y=- [- (-- sin 6 -+- -2 

2 sin 6 86 a8 sin 6 ag, 
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where 6 and g, are angles in velocity space. 
A solution to the quantum kinetic equation ( 15) for an 

off-diagonal element of the density matrix for a two-level 
system may be obtained in the form of a series in powers of 
the parameter 7 = v/kvT( 1 

where 

is the off-diagonal element of the density matrix in the 
absence of collisions. The power absorbed by the two-level 
system can also be represented in the form of an expansion 
in powers of the parameter 7: 

where 

The coefficient of the zeroth term in the expansion (25) 
can be expressed in terms of the probability integral of a 
complex variable, 

and describes the Voigt line contour for a collisionless 
plasma. 

For a tenuous plasma, the frequency of Coulomb col- 
lisions is small compared to the Doppler line width and we 
need to keep only the terms n =0,1 in the expansion (25). 
Substituting the collisional integral Y ,  Eq. (22), into the 
integral J1 defined by Eq. (26) and integrating by parts, 
the coefficient of the first power of the small parameter 7 
can be written in the form 

m d3f +I cos2 6 +at, sin2 6 
9 (z- f cos 6)'  exp( --PI 
d35 @[25 cos 6 exp( -p)  

= Iom % ( Z - ~ C O S ~ ) ~  ' 

(28) 

Here @lcos2 6+@,,sin2 6 is a component of the diffusion 
tensor (18) along the wave vector k, and the last equality 
is obtained with the aid of the identities (2 1 ). Making the 
substitution 1/z3 = ( 1/2) S~dr?2eizT for Im z > 0 and per- 
forming the Gaussian integration over the velocities, we 
obtain for the collision correction to the line shape 

To first order in v/kvT, the autocorrelation function can be 
expressed in terms of the Fourier transforms, with respect 
to 0 ,  of the integrals Jo and J1, 

where F(y)  =exp( -y) S#x exp (x2) is the Dawson inte- 
gral. In the limit I z 1 = 1 ir + R 1 /kvT 4 1, the integral 
~ ~ = - ( 2 / f i ) ( f l - l n ( f i + l ) ) ,  so that the inclusion of 
collisions somewhat increases the absorption intensity at 
the line center: 

Since the area under the line contour is independent of v, 
an increase in amplitude at the maximum implies a nar- 
rowing of the line. 

For the weak collision model with a constant collision 
frequency Eq. (32), in the same limiting case 
.9' = P o (  1 + 2v/3 fikuT). The question naturally arises as 
to how to explain the increase from 0.33 to 0.53 in the 
coefficient for the correction. One would expect that the 
dropping velocity dependence of the Coulomb collisions 
should reduce rather than increase the coefficient. The 
point is that a correct comparison of the models requires 
that the friction forces of the probe ions be compared. For 
this purpose let us turn to Eq. ( 14) for the particle flux in 
velocity space. The first term, corresponding to the dy- 
namic friction force, describes the damping of the probe 
particle. The second term, the diffusion flow in velocity 
space, arises if the probe particle distribution f ( v )  has a 
nonzero gradient. Consider the one-dimensional case. In 
the weak-collision constant-diffusion-coefficient model, the 
flows marked by arrows in Fig. 1 compensate each other, 
so that the average velocity of the probe particles decreases 
only because of the friction force. If the diffusion coefficient 
D( v ) decreases with increasing absolute velocity, the flow 
toward lower velocities exceeds that directed toward 
higher velocities. As a result, the damping force increases. 
For the case of a narrow distribution function, the correc- 
tion term is proportional to the derivative of the diffusion 
coefficient at the center of the distribution. If dD/d I v I > 0 
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FIG. 1. One-dimensional probe-particle distribution function in velocity 
space (curve I),  and the diffusion coefficient (curve 2) with a decreasing 
velocity dependence. Arrows indicate the direction of diffusion flows. 

for v=u, the correction decreases the friction force. In 
three dimensions, the total force acting on probe particles 
with the distribution f (v) is 

The additional damping force is determined by the diver- 
gence of the diffusion tensor and vanishes for 
aDag/avs=O. Using the identities (21), we obtain that 
aDag/avs=Fa/m, that is, the damping force on a probe 
particle in a plasma doubles because of the dropping de- 
pendence of the diffusion tensor on the magnitude of the 
velocity. The total force on particles with nonzero veloci- 
ties is still less than 2F,(O) because of the decrease in 
collision frequency with increasing velocity. As a result, 
the coefficient P for the correction to the work of the field, 
Eq. (30), was found to be less than 2v/3 but about 60% 
larger than in the constant-coefficient model. 

Using Eqs. (27) and (29), one can obtain an asymp- 
totic expansion of 9 for lz ( > 1: 

In the far wings of the curve one obtains a power-law 
decrease in intensity. Note that the integral J ,  increases the 
coefficient of z - ~ .  The intensity distribution in the wings as 
obtained here differs from the weak collision result of Ref. 
2 by a factor of 1/14 (at collision frequency v), which 
reflects the velocity dependence of the diffusion coefficient. 

