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A class of solutions of the MHD equations is considered, describing plasma equilibrium in a 
gravitational field corresponding to complete splitting of the system into autonomous 
equations for the magnetic flux and for the gravitational potential. Models of the quasistatic 
structures on the surface of the photosphere are considered as applications, and the 
possibility that strong magnetic fields exist inside the Sun is investigated. In the quasi-one- 
dimensional approximation analytical formulas are found which supply a relation 
among the temperature and magnetic-field profiles and the profile of the Wilson depression in 
sunspots. 

1. INTRODUCTION 

The theory of axisymmetric equilibrium plasma con- 
figurations in a gravitational field is considered. It is shown 
that the problem simplifies substantially if instead of the 
conventional "equation of state" closure p=p(p),  which 
relates the gas kinetic pressure to the density, we use an 
equation TI= H($) for the dependence of the magnetic 
pressure on the magnetic flux function. The class of solu- 
tions derived in this manner is applied to study equilibrium 
configurations in a uniform and spherically symmetric 
gravitational field. 

As examples we consider in the case of a uniform grav- 
itational field models of quasistatic structures on the sur- 
face of the Sun's photosphere, such as sunspots and fili- 
grees. Hence the effective radiating surface of the 
photosphere is an isobaric interface between a dense and a 
diffuse plasma. In particular, we are able in the quasi-one- 
dimensional approximation to obtain analytical formulas 
which relate the radial temperature and magnetic-field pro- 
files to the depth of the Wilson depression in sunspots. In 
the case of a spherically symmetric gravitational field we 
use existing exact solutions to study the possibility that 
strong magnetic fields can exist inside the Sun and to learn 
how they influence the distribution of thermodynamic 
quantities. 

Introducing the enthalpy w =  J dp/p and adding the Pois- 
son equation, we find a complete system of equations for 
the case B = 0: 

where G is the gravitational constant. 
In the axisymmetric case, where in terms of cylindrical 

coordinates r, p, and z there is no dependence on the azi- 
muthal angle p, the meridional components of B and j are 
expressed in terms of the magnetic flux function $(r,z) and 
the electric current I(r,z) = rB, : 

Since we have BV$=O and jV$=O, the magnetic field 
lines lie on magnetic surfaces $=const and the current 
lines lie on the I=const surfaces. From Eq. (1) it follows 
that the azimuthal component of the Lorentz force 
F=C-'lj~], vanishes, which yields the functional form 
I= I($). Consequently, the currents flow on the magnetic 
surfaces. Then the equilibrium equation in conjunction 
with the equations for $ and can be written in the form 

J* 
2. EQUILIBRIUM AXISYMMETRIC MHD CONFIGURATIONS 

vp--& v*+pva=o, 

IN A GRAVITATIONAL FIELD 
477 

The equilibrium equation for a MHD plasma configu- A*$+IIP($) = -- rj*, A@=4rGp, 
ration in a gravitational field takes the form C 

1 where 
Vp-7 [jB] +pV@=O, (1)  

C 
C a ~ a  aZ 

where p is the pressure, p is the density, is the gravita- j * = j  --II'($), A*=r - - - 
47rr a r  r ar+$ ' 

tional potential, B is the magnetic field, and j=  (c/ 
47r)rot B is the current. It is necessary to supplement Eq. If there is no gravitation it follows from the first of Eqs. 
(1) with equations determining B and @. (5)  that 

In the absence of a magnetic field it follows from ( 1 ) 
that p=p($), j*/cr=p'($). (6) 
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In this case the pressure is constant on the magnetic sur- 
faces $=const, the density p(r,z) is an arbitrary function, 
and the equilibrium magnetic field is described by the well- 
known Grad-Shafranov equation:' 

which contains two arbitrary functions I($) and p($). 
When the gravitational field is switched on in the equi- 

librium equation a new variable p appears, and conse- 
quently it becomes necessary to introduce an additional 
closure equation. 

a)  When the usual "equation of state" closure equa- 
tion p=p(p)  is used, Eq. ( 5 )  reduces to a system of two 
coupled equations for $ and p. Specifically, in this case it 
follows from the first of Eqs. (5)  that 

Accordingly, from (5) we obtain the system of equations 

containing three arbitrary functions w(p), I($),  and 
K ( * ) .  

