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We propose a general theory of coherent nuclear resonant and electronic scattering of 
Mossbauer y radiation by a perfect crystal in the case of two or more strong reflected beams, 
i.e., in the case of multiple diffraction, when the Braff conditions hold simultaneously 
for several sets of crystal planes. The geometry of possible experiments is discussed. A general 
method is suggested, enabling one to calculate the energy and angular dependence of 
observed intensities of diffracted beams for any geometry of the experiment, any crystal 
thickness, and hyperfine splitting of nuclear levels. As an example of an application 
of the theory, we consider the case of three-beam coplanar Bragg diffraction of Mossbauer 
radiation of energy 14.4 KeV in 5 7 ~ e ~ 0 3  crystals. 

1. INTRODUCTION 

Multiple diffraction of x rays is well known in x-ray 
optics. The effect was predicted by Ewald in the first half of 
this century almost simultaneously with the prediction of 
diffraction itself. In recent decades, research has been 
mainly concentrated on two remarkable features of multi- 
ple diffraction, namely the possibility of directly measuring 
the phase of the x-ray scattering and the en- 
hancement of anomalous transmission through an absorb- 
ing ~rys ta l . "~-~  The latter effect is related to Bloch waves 
with a special spatial structure, which has the crystal sym- 
metry and in which the points of the radiation field lattice 
coincide with those of the crystal Though the 
effect was predicted more than a quarter of a century 
ago>' numerous attempts to find it, using available x-ray 
sources, have been unsuccessful. Convincing experimental 
evidence has been obtained quite recently6 by means of a 
synchrotron radiation source. 

Making use of the synchrotron radiation solves the 
main problem in experimental studies of multiple diffrac- 
tion, namely the lack of intensity. In fact, to observe spec- 
trally stable (systematic) multiple diffraction in its pure 
form, the incident beam should be parallel, with an angular 
divergence of no more than 1" in two mutually orthogonal 
planes. Under laboratory conditions, the sources are sepa- 
rate atoms radiating a spherical wave. The intensity of the 
necessary plane wave component comprises only a small 
fraction of the total intensity, since the radiation from dif- 
ferent atoms is incoherent. The intensity problem becomes 
essentially intractable for laboratory sources of Mossbauer 
radiation. That is why no attempts have been made thus 
far to observe the multiple diffraction of resonant y radia- 
tion by crystal nuclei, while two-beam diffraction has been 
sufficiently well studied both and experi- 
mentally, making use of ordinary9'10 and synchrotron 
radiation1 sources. ; 

Only recently has it become possible to study experi- 
mentally the multiple diffraction of resonant nuclear y ra- 
diation in perfect crystals containing Mossbauer isotopes 

(mainly 5 7 ~ e )  due to rapid progress in making use of high- 
intensity synchrotron sources of a new type, radiating par- 
allel beams. As an example, we point to Ref. 12, where a 
diffracted beam intensity of 20,000 photons/s is reported 
for the nuclear 777 Bragg diffraction by a Fe203 crystal. As 
a source, the x-ray undulator of the TRISTAN storage ring 
(KEK, Tsukuba) was used. 

Thus, the task of constructing a theory of multiple 
diffraction of resonant y radiation becomes not only inter- 
esting, but also quite urgent, as a preliminary theoretical 
analysis could be very helpful in setting up fairly sophisti- 
cated experiments. From a physical standpoint, the multi- 
ple diffraction of Mossbauer y radiation seems to be of 
more interest than that of x rays, since the nuclear resonant 
scattering depends on two additional parameters-the dis- 
tance from resonance (in the case of energy resolution) or 
the time elapsed from the instant of radiation emission (in 
the case of time resolution), and the direction of the quan- 
tization axis in the case of hyperfine splitting of nuclear 
levels. 