Note that for V~ZV$>I'~, the terms in the series (23) 
for p(v) diverge for velocity values close to resonance (kv 
= a ) .  Rather than proving the cancellation of terms that 
diverge as I' -0 in each order of the expansion (23), we 
may re-sum this series so as to make the divergences van- 
ish. In fact, take for a zeroth approximation, instead of j j ,  
a solution of the kinetic equation with velocity- 
independent but nonzero diffusion and friction coefficients 
(thus approximately accounting for particle collisions). In 
this model, in contrast to Eq. (22), the collision integral 
has the simpler form 

-- 
a 

a 1 a2 
sin 6 -+-2- 

25 sin 6 ~ 3 3  a8 sin 6 ag, 

A quantum kinetic equation with such a collision term can 
be solved exactly to give 

If in Eq. ( 15) we make the substitution p=  pO+ Ap, we 
obtain the equation for Ap, which differs from ( 15) only 
on the right-hand side, 

and hence Ap can again be found in an approximate way. 
Repeating the above procedure we obtain the solution in 
series form: 

The terms in this expansion remain finite as r-0,  and 
the corrections to the work of the field, to first order in 
q=v/kvT, are identical to Eqs. (30) and (3 1). 
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4. LONG-WAVELENGTH APPROXIMATION 

In the long wavelength limit kvT<v, q>l ,  it is conve- 
nient to expand the distribution function in terms of 
Legendre polynomials in a coordinate system with z axis 
along the vector k. Thus 

The Laguerre functions satisfy the boundary conditions 
and, for Ps equal, are orthogonal on the real half-axis, 

If we multiply the Ith equation in the system (38) by 
R:(C) and integrate with respect to ( we obtain 

Then Eq. (15) reduces to a system of ordinary differential 
equations 

where the matrix element 

can be expressed in terms of r functions of a half-integer 
argument. The absorbed power depends only on the coef- 
ficient a:, namely, 

In this system, equations for different 1 are coupled by 
terms that are small with respect to the parameter kuT/v. 
Thus, the contribution to the equation for Rl({) from the 
term in Rl+ (6) has a smallness of order kvT/v. TO leading 
order, the only nonzero term is 

and we can find this coefficient in the limit kvT/v= l/q<l, 
to terms of order 1/q2. Since for the matrix elements we 
have @&=@,, = Sd ( r - ifl ) /Y, the equation for a: in- 
volves the coefficient a: only with the factor Vq2, 

2 Y 
Ro(E) =- -- vr-m 

and the velocity distribution function becomes Maxwell- 
ian. (Since the collision term is exactly zero for the 
Maxwell distribution, the expression &POR0({) 
= ( ( r - in)/v) RO([) acquires an additional smallness 
when I r-in I <v, SO for the zeroth approximation to be 
applicable, Eq. (38) for I=0 indicates that (kvT/v)' must 
be small not only compared to 1 but to r-if2 /v as 
well. ) To first order in kuT/v, or for kuT ) $-I I r -in I v, one 
needs to retain only the first two terms in the expansion 
(37), with I=0 and I= 1. As a result, we are left with a 
system of two differential equations. 

The differential equations (38) can be reduced to an 
infinite system of algebraic equations for the coefficients in 
the expansion of R1({) over a basis of orthogonal func- 
tions; for these, it is convenient to take Laguerre polyno- 
mials R;(S), which are the eigenfunctions for the problem 
with a velocity independent collision frequency for k=O. 
We have 

Hence this coefficient can be obtained to zeroth order in 
l/q. In this case the system of equations (40) divides into 
independent subsystems with different 1. All coefficients a t  
except a: are small in 1/q2, and for af, one obtains the 
equation 

From this, 

1 (&,I$ 0 a,= lim 
M- det 2Yh 

where M is the number of terms retained in the series (39), 
&"h is the matrix that results in this case from (41 ), and 
(H&)$ is the algebraic complement to the element H k  of 
the matrix Xh. Substituting (45) into (43) we find 

0 v det &PL 
a0 = A=v lim 

( ~ v T ) '  ' 
. (46) 

r-in+U M - ~  ( & o ) %  
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TABLE I. 

Because of the rapid decrease of Hi ,  with I n-m 1, one 
can calculate A by approximating R'"(S) by the first M 
terms of the series (39). If only the term with n =O is kept, 

At the line center I r - isl I (v, the coefficient A + F =  v/fl  
plays the role of the effective collision frequency. The value - 
v=v/V2 for the effective collision frequency was obtained 
by the frequency renormalization method in Ref. 9. This 
means that the renormalization of frequency is, in this 
problem, equivalent to retaining the leading term in the 
Laguerre polynomial expansion. 

Retaining two terms in the expansion (39) 

At the line center I r - isl I <v, the coefficient A +? 
=0.599v. If the number M of terms retained in the expan- 
sion (39) is increased, the value of v will decrease. How- 
ever, starting with M =  2, it remains virtually unchanged as 
illustrated in Table I. As is seen, at M= 1 the value of F  
differs from its limiting value by as little as one percent.4) 
Thus, the formula (48) provides the contour of the spec- 
tral line in the limit v>kuT. This contour is depicted in 
Fig. 2 for two values of the parameter v/kuT. The asymp- 
totic behavior of the absorbed power at the line center is, in 
the limit 1/74 1, r(v, of the form 

Substituting this into (42) and expanding in 1/sl, we ob- 
tain for the work of the field the expression (3 1 ) . 