Equations (9) reduce to a single equation for I) in the 
case of "force-free" configurations with Kt($) =0, which 
were first treated by chandrasekhar2 and for an "incom- 
pressible" plasma ( p = const) by ~ r e n d e r ~ a s t . ~  Trehan and 
uberoi4 studied the full system (9) for linear functions 
I=a* and K=k1+!1/4sr and a polytropic dependence 
p,p'+l'n. 

b) We will next treat the class of equilibrium config- 
urations which instead of (2) satisfy the auxiliary condi- 
tion 

which, in contrast to the first of Eqs. (8), does not contain 
the density p. Then from (5) we have 

where P(p)  =p+n(@) is the total pressure and accord- 
ingly II(+) is the "magnetic pressure." The magnetic pres- 
sure introduced here can be either positive or negative. 
From (1 1) it follows that P=P(p)  and p=  p(@). The last 
relation was suggested as a closure condition by ~ a r k e r . ~  
Molodenskii and solov'ev6 constructed a model of sun- 
spots using a different auxiliary condition. 

Equations ( 1 1 ) for P and p are independent of 11, and 
are completely identical to the equilibrium equations in the 
absence of a magnetic field. The construction of the gener- 
alized enthalpy W= dP/p yields 

entirely analogous to (3). The flux function tC, satisfies the 
equation 

in which p does not appear. 

Thus, in this class of equilibrium configurations the 
total pressure P(p)  =p+II($) is determined by the grav- 
itational field, and the magnetic field profile is determined 
by the magnetic pressure, which is specified by the arbi- 
trary function II (q )  . 

These results permit generalization to the case of 
steady axisymmetric rotating plasma configurations. Spe- 
cifically, if the velocity v has only the azimuthal compo- 
nent v =  v,, then we have vVS=O, (where S is the en- 
tropy), and as in the analysis given above it becomes 
necessary to have an auxiliary closure condition. Thus, if 
v,=v,(r) holds then the force balance equation can be 
written in the form 

where we have written @* =@ - Jf12rdr, R(r)  = vqJr is 
the angular velocity of rotation, and II' - - j*/cr. Taking 
the curl of this equation we find 

[ v n l v q l  + [ v ~ v Q * ]  =o. 
As before, introducing the auxiliary equation II' = IIt ($) 
we have p=p(@*) and P=P(p) .  

Hence it follows that the temperature profile on an 
isobaric surface of a rotating plasma call vary only due to 
the magnetic fields, since for IT = 0 we have p =p ( p)  . 

3. AXISYMMETRIC EQUILIBRIUM MHD CONFIGURATIONS IN 
A UNIFORM MAGNETIC FIELD 

The equation p=p(p) is inconsistent with the concept 
of sunspots as depressions formed by the emitting surface 
B of the photosphere on which p,=const holds, under the 
influence of the magnetic field. Specifically, from the equa- 
tion of state p =  (k/m)pT, the temperature T, on this 
surface is constant, which contradicts the observed strong 
temperature decrease in a sunspot. 

Application of the present equilibrium theory to the 
case of a uniform gravitational field @ =gz, where g=const 
is the gravitational acceleration, yields the relations 

We will take the plasma density above the emitting 
surface Z to be negligibly small, and the pressure p, to be 
constant. If we set IT(+) =O in the region where there are 
no currents, then a solution of the problem for isolated 
configurations can be expressed in terms of the unper- 
turbed background thermodynamic functions p,(z) and 
p,(z) in the peripheral region: 

Here only the function $, which describes the magnetic 
field, is unknown. 

If we assume a polytropic dependence p 
= po(p/po)YO near the unperturbed planar surface z=0 of 
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the photosphere, then the solution of the corresponding 
one-dimensional problem for equilibrium in the absence of 
currents yields 

Te Yo- 1 mgz -- -I---. 
To Yo kTo 

Assuming that the current density drops off rapidly in the 
limit r+ co, where the interface B goes over to the plane 
z=0, we find the following expressions for the temperature 
and the shape of the boundary surface z = z ( r )  : 

In the incompressible plasma model (yo+ co ) the ex- 
pression for z ( r )  simplifies considerably, but the effect of 
temperature variation on the interface drops out: 

The problem under consideration here, regarding the 
deformation of the surface of the photosphere, is one- 
dimensional for the density and gravitational potential and 
two-dimensional for the magnetic field. In order to deter- 
mine the magnetic pressure lI ( r,z) we must solve Eq. ( 15 ) 
with the corresponding boundary conditions. 