From the standpoint of full use of the radiation inten- 
sity, it is worth considering so-called coplanar three-beam 
diffraction, where the incident and two diffracted beams lie 
in the same plane. In this case, two-beam diffraction is 
impossible, and three-beam diffraction is realized instead, 
but we have the same requirements on the angular diver- 
gence of the incident beam as in the case of two-beam 
diffraction. But these cases do not exist systematically, be- 
cause of the lack of free parameters to satisfy two Bragg 
conditions. For their realization, a certain relation between 
the radiation wavelength and distances between the planes 
for two sets of crystal planes must automatically hold, if 
only approximately. For a given 5 7 ~ e ~ 0 3  crystal and the 
Mossbauer radiation with energy 14.4 keV, several such 
cases have been found by van Biirck.13 

In the present paper, the author proposes a theory and 
calculation methods for the multiple diffraction of resonant 
y radiation, using the experience gained while studying the 
multiple diffraction of x rays. So far, there has only been 
two theoretical papers treating the problem,14,15 where es- 
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FIG. 1 .  Geometry of a possible experiment. 
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sentially the same special case of symmetric Laue diffrac- 
tion with the Bragg conditions satisfied exactly has been 
considered, using the analytic expressions for wave fields 
found earlier in Refs. 4 and 5 and neglecting hyperfine 
splitting. The general case, which includes the Bragg ge- 
ometry, hyperfine splitting, and angular dependence, can 
be analyzed only by robust numerical methods. In what 
follows we discuss the geometry of reflection-type (Bragg) 
diffraction, formulate the problem in a form convenient for 
numerical solution, and consider coplanar cases of three- 
beam diffraction. 

2. GEOMETRIC CONDITIONS 

Plane wave diffraction in a perfect crystal can be re- 
garded as elastic scattering, with the wave vector k,, of the 
incident wave changing by an arbitrary vector h of the 
reciprocal lattice and the radiation frequency remaining 
the same. This means that the absolute value of the wave 
vector kh of the "scattered" wave does not change, i.e., 

In the two-beam case, this condition can be satisfied in only 
one way for a given vector h. The three-beam case is real- 
ized when two vectors of the reciprocal lattice, for example 
h and g, simultaneously satisfy the Bragg condition ( 1 ), 
namely 

Expressions (2)  can be regarded as a set of equations for 
k,, , which for the given radiation wavelength A= 237/ko 
has only one solution and unambiguously determines the 
direction of k,, with respect to the crystal lattice. 

Nevertheless, due to a high crystal symmetry, in some 
cases we have degeneracy, and along with the given vectors 
of the reciprocal lattice, Eq. (1) is satisfied by other vec- 
tors. Three-beam diffraction is then impossible and, in- 
stead, multiple diffraction with more than three beams > 3 
occurs. We can imagine this in the following intuitive way. 

Two vectors of the reciprocal lattice can be inscribed in the 
circle that passes through three reciprocal lattice points 
and comprises a cross section of the Ewald sphere. If there 
are other reciprocal lattice points on this circle, this is just 
a spectrally stable degeneracy, i.e., degeneracy is indepen- 
dent of the length of the wave vector 16, which is the 
Ewald sphere radius. For a certain relation between the 
wavelength and the crystal lattice parameter, a spectrally 
unstable degeneracy could occur. A special case of spec- 
trally unstable degeneracy of the two-beam case into the 
three- (or more-) beam one is the coplanar case, where the 
vector k,, lies in the plane of the reciprocal lattice vectors h 
and g. 

Consider, for example, two asymmetric Bragg reflec- 
tions in which all the beams are on the same side of the 
crystal. Figure 1 shows the standard rotation axes of the 
crystal line sample and direction angles for the incident 
and diffracted beams. The xz plane is chosen perpendicular 
to the crystal surface. The angles 8 are formed by the x axis 
and the projections of the wave vectors onto the xz plane. 
The angles q, are the angles between these same vectors and 
their projections. From the point of view of setting up the 
experiment, the first task is to find the angles 8 and q, for 
the given configuration. These angles relate the Cartesian 
coordinates of the wave vectors in the following way: 

k,, = K [X cos qo cos e0 + Y sin q,, + Z cos po sin eO], 
( 3 )  . . 

kf=KIXcosqf cosOf+Y s inpf+Zcospf  sin Of, 

where f =h,g, K=2~/ i l ,  and X, Y, and Z are the unit 
vectors in the direction of the corresponding axes. 