5. INTERMEDIATE CASE 

The interaction with the electromagnetic field violates 
the isotropy of the distribution of ions in velocity space. If 
a particle has a nonzero velocity component along the elec- 
tromagnetic wave vector, it acquires an additional phase of 
A#= kvT. Collisions change ion velocities in a random 
way, thus partially restoring the isotropy. For v-kvT, in 
the low-velocity range I v 1 (vT, the anisotropic portion of 
the distribution function is of the order of the isotropic 
portion, which suggests a rapid convergence of the 
Legendre polynomial expansion. As for the particles with 
large velocities 1 u 1 $= U T ,  for which the collision frequency 
decreases with increasing phase, their contribution to the 
work of the field is small because of the exponential de- 
crease in the distribution function at high velocities. 

The dependence of the work of the field at the line 
center on the ratio v/kuT has been determined numerically 
by using the system of equations obtained from (40) by 
truncating after finite n and I values. This was solved by the 
Gauss elimination method to give the value of a:. Obtained 
in this way, a: represents the solution of the infinite system 
(40) only if it tends to some limit as n and I increase. It 
turned out that for v/kuT>O.2, the coefficient a: ceases to 

In the far wing of the line ( I I' - i f l  I ) 1 ), to terms of order 
X 

v/ I I' - isl 1 the expression (46) takes the form 
FIG. 2. Line contour Z(R) in the frequent collision limit. x=R/kvT 

A = ~ H & + o ( ~ / I  r-in~ ) denotes the Doppler-width normalized detuning from the resonance, 
R=o-om, .  Broken lines represent the narrow Lorentz absorption con- 

v tour for a single particle (-) and the wide contour of the Doppler 

(49') broadened line (.....) for kvT= lor .  Solid lines represent the contours 
given by Eq. (48) for v=3kvT (curve 1) and v= 10kuT (curve 2). 
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FIG. 3. The dependence of the normalized absorbed power W= 9/B0 
at the line center (fl=0) upon the ratio of the collision frequency to the 
Doppler line width, z=v/kvT; 9' being determined by Eq. (26). (-): 
numerical calculation; (-----): relative error din the interpolation formula 
(50); (....): weak collision model. a)  kvT= lo r ;  b) kvT= 100r. 

change for 04, 126. Results are shown in Fig. 3 (solid 
line). They agree well with those obtained analytically for 
the limiting cases of long and short wavelengths. 

The asymptotic expressions (30) and (49) for the ab- 
sorbed power at the line center have the same dependence 
on v, kuT, and r as in the weak collision model,2 but the 
coefficients are different.') A comparison of the models is 
clearly illustrated by Fig. 3, which shows results for the 
weak collision model (points) with a velocity independent 
collision frequency. As is seen from the figure, the falling 
off of the collision frequency with increasing velocity re- 
duces the effect by 40% compared to that obtained in the 
limit v % kuT % @. In the short-wavelength limit the 
effect increases by 60% [see Eq. (30)]. 

We conclude by reproducing a simple interpolation 
formula for the absorbed power at the line center, 

which goes over into the asymptotic form (49) when 
kuT<v. In the limiting case kuT>v, this formula differs 
from the asymptotic expression only in the coefficient of 
the small correction, namely, V/v=0.59 instead of 0.53 as 

Also shown in Fig. 3 is the error in the interpolation for- 
mula (dashed line). It is seen that even in the intermediate 
case kuT-v the error does not exceed lo%, showing the 
interpolation formula to be adequate for any interrelation 
between the parameters v and kvT. 
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"1n Ref. 5 it is shown that for a mixture of atomic or molecular gases, the 
Fokker-Planck equation with a constant collision frequency also has a 
limited region of applicability. The model can only be employed for an 
extremely heavy excited particle, with an atomic weight 2200, even 
with hydrogen as a buffer gas. 

"A number of recent experiments involving the detection of the Dicke 
effect in atomic7 and molecular8 spectra did include the measurement of 
the correlation function. 

" ~ n  the case of a strongly nonisothermal plasma it follows from Eq. (12) 
that there appears an additional term in the kernel (13), which reflects 
dynamic polarization effects in the plasma. The spectroscopic implica- 
tions of this term were considered in Ref. 27. 

4 ' ~ h e  sharp increase in accuracy due to the use of two Laguerre polyno- 
mials, and the slow reduction in error despite a further increase of 
number M, have been noticed by workers on the theory of transport in 
a plasma.28 

" ~ n  Ref. 29 it is shown that independent of the particular form of the 
collision integral, the absorbed power expression has the form of a Lor- 
entz line contour (kvT)'//., where /.-' is the sum of the inverse eigen- 
values of the collision operator. 
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