FIG. 1.  Cross sections of the magnetic sur- 
faces and the current surfaces that coincide 
with them: a) for the magnetic configurations 
(20) and (21) localized within the sphere 
2 +l= R*; b) the corresponding z ( r )  profiles 
of the photosphere surface; a') for case a ac- 
cording to Eqs. (18a) and (19); b') for the 
continuous magnetic configurations (22) and 
(23) with magnetic fields that vanish in the 
limit 2+2- oo, and also for case b according 
to Eqs. ( 18a) and ( 19). The solid traces cor- 
respond to filigrees and the broken traces to 
sunspots. 

An approximate solution can be found in the quasi- 
one-dimensional model if we neglect the second derivative 
with respect to z in Eq. ( 1 5 ) .  Then we have 

Multiplying ( 15a) by ( 1 /31  (aq/ar)  and integrating 
yields 

From this it follows that the sign of the magnetic pressure 
II ( r )  is determined by the ratio of the magnetic field com- 
ponents B,(r) and B,(r), which can be regarded as pre- 
scribed functions of r. Equations (18) show that for 
n ( r )  > 0 we have z ( r )  < 0, T ( r )  < To,  while for n ( r )  < 0 
we have z ( r )  >O, T ( r )  > To.  Thus, in the first case the 
effective emitting surface of the photosphere has a depres- 
sion, while in the second it has a bump with increased 
temperature. If the vertical magnetic field B, dominates, so 
that II ( r )  > 0 holds, we obtain a sunspot, while if B, dom- 
inates we obtain filigrees. 

Rough approximate models of bounded MHD equilib- 
rium configurations can be constructed by describing the 
corresponding flux functions I) and current I and calculat- 
ing the magnetic pressure from the approximate one- 
dimensional formula ( 19) : 

1 ) A magnetic configuration with azimuthal currents 
and meridional magnetic field localized inside a sphere of 
radius R can be approximately described by 
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2) An analogous configuration with poloidal currents 
and azimuthal magnetic field can be constructed by setting 
I=a$: 

Figure la,al displays the shape of the photospheric surface 
determined by Eqs. (20) and (21 ) for yo= co. The mag- 
netic field outside the sphere ? +z2 = R~ vanishes, while the 
function II together with its derivatives is continuous on 
the matching surface r= R, z=0. 

Let us now consider similar configurations described 
by continuous analytical functions whose currents and 
fields go to zero in the limit 3+$+ co. 

3) A magnetic configuration with azimuthal currents 
and poloidal magnetic field which falls off monotonically at 
infinity, is given by the functions 

4) If, on the other hand, the currents are poloidal, 
then the magnetic field is azimuthal. Setting I=a* we 
obtain 

The deformations of the photosphere surface described 
by Eqs. (22) and (23) for yo= co are shown in Fig. lb,b'. 

5) We conclude by presenting a configuration in 
which the vertical and azimuthal magnetic fields and the 
plane of symmetry z=0 are described by Bessel functions: 

Then from (19) the magnetic pressure is given by 

where the sign is determined by the difference between the 
squares of the vertical and azimuthal fields. Setting 
II ( r )  =O for r > R we see that the function lI ( r )  and its 
derivative are continuous if II'(R) =0, i.e., kR =xon or 
kR=xln, where xon and xln are the roots of the Bessel 
functions Jo(kr) and Jl (kr). In the case kR =xln the total 
current J ( R  ) = d ( R  ) /2 vanishes. The shape of the photo- 
sphere surface for a two-pump profile II(R)=O with 
kR =x12, bi> B;, yo= co is shown in Fig. 2. In this case 

FIG. 2. Profile of the photosphere surface (24) described by Bessel func- 
tions in the case where the azimuthal field dominates according to Eqs. 
(25). 

the entire current flowing out of the circle 0 < r < a returns 
to the annulus a < r < R. The direction of the current can of 
course be reversed. 