If the Cartesian coordinates of the reciprocal lattice 
vectors h and g are known for the given coordinate system 
(see Fig. l ) ,  then the six angles eO, 90, Oh, qh, OP and q,, 
can be found from six equations following from (2). Thus, 
for the vector h we have 

h/K= sin ph - sin ipo , (4)  

h,/K = - cos q,h sin Oh - cos po sin eO. 
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Similar equations can be written for the vector g. 
The z axis of the Cartesian coordinate system is unam- 

biguously given by the normal to the crystal, but in the 
most general case we are free to choose the x and y axes. 
We can rotate the crystal about the normal to the surface 
until the vector h is in the xz plane. Then h,=O and, in 
accordance with (4), qh=qo. Consider next a simple but 
important case, in which hx is also zero (symmetric reflec- 
tion). In this case Oh= O0 , and since we have the additional 
possibility of rotating about the vector h, we can set 
qh =qo=O.  The other angles are determined in an invari- 
ant form as follows: 

sin O0=h/(2K), tg O,=A cos 8 d ( l - ~ ~ ) ,  
(5) 

cos pg=A/sin 8, 

where 

The coplanar case corresponds to cpg=O. According to ( 5 ) 
and (6), the condition 

must be fulfilled, and we also have the formula 

Consider now the parameters characterizing the degree of 
violation of the diffraction conditions, i.e., the degree to 
which the Bragg conditions are not satisfied. There are two 
ways of doing so. Either we rotate the crystal for the given 
beam directions, which is usually done in an experiment, or 
we vary the incident beam direction. The latter is conve- 
nient when taking into account the angular divergence of 
the incident beam. In the first case we change the direction 
of the reciprocal lattice vectors h and g, while the direction 
of the incident beam remains constant. We have 

where f=h,g. The standard rotation axes are the y (polar 
angular scanning) and z axes (azimuthal scanning), as 
shown in Fig. 1. Using the well known formula for the 
variation of the vector f when we rotate through a small 
angle A4 about the 1 axis, Af= (lXf)A+, we obtain 

Substituting ( 10) into (9), we find 

ah= - 2A8 sin 200, 

a,= -2A8 sin(OO+ 8,)cos cp,-2A$ cos O0 sin qg . 
In the coplanar case q,=O, and both parameters depend 
only on A8. 

To allow for the angular divergence and nonmono- 
chromaticity of the incident beam, it is convenient to add 
an increment q to the vector ko(ko-+b+q)  for fixed re- 
ciprocal lattice vectors. Then 

Introducing again the angle A8 in the xz plane, the angle 
Acp in the (ko,Y) plane, and the relative frequency varia- 
tion Aw/w, we can write the vector q in the form 

q=K[( -X sin eO+Z cosBO)A8-YAcp 

+ (X cos Oo+Z sin 00) (Aw/w)]. (13) 

Substituting ( 13) and (4) into ( 12), we find 

a h =  -2A8 sin 28,-4(hw/w)sin2 Bo , 
(14) 

a,= - 2A8 sin(OO+ 8,)cos 9,-2Acp sin qg 

Comparing ( 11 ) and ( 14), we see that polar scanning and 
horizontal beam divergence lead to the same result for a f .  
Azimuthal scanning and vertical divergence lead to results 
which differ only by a scale factor cosOo. 

As follows from ( 14), in the systematic case of diffrac- 
tion (p&O) the variation of the radiation frequency can 
be compensated for by the angle variations A8 and Aq, and 
the conditions ah = a,= 0 can be fulfilled over a wide range 
of wavelengths. In the coplanar case (cpg=O), only the 
angle A0 affects the Bragg conditions and 

ah= -2 sin 200[A8+ (Ao/w)tg 00], 
(15) 

According to ( 15), vertical beam divergence does not af- 
fect the Bragg conditions, and the radiation frequency shift 
(or the variation of the crystal lattice parameter-for ex- 
ample when the temperature is changed) leads to a decom- 
position of three-beam diffraction into two-beam diffrac- 
tions, i.e., the conditions a h = O  and a,=O are satisfied for 
different values of AO. This difference is given by 

From an experimental standpoint, the coplanar cases 
are also of interest, in that although the condition (7) is 
not satisfied exactly and the three-beam case is not feasible, 
it is possible nevertheless, to get two different cases of two- 
beam diffrection in one experimental setup and with one 
angular scan. 

