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One of the assumptions made by Bell in deriving his inequalities was that of locality, i.e. that 
two measuring devices cannot affect one another when they are far apart. For this 
reason, the violations of these inequalities observed in experiments are often regarded as 
manifestations of the nonlocality of quantum theory or as a disproof of local realism. In this 
paper the Bell inequality is proved for two observers in its traditional form, but without 
using the locality hypothesis, starting only from the condition that the probability distribution 
function be nonnegative. This distribution function is calculated and applied to a specific 
optical experiment within the framework of quantum theory, and it is shown that it can take on 
negative values. This rigorously proves the irrelevance of the locality assumptions with 
regard to violations of Bell's theorem. In addition, nonlocal Bell's theorems are formulated and 
proved, along with the Greenberger-Horn-Zeilinger paradox for an arbitrary number of 
observers N, again without using the assumption of locality. The physical meaning of these 
results is analyzed in detail. 

1. INTRODUCTION The averaging is carried out over realizations. In order to 

Despite what would appear to be a thorough study of 
questions connected with the Einstein-Podolsky-Rosen 
paradox' and Bell's t h e ~ r e m , ~  recently there has been a 
marked increase in the number of publications on this 
theme (see, e.g., Ref. 3-5 and the references cited therein). 
Experimental violations of Bell's inequality, which are pre- 
dicted by quantum theory and have been repeatedly veri- 
fied in experiment, are treated by the overwhelming major- 
ity of authors as manifestations of the nonlocality of 
quantum theory. The fact is that the original Bell 
inequalities2 were derived on the basis of concepts from the 
theory of hidden variables,' one of whose assumptions is 
that of locality, i.e., the inability of two distant measuring 
devices to influence one another. Therefore, it would ap- 
pear that the results of such experiments could formally be 
described within the framework of a nonlocal theory of 
hidden variables, i.e., one that contains no hypothesis 
about locality. A recent review3 has demonstrated that it is 
logically inconsistent to require that the concept of nonlo- 
cality be enlisted in order to explain violations of Bell's 
inequality (see also Refs. 4-7). The goal of this paper is to 

prove ( 1 ) we require only that the normalized probability 
distribution function be nonnegative: 

It goes without saying that we must fulfill consistency 
conditions of the type 

P(AJ1, B, B') + P(  -Ad1, B, B' ) = P(A1, B, B'), (5) 

along with analogous relations for the other variables and 
lower-dimensional distributions. 

The discrete probability distribution function (3) con- 
sists of Z4 joint probabilities: 

G p ( ~ = + ~ ~ l = + i , B = + l , B ' =  - I ) ,  etc. ( 6 )  
formulate rigorous proofs of various forms of Bell para- 

We express the average entering into ( 1) in terms of doxes, including the beautiful Greenberger-Horn- 
these joint probabilities, for example, Zeilinger paradox, without using the hypothesis of locality. 

2. NONLOCAL BELL INEQUALITY FOR TWO OBSERVERS -PAB( - t 1, (7) 

Let us prove the Bell inequality in its traditional form where, for instance, 

without the assumption of locality. Another form of this +PAA~BB~(  + - + + 
inequality was treated in Ref. 6 (see also Refs. 7, lo.) Here 
Ad',  B,B1 are dichotomous variables that take on unit +PAA~BB~( + - + - 1. 
values: 

We substitute these expansions into the left side of ( 1 ) . 
A=*l,  A1=+l ,  B=*1 , B1=&l .  (2) As a result we obtain (omitting the lower labels on P) 
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The number operators for photons received at the de- 
tectors " +" and " -" in channel A have the form 

FIG. 1 .  Scheme for an intensity interferometer with parametric sources of 
light for two observers A and B. The correlated photons are created 
simultaneously in nonlinear elements 1 or 2 under the action of a pump P, 
and are directed towards A and B in two modes, one of which undergoes 
a phase shift (circles). The modes are mixed at a 50% light divider 
(dashed segment) and detected. 