4. THE MAGNETIC FIELD DEPENDENCE OF THE SURFACE 
PROFILE AND THERMODYNAMIC PARAMETERS OF 
THEPHOTOSPHERE 

The equilibrium configuration models described above 
contain the dimensionless parameter yo. The resulting for- 
mulas agree well with the familiar empirical behavior for 
the variables of sunspots when we take y0=3.73. A good 
approximate average value for yo can also be found with 
the polytropic approximation p = pYO, corresponding to 
the functional dependence p=p(p)  of the Harvard- 
Smithsonian standard model of the atmosphere of the quiet 
sun.' The anomalously large value of the polytropic index 
is probably related to the presence of the magnetic field in 
the photosphere. 

The affect of the magnetic field on the distribution of 
equilibrium thermodynamic variables of the photosphere 
can be characterized by the effective polytropic index 
s = d In p/d In p. According to ( 16) the value of for 
autonomous equilibrium MHD configurations in a gravi- 
tational field is expressed by 

The magnetic field dependence is given here by the func- 
tion II ( $) . 

In the case B,=O, II= B:/~T (a sunspot) the central 
temperature T,,, , the depth -zmax of the depression, and 
the polytropic index ~ can be expressed according to 
( 18), ( 19), and (26) in terms of the central magnetic field 
Bo by 
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FIG. 3. The cross sections of the magnetic 
surfaces and the current surfaces that coincide 
with them for the equilibrium configuration 
(36) with external magnetic field equal to zero 
for the first three radial modes zZk=5.764 (a), 
9.095 (b), 12.32 (c). 

In the opposite limit, i.e, B,=O (filigree), bounded by 
the configuration (25), we find for the magnetic pressure 
at 

For the "two-pump'' configuration shown in Fig. 3 we 
have ka=xolz2.41, kR=x12z7.01. For the values of 
Tma, z,, , and y;: at the center we have 

Here PO, po, To, and yo are the parameters of the unper- 
turbed photosphere near the effective radiating layer. In 
Tables I and I1 the values of T,,,, z,,, and are given 
as functions of the magnetic field for the cases B,=O and 
B,=O, evaluated according to Eqs. (27) and (27a). We 

used as the unperturbed parameters of the Sun's photo- 
sphere To= 5920 K, po= 1.023 . 10' dyn/cm2, 
po=2.884- lo-' g/cm3, m=2.29 g, g=2.74. lo4 
cm/s2, y0=3.73. 

Tables I and I1 show that the value of the polytropic 
index fl increases as a function of the magnetic field B,, so 
that the plasma becomes increasingly incompressible, and 
decreases as a function of B,. 

5. EQUILIBRIUM MHD CONFIGURATIONS IN A 
SPHERICALLY SYMMETRIC GRAVITATIONAL FIELD 

The class of axisymmetric equilibria with n = II ($) in 
Sec. 1 admits MHD configurations maintained in equilib- 
rium by a spherically symmetric gravitational field. The 
quiet Sun, which is very close to having spherical shape, 
probably belongs to this class. 

In spherical coordinates r, 6, g, equilibrium configura- 
tions of this class are described by the equations 

d2$ sin 6 1 a$ s + ~  zsinz+II'($) =48n1($)? sin2 6, 
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TABLE I. 

It is evident that Eq. (28), which determines the mag- 
netic field, is independent of Eqs. (29) for the profile of the 
density p, the gravitational potential @(p), and the total 
pressure P(p).  Eliminating the gravitational potential 
from (29) we find 

Bzo, k G  
0 

0.5 
1 .O 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 

In particular, for a polytropic dependence P a pYO, 
yo= 1 + l/n=const it follows from (30) that we have an 
equation for a generalized Emden equilibrium in which the 
total pressure P(p)  =p+ II($) appears in place of the gas 
pressure p. The spherical components of the magnetic field 
are expressed in terms of tC, and I($) by 

1 a$ 1 a* 
B - , BB= -- - 

I ( $ )  B =- 
sin 8 a8  r s i n 8 d r '  r s i n 8 '  

(31) 

TABLE 11. 