3. GENERAL THEORY 

To formulate the theory, we use the approach sug- 
gested by Kagan and ~ fanas ' ev . ' ~  The electromagnetic 
field in a crystal is described by Maxwell's equation for the 
Fourier component E(k,w) of the electric field: 
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where K=w/c=2?~//1, A is the wavelength of the radia- 
tion, c is the speed of light, and j(k,w) is the Fourier 
component of the induced current density, equal to a quan- 
tum mechanical average of the Fourier component of the 
current density operator over the ground state of the crys- 
tal in the presence of an external magnetic field. Allowing 
for the crystal lattice periodicity, in the linear approxima- 
tion, in E we have in the most general case 

ji(lg,o) = (C~K'/~?T io)  C &(h,km)-~'(km,w), 
m i  

(18) 

where k,=b+h,, h, is the reciprocal lattice vector mul- 
tiplied by 27r, and gi(lg,k,) is the Fourier component of 
the polarizability tensor multiplied by 47r, in which all pos- 
sible processes, both of resonant interaction of y radiation 
with nuclei and of interaction with atomic electrons, are 
taken into account. 

Let a plane wave with the wave vector b satisfy the 
multiple diffraction conditions. In a crystal having the 
shape of a plate the vector ko can change only its z com- 
ponent (along the normal to the surface): 

Since the interaction of y radiation with the crystal is 
small, in the linear approximation the electric field remains 
transverse. This enables us to introduce two scalar ampli- 
tudes for each beam: 

where the subscript S=?T,U gives the polarization state, ems 
is the polarization unit vector, the vectors em, em, and 
s,=k,/K form a right-hand rectangular basis, and the 
index m=O,h,g, ... labels only strong waves satisfying the 
Bragg conditions ( 1 ) . 

Substituting (18) and (19) into (17),  allowing for 
(20) and neglecting all weak waves, the problem reduces 
to finding the eigenvalues and eigenvectors of the matrix 
whose elements are the amplitudes of kinematic scattering: 

where 

ss' ,,, is the Kronecker delta, and the parameters a, giving 
the degree to which the Bragg conditions are not satisfied 
were considered in the previous section. 

The matrix p",',, (a) describes the resonant scattering 
of y rays. For the hyperfine splitting of the ground and 
excited nuclear levels, 

where 

Here the index g labels the levels of the ground state, while 
the index e labels those of the excited state; I. is the nuclear 
spin in the ground state, o, are the frequencies of allowed 
transitions between the ground and excited states, r is the 
total line width allowing for inhomogeneous broadening, 
ro is the natural line width, Vo is the unit cell volume, the 
subscript a denotes atoms inside the unit cell, ra is the 
displacement of the ath atom, f ,, = exp[- ( (U,$,)~)] is 
the temperature-dependent Lamb-Mossbauer factor, ja(k) 
is the Fourier component of the current density operator 
for the ath atom, and r] is the concentration of the resonant 
isotope. 

To calculate the matrix elements of the current density 
operator, we usually need to expand them in a multipole 
series. For the transitions from low-lying excited states, as 
a rule, the first term of the expansion is sufficient. In what 
follows we will consider only M1 transitions. In this case 
the current density operator has the form 

where m is the operator of the magnetic dipole moment, 
whose matrix elements are1' 

Here I is the spin of the excited state, r l = I ' d ( l  +a) is 
the line width related to the radiative transition, a is the 
conversion coefficient, M=-1,0,1 is the radiation "mag- 
netic" quantum number, M, and Me are the quantum 
numbers of the projection of the nuclear spins in the 
ground and excited states onto the quantization axis (ac- 
cording to selection rules, only those transitions for which 
Mg=M,+M are allowed), no=nz is the unit vector in the 
direction of the quantum axis (internal magnetic field at 
nuclei), n, = r (n,&in,,)/fl are mutually orthogonal unit 
vectors in the plane perpendicular to the quantization axis, 
and 

are 3 j  symbols.18 
Substituting Eqs. (25) and (26) into (24), we find 
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ss' 
A,,, (gel = - 

where 

Here we use unit vectors m,, of the magnetic field polar- 
ization, and the a-dependence is due to the fact that the 
directions of the quantization axis at different atoms may 
differ. It is convenient to express the polarization matrix in 
terms of the magnetic field direction at the nuclei. It is 
easily verified thatIg 