If all the terms on the right side of (8) were to enter 
into the sum with a plus sign, this would be an partition of 
unity as in (4). Since half the terms appear with a minus, 
by virtue of (3), (4) the sum (8) lies within the interval 
[- 1, + 11. Thus, Eq. ( 1 ) is proved. 

3. EXAMPLE OF A VIOLATION OF BELL'S INEQUALITY (1) 
AND THE REASON WHY IT IS VIOLATED 

Why should inequality ( I),  which is based on very 
general assumptions [Eqs. (2)-(5)], be violated in prac- 
tice? 

Let us investigate the setup for the simplest experiment 
used to verify (1).5,1','2 TWO observers A and B simulta- 
neously record photons one by one at detectors "+" or 
"-"; we will assign the values A, B= + 1 or - 1 to these 
events. Changing the phase delays, i.e., a to a' and (or) p 
to p', constitutes a transformation from variables A and B 
to A' and (or) B'. Multiple repetition of these measure- 
ments allows us to compute the average entering into ( 1). 

The quantum state of the photons arriving at the de- 
tectors can be described by the Hilbert-space vector5 

where af and bf are operators for creating photons in the 
two signal (arriving at detector A )  and dummy (arriving 
at B) modes; j = 1,2 labels the crystal that radiates the 
corresponding mode (see Fig. 1 ) , while 1 0) denotes the 
vacuum. 

- + ,=a,a,= (1/2) [n;+ni+ (aTeia+uie-ia)], 
( 10) 

where na=a+a J -  J A . , 8- =ala$, 8, = (8) +. Analogous re- 
lations define n, in channel B. 

Let us find P(A,A1, B, B' ) by calculating the joint prob- 
abilities 

Here the primes denote the interchange of a and a' in ( 10) 
and (or) p with p' in channel B. As a result we obtain 

= (1/16) [ l  +AA1 cos(a-a') + BB' cos(P-D') 

We establish the following phases in the channels: 

which corresponds to a violation of ( 1 ) . In this case several 
joint probabilities turn out to be negative (the lower indi- 
ces are omitted): 

while direct substitution of (14) into (8) gives 2l/', i.e., the 
Bell inequality ( 1) is not satisfied. 

According to (12), (14) the normalization (4) and 
consistency conditions (5) are satisfied; therefore, the only 
reason for the violation of inequality ( 1 ) is the fact that 
(3) is not satisfied. 

Negative probability distributions have been encoun- 
tered in the literature in connection with the Einstein- 
Podolsky-Rosen paradox and Bell's theorem.'&15 How- 
ever, by defining the probability distribution function in 
the form P,(A,A1,B, B') we can compare (12), ( 14) with 
the original premises (3)-(5) and arrive at an unambigu- 
ous conclusion regarding the role of locality, or more pre- 
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cisely the lack of it, in producing the violation of (1). 
Furthermore, there is no need to introduce "hidden vari- 
ables." 

The probability distribution function P,(A,A1, B, B' ) is 
analogous t o  the Wigner distribution function. Not all of 
the observables entering into it are described by commut- 
ing operators, e.g., A and A'. They cannot be measured in 
the same realization (for various phase delays a and a', a 
single photon cannot be recorded at all by observer A). 
Consequently, direct measurement of P,(A,A1, B, B') is im- 
possible. However, indirect methods of measuring proba- 
bility distribution functions of this kind are nevertheless 
admissible. Thus, in Ref. 19 an original method was pro- 
posed and experimentally implemented that was intended 
for measuring two-dimensional Wigner distributions, in- 
cluding negative ones. Should we, perhaps, be resigned to 
negative probability, treating it, as Dirac did2', as a well- 
defined mathematical analogue of negative sums of money 
(see, also, the interesting discussions on this theme in Ref. 
IS)? 

Here is yet another analogy. Negative temperatures do 
not exist on the Kelvin scale. However, in quantum elec- 
tronics a formal description of population inversions using 
negative temperature is widely used. Although such a tem- 
perature cannot be measured with a thermometer, we can 
identify the state of the working levels and compute its 
negative value. Thus, once the existence of a distribution 
function P,(A,A1, B, B') is formally acknowledged, as it 
must be if the concepts of hidden variable theory are cor- 
rect, there is no longer room for the requirement that this 
function be unconditionally non-negative. 