$ 
3.73 
4.09 
5.18 
6.99 
9.53 
12.8 
16.8 
21.5 
26.9 
33.1 
40.0 
47.6 
56.0 
65.0 
74.8 

T m a x ,  kK 
5.92 
5.77 
5.42 
5.00 
4.60 
4.25 
3.96 
3.70 
3.48 
3.30 
3.13 
2.99 
2.86 
2.75 
2.65 

For linear functions I ($)  =a$ and I ($)  =a$ and 
n($)  = no + HA$, Eq. (28) becomes a linear equation 
with a given right-hand side: 

a 2 ~ /  sin 8 a 1 a4 - -+a2$=4rII612 sin2 8. (32) S+T % sin 8 a0 

- t m a x ,  krn 
0 

12.4 
48 
103 
175 
259 
355 
460 
575 
697 
827 
964 
11 10 
1260 
1410 

The solution of this equation which is regular at r=O can 
be expressed in terms of a series293 

where we have written f ,(z) = & J ~ +  1,2(~),  Jk(z) are 
Bessel functions, and Ph(x) are derivatives of the Legendre 
polynomials. If there are no currents in the external region, 
the solution of Eq. (32) which is regular for r-  co takes 
the form 

bn 
f= -p P;(COS 8)sin2 8. (34) 

n 

The solution of Eq. (32) obtained by matching the 
harmonics (33) and (34) at the sphere r= R is expressed 
by the equations 

Here K = ~ P I I ~  /a2, f ,,= f ,(aR). The first harmonic 
n = 1 is continuous at r=  R together with its normal deriv- 
ative, while from the requirement of continuity of the nor- 
mal derivatives for n>2 it follows that for the case of a 
nonvanishing external field we have an#O only for 
f ,-,(aR) =O. The constant K is related to the central 
magnetic field Bo by 

The terms of the series (35) for 4 and $, are expressible in 
terms of elementary functions. 

If we restrict ourselves to the fundamental mode n = 1, 
we have 

$,= -K  
R3f2(aR) 

sin2 8. 
a sin aR r . sin aR  

(36) 

A notable property of this solution is that the external 
magnetic field vanishes when aR coincides with one of the 
roots zZk of the function f (z) . Then the sphere r=  R be- 
comes a magnetic surface $=O, on which B=O holds. The 
solution (36) adequately describes the quiet Sun, which is 
an almost perfect sphere with a negligible external mag- 
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netic field. The meridional cross sections of the magnetic 
surface $(r,8) = const for the configurations determined by 
the first few roots ~ ~ ~ = 5 . 7 6 3 5 ,  9.0950, 12.3224 (Ref. 3) 
are shown in Fig. 3a-c. 

We can represent the functions $ and II = 111$ in the 
form 

( 3 1 )  

Y (r)  =?- a srnRa, (z-cos n r  . 1 
The density p and total pressure P(p)  of the equilibrium 
configuration are determined according to (29) by the 
gravitational field, while the gas pressure is equal to 

where /3= ( ~ R K ) ~ / ~ P ~ ~  is the characteristic ratio of the 
magnetic pressure to the total pressure. 

The magnetic pressure increases as a function of the 
magnetic field, while the gas kinetic pressure decreases. At 
a critical value of the dimensionless parameter B=Dcr the 
gas kinetic pressure vanishes at some point r=  r,, , 8 = ~ / 2 .  
Consequently, the condition for the existence of the corre- 
sponding equilibrium configuration is that the inequality 
BGB,, hold. 

FIG. 4. Radial dependence of the poly- 
tropic index d ( r )  in an equilibrium grav- 
itating sphere in the presence of an internal 
magnetic field for density profiles N=3  
(a),  2 (b), and 4 (c,d) from Table 111, 
constructed according to Eq. (43). The 
magnetic field profiles correspond to the 
first z2,=5.764 (a-c) and second 
z2,=9.095 (d)  radial modes (36). In cases 
c and d as B increases toward B,, the cur- 
vature of the function d ( r )  increases. The 
inserts in Figs. a and b show the behavior 
of the functions near the boundary R= 1. 

On the other hand, Fermi and chandrasekhar8 derived 
a stability criterion which imposes a limit 7 =%Jt/(fi ( < 1, 
on the ratio of the magnetic energy 1112= 1 / 8 ~ S  B ~ ~ T ,  to 
the gravitational energy a, f i =  l /2Jp@d~.  For the equi- 
librium configuration (37) with aR  =Z2k these energies are 
given by3 

The gravitational energy for Emden equilibria (P 
a pYO) is expressed in terms of the mass M and radius R of 
a star by the formula 

It follows that the Fermi-Chandrasekhar limit for an 
Emden equilibrium configuration confined by the magnetic 
field (37) can be written in the form 

In addition to the criterion fl <PC,, there is another 
restriction on the equilibrium for the magnetic field (37): 
yo)2. Specifically, the magnetic pressure II(r,O) near 
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TABLE 111. 

aR=zZk approaches zero for Sr=R -r+O like (6rj2: 
II a (Gr)2. Hence it follows that equilibrium is possible 
only under the condition PIX (Gr)m, where m<2. If we 
have pa: (Gr)', then Pa (Gr)'+' holds and if P and p are 
related near r=R according to the polytropic law P 
a p", we find yo= 1 + 1/1>2. The Emden equilibrium 
(yo=const) can therefore support the magnetic field (37) 
only if yo)2 holds. 