The matrix xZm, describes the scattering of y rays by 
atomic electrons. It depends only on the "momentum 
transfer" kmt -k, , which is equal to the reciprocal lattice 
vector h,,,. The dominant contribution comes from El 
scattering. In this case, as is well-known from x-ray scat- 
tering theory,3 

Here ro=e2/mc2, f a  is the form factor (the Fourier com- 
ponent of the atomic electron density), A fi is the disper- 
sion correction to the form factor, o is the dipole contri- 
bution to the photoabsorption cross section, exp(- Wa) is 
the Debye-Waller factor, and Wa(h) =O.5 ( ( ~ , h ) ~ ) .  

Consider now the problem of N =  beam diffraction by a 
plate-shaped crystal in the most general case. Let the upper 
crystal surface diffract Laue-type plane waves for which 
y, > 0, and the lower surface Bragg-type waves for which 
y, <0, with the amplitudes of these waves being known. 
Let us construct a vector Dm, from them. As a result of 
diffraction, the outgoing waves at the upper crystal surface 
are of the Bragg type, while the waves at the lower surface 
of the Laue type, and the amplitudes of these waves are to 
be found. Let us construct a vector R,, from them, for 
which we need to find the matrix that transforms the vec- 
tor D into the vector R. The this end, as a first step, it is 
necessary to find all the solutions of the problem (21 ). In 
the N-beam case the matrix has the rank 2N, and by N=3  
this problem can only be solved numerically. As is well 
known, a matrix of rank 2N has 2N eigenvalues cj and 
eigenvectors EL,. 

A real field in the crystal is a superposition of these 
solutions with weights A,, which can be found from the 
boundary conditions. The latter, if we take into account 
the definitions introduced above, can be written in the form 

where I, = 0, if y, is positive, 1, = Kt/2yo if y, is negative, 
and t is the crystal thickness. Upon calculating the degrees 
of excitation for the eigensolutions (Bloch waves), we can 
find the amplitudes of the diffracted waves: 

where bm=O if y, is negative, and b,= Kt/2yo if y, is 
positive. 

These formulas give the solution of the problem im- 
plicitly. We find the explicit solution using matrix algebra. 
To make the notation simpler, we assume that the sub- 
script m subsumes both the beam number and polarization, 
and instead of ms we will simply write m. The eigenvectors 
form the matrix Emj of rank 2N, and the amplitudes A,, 
Dm, and R, are vectors in the same space. If we write them 
without subscripts, all additions and multiplications are 
understood to be generalized to a 2N-dimensional-space. 
Equations (21), (3 l ) ,  and (32) can be written as follows: 

where E , ~ ,  = E , ~ , , ,  is a diagonal matrix. The explicit solu- 
tion is now easily found in the form containing an inverse 
matrix: 

Let us call M,,, the dynamic scattering matrix. Unlike the 
kinematic scattering matrix G,,,, it depends on the crystal 
thickness. Obviously, in the limit t=O we have X= Y and 
M = I ,  where I is the identity matrix. It can be shown that 
for small crystal thickness 

i.e., the dynamic matrix is simply proportional to the ki- 
nematic one. 

Equation (34) yields a satisfactory solution only in the 
case of pure Laue geometry, with the Bragg beams being 
absent. If we have mixed Bragg-Laue diffraction, the ex- 
pression (34) is not suited to numerical solution even in 
the case of relatively thin crystals, let alone the case with 
t- W .  The point there is that when Bragg reflection takes 
place, some eigenvalues have a negative imaginary compo- 
nent E;. Moreover, if the number of Bragg beams is N B ,  
the number of such solutions is exactly 2NB. The physics 
behind these solutions is fairly simple. To each eigenvalue 
there corresponds a Bloch wave with a definite direction of 
the energy flux. In solutions with E; < 0, the energy flux 
has a negative z component, and these waves are damped 
for upward motion. These solutions can sensibly be called 

361 JETP 78 (3), March 1994 V. G. Kohn 361 



Bragg-type Bloch waves, while the other solutions, with 
positive E;, can be called Laue type Bloch waves. 