4. NONLOCAL BELL INEQUALITIES FOR AN ARBITRARY 
NUMBER OF OBSERVERS N 

The appeal of Bell's inequalities for the number of ob- 
servers N> 2 is attributable principally to the quantitative 
increase (by a factor of 2(N-1)'2) of the disagreement with 
the predictions of the quantum We will begin 
this section, however, by introducing yet another variant of 
the proof of ( 1 ) for two observers (N=2). This version 
allows us to easily extend the proof to any number of ob- 
servers, N. 

Let us sequentially number the combined probabilities 
(6) which comprise the distribution function of the prob- 
abilities ( 3 ) ,  for example, in the sequence on the right- 
hand side of Eq. (8): 

make up the components of the vector I W); the normal- 
ization condition (4) here is expressed by 

Let us cast the average of products of two variables, 
e.g., A and B, in the form of the sum 

with analogous expressions for the other averages entering 
into ( 1 ). Then 

where the Bell observable for two observers 

can take on only the unit values * 1 by virtue of (2). 
Consequently, ( 1) follows from (3), ( 16), and ( 18). 

In fact, the proof we have given generalizes the deri- 
vation of the local Bell's to the nonlocal case. 
A further natural generalization is to go from two to an 
arbitrary number of observers N. 

Let us consider a random process described by 2N 
dichotomous variables that take on values of unity: 

Assume that there exists a positive-definite normalized 
probability distribution function 

which satisfies consistency conditions of the form 

along with analogous relations for other variables and 
lower-dimensional distributions. 

Let us also introduce the Bell observable of the form 

which is similar to that used in Refs. 5 and 22 to derive 
Bell's local inequalities. The variables in (20), however, do 
not correspond to the same set of unspecified parameters 
(A) ,  but are instead numbered sequentially through four 
corresponding probabilities, as in ( 15 ) . 

The recurrence relation (24) allows us to switch from 
Bell's observable for N=2 to Bell's observable for N= 3, 
etc. The prime on the last term in (24) means that the 
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primed variables in Bell's observable for ( N  - 1 ) observer 
were changed to unprimed variables, and vice versa. For 
example, 

while s~)=A$) .  The signs in (24)-(26) are arbitrary; 
however, if there is a sum in the first set of parentheses, 
there should be a difference in the second, and conversely. 

Comparison of (21), (22), and (24) allows us to con- 
clude that 

This is in fact the prototype of the nonlocal Bell's in- 
equality for an arbitrary number of observers, N. Its actual 
form can be calculated from (24). We must accordingly 
remove the subscripts M in (24), express s (~- ' )  and 
s(~- ') '  in terms of the variables in (20), remove all pa- 
rentheses, and average out each term. The resulting expres- 
sion should not be greater than unity in absolute value. For 
example, one possible combination of signs in (24) for 
N=3 is 

For clarity, we made the replacement A=A(') ,  B ~ A ( ~ ) ,  
C E A ( ~ )  and a similar replacement for the primed vari- 
ables. 

Relation (28) is equal to the corresponding Bell's in- 
equality, which was derived under the assumption of 
l o ~ a l i z a b i l i t ~ . ~ ~ ~ ~ ~ ~ ~  The same argument applies to Bell's in- 
equalities for arbitrary N. Since Bell's observable (24) is in 
formal agreement with the corresponding expression de- 
rived on the basis of the local theory of hidden 
parameters,5922 the local Bell's inequalities admit a gener- 
alization to nonlical inequalities based on the algorithm 
described above. 

As noted above, the quantitative violations of Bell's 
inequality increase by a factor of 2(N-1)'2 with increasing 
N . ~ , ~ ~ ~ ~ ~  On the basis of a quantum-mechanical consider- 
ation the left side of (28), for example, takes on the value 
of 2 under certain conditions. Furthermore, beginning with 
N= 3, we can graphically formulate the Greenberger- 
Horn-Zeilinger paradox, which is the subject discussed in 
the next section. 