The central gas kinetic pressure po and the dimension- 
less parameters 7 and B can be expressed in terms of the 
mass M and the radius R of a star by the formulas 

where A, p, and v are new dimensionless parameters. The 
results of calculating the parameters A, p, and v, along 
with the critical parameters DL,') and for the first and 
second modes aR = 5.764 and aR =9.094 are plotted re- 
spectively in Figs. 3a and 3b, and are shown in Table I11 
for different equilibrium profiles of the density p and the 
total pressure P(  p)  . 

The data for N= 1 shown in Table I11 correspond to 
the "incompressible" equilibrium configuration treated by 
~ r e n d e r ~ a s t , ~  where PaGr for r+R. In the N=2, 3, con- 
figurations the total pressure behaves as Pa ( ~ r ) ~ ,  similar 
to the magnetic pressure II a: (Gr12 in the limit r-R. The 
N= 1, 3 configurations belong to the class of Emden equi- 
libria with yo= co and yo= 2. In the N= 2,4 configurations 
the value of yo is variable and changes from yo(0) =2.5 to 
yo(R)=2 for N=2 and from yo(0)=3.48 to yo(R)=3 for 
N=4. The B/7 column shows that the restrictions on equi- 
librium are more severe than the Fermi-Chandrasekhar 
stability limit. 

The equilibrium restrictions on the central magnetic 
field for a uniform (N= 1 ) and Emden (N= 3) gravitating 
gaseous spheres with the solar mass and radius are 
B0(4 lo8 G and Bo(2.5 lo8 G respectively for the first 
radial mode and Bo<4.5 - 10' G and B0<2. 1 - 10' G for the 
second mode. These inequalities show that it is possible for 
strong magnetic fields to exist in the internal regions of the 
Sun, even though there is almost no magnetic field on the 
surface of the quiet Sun. 

The models of equilibrium self-gravitating plasma 
spheres which we have considered allow us to at least qual- 
itatively explain the anomalous behavior of the polytropic 
index yo=d In p/d lnp as a function of distance into the 
solar photosphere. As shown by the analysis of the 
Hanard-Smithsonian model of the quiet-Sun 
atmosphere,' the quantity yo increases considerably as one 
passes to a depth of order - 100 km below the photosphere 
boundary, which in all probability is a consequence of the 
internal magnetic field. 

Specifically, when an internal magnetic field is present 
the distribution of the equilibrium thermodynamic param- 
eters characterized by an adiabatic index which from (38) 
is equal to 

From this it can be seen that for these equilibria the effect 
of the magnetic field is greatest in the equatorial plane 
8=7r/2 and vanishes at the poles 8=0. At P=@,, the gas 
kinetic pressure which appears in the denominator van- 
ishes at some point r=r,,, and consequently we have 
d(rC,,?r/2) + CO.  For Bgfl,, the quantity also in- 
creases as r approaches r,, from the direction of r=R and 
then drops off in the limit r+O. 

For configurations in which P( r )  approaches zero in 
the limit r-R as (6r12, i.e., in the same way as Y(r), the 
point r=r,, is near the boundary r=R, and consequently 
y,*(r) increases rapidly with increasing Gr= R -r. But if 
P(r )  increases faster than ( ~ r ) ~ ,  then the critical radius 
moves away into the sphere. Figure 4 shows plots of the 
function yo* = d ( r )  for 8=7r/2 in equilibrium configura- 
tions with the different p ( r )  and P(r )  profiles given in 
Table 111. It can be seen that the rapid increase of d ( r )  as 
R-r increases may be at least qualitatively explained by 
the effect of the internal magnetic field of the equilibrium 
gravitating sphere. 

We are grateful to M. M. Molodenskii and V. N. 
Obridko for fruitful discussions and valuable comments. 
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