5. THE NONLOCAL GREENBERGER-HORN-ZEILINGER 
PARADOX 

This beautiful paradox leads to a contradiction of the 
type + 1 = - 1 (Refs. 5, 22-24). It assumes complete cor- 
relation of the results of the measurement, e.g., 

(A'BC) =A' BC= (AB'C) =A BIC= (ABC') 

which is admissible in quantum theory. This is the case 
where we encounter the violation of the Bell theorem (28) 
alluded to at the end of the previous subsection. According 
to (29), we have 

We now show that this is impossible when requirements 
(20)-(23) are fulfilled. 

Under conditions of complete correlation (29), the 
components of PM that give AhBMCM= - 1 must equal 
zero. The same is true of the components that give 
AMBhCM=AMBMCh= - 1. As a result, out of 64 com- 
ponents of P(A,A1, B, B1,C,C') only eight nonzero ones re- 
main: 

but only one gives AhBhCh= + l! Furthermore, there is 
not a single component of PM with the property that any 
three out of four factors under discussion give the same 
signs, while the sign of the fourth is opposite. This is be- 
cause of the following product: 

= ( A ~ A ~ B ~ B ~ c ~ c ~ )  = + 1. (31) 

Thus, if we admit the condition of full correlation re- 
quired under these conditions, then the limitations (20)- 
(23) can hold only in the case where the product (30) 
equals + 1. The "nonlocal" Greenberger-Horn-Zeilinger 
paradox formulated in this way does not require the hy- 
pothesis of locality; hence, admission of this hypothesis 
does not destroy the paradox. These discussions are easily 
generalized to arbitrary N>3. 

6. NONLOCAL BELL INEQUALITIES FOR 
NONDICHOTOMOUS VARIABLES 

The algorithm for proving the Bell theorem for an ar- 
bitrary N described in Sec. 4 also allows us to generalize 
these Bell theorems to the case of nondichotomous vari- 
ables with values on the interval [- 1, + 11: 

To begin with let us consider the Bell theorem under 
these conditions for two observers. Turning to the Bell 
observable (25), we will show that when (32) is satisfied 
we have 
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Taking into account (32), we write 

Analogously, 

Let us add (34) and (35). As a result, taking (25) into 
account, we obtain 

from which (33) follows. 
The iterative character of the algorithm for generating 

the Bell observable allows us to conclude based on (32), 
(33) that I 5';) 1 < 1, etc., so that 

Let us now assume that the variables (32) take on a 
finite number of values K, which is always true in practice 
if only because of the finite number of experimental real- 
izations. When this is true, the dimension of the vector I P) 
increases to 22KN; however, (27) remains valid by virtue of 
(37). Thus, when conditions (21)-(23) hold the Bell the- 
orems obtained above must be satisfied for the case of non- 
dichotomous variables that satisfy (32) as well. 

7. CONCLUSION 

Thus, we have verified that dropping the assumption of 
locality does not "rescue" the theory of hidden variables 
(including nonlocal ones), nor its many modifications that 
start from "common sense," from the inconsistency with 
quantum mechanical results that follow from experiments 
capable of demonstrating violations of Bell's theorem or 
the Greenberger-Horn-Zeilinger paradox, experiments 
that can be implemented in principle and that have already 
been partially implemented in practice (for N=2).  The 
only argument that explains the contradictions that arise is 
the fact that in these cases there does not exist a positive- 
definite probability distribution function. 

This paper does not claim to cover all the possible 
quantum effects or to clarify the problem of nonlocality in 

quantum theory as a whole. For example, we may treat the 
behavior of a single photon in a Mach-Zender interferom- 
eter as nonlocal in the sense that the photon simulta- 
neously belongs to the two spatially separated modes 
(arms) of the interferometer. (See also discussions on this 
topic given in Ref. 5.) Nevertheless, the considerations 
presented here lead us to assert that neither the violations 
of Bell's theorem for N=2 that are already reliably re- 
corded, nor the other Bell paradoxes that as yet exist only 
on paper in the form of thought experiments, are grounds 
for introducing inherently unexplainable nonlocalities into 
quantum mechanics or turning to mysticism to address the 
problem. 
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