A solution appropriate for numerical calculations 
should not contain increasing exponents. To find such a 
solution, we order the subscript m according to decreasing 
y, and the subscript j according to decreasing E;. For the 
sake of simplicity, we denote all Laue-type indices by L 
and all Bragg-type indices by B. We also introduce diago- 
nal matrices 

In the new notation, the set of equations ( 3 1 ) split into two 
subsets, and can be written in the form 

ELL.AL+ELB.AB=DL, 
(37) 

EBL. CLL.AL+EBB. CBB.AB= DB.  

Here ELL and EBB are square 2NLX 2NL and 2NBX 2NB 
matrices, where NL=N-NB, and the matrices ELB and 
EBL are in general rectangular. This set is used to find the 
vectors AL and AB. The solution must be written in a form 
containing only decreasing exponents, i.e., instead of the 
matrix CBB, the inverse matrix c;$, should be used. Simple 
calculations yield 

where 

In new notation, (32) takes the form 

RL=ELL. CLL.AL+ELB. CBB.AB , 
(40) 

RB=EBL.AL+EBB.AB. 

Substituting the solution (38) for the vector A into Eq. 
(40), we finally obtain 

where the blocks of the dynamic scattering matrix have the 
form 

It is easy to check that, in spite of a relatively cumbersome 
form, these formulas are very convenient for numerical 
calculations irrespective of the crystal thickness and, par- 
ticularly, in the limit t- co . 

In a standard reflection-type geometry, a beam with 
wave vector ko strikes the crystal and the Bragg beams are 
measured (see Fig. 1 ). This case is described by the block 
MBL. In zeroth-order perturbation theory in the small ex- 
ponents we have 

This result in the theory of multiple x-ray diffraction was 
first reported in Refs. 20 and 21. 

When the suppression of nuclear reaction inelastic 
channels is observed directly, the intensity of Laue beams 
at the lower face of a thick crystal is of interest. This 
situation is described by the block MLL. In first-order per- 
turbation theory, (42) yields 

This result was first reported in Ref. 22. 
In contrast to approximate formulas, the general ex- 

pressions (42) can be used to calculate multilayer crystal- 
line systems. The corresponding recurrence relations for 
x-ray diffraction theory were first found in Ref. 23. How- 
ever, in the case of diffraction of Mossbauer y rays, this 
problem is not so urgent due to the lack of samples. The 
only situation that might conceivably be simulated is that 
of crystals with a temperature gradient normal to the sur- 
face. 

Once the reflection amplitudes have been found, the 
reflection coefficient of the ms wave into the m's' wave can 
be written as 

Under standard conditions, this quantity is to be summed 
over the index s' and, in the case of unpolarized radiation, 
averaged over the index s. 

4. SCATTERING IN AN FeBO, CRYSTAL 

FeB03 crystals are the most promising ones for mea- 
suring the diffraction of Mossbauer y radiation (see, e.g., 
Ref. 24). They have a rhombohedral unit cell of edge 
length a=  5.520 A. The angles q, between the nearest edges 
are 49.54". The unit cell volume Vo is 89.52 W3, and the 
density p is 4.27 g/cm3. (These data are taken from Ref. 
25.) The unit cell has two Fe atoms, two B atoms and six 
0 atoms. The reciprocal lattice is also rhombohedral, with 
edge length b=0.259 The angle qrh between the edges 
is 113.18" (cos C= -0.3936). 

In this case, the expression (30) for the amplitude of 
electron scattering of y rays can be transformed into a sum 
over different atomic species, and for each species a struc- 
ture factor can be introduced: 

where the sum is taken only over the coordinates of type b 
atoms, and Nb is the number of such atoms. As a result, 
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Here we use seconds of arc as units, and g=0.4848. 10W5 
rad . s-'. 

The structure factors for each atomic species in iron 
borate are strictly real and equal to 

where fhkl=0.5~(h+k+l)  and ~=0.59621~. 
The atomic form factor fb(h) is a tabulated function 

of sin OB/A = h/4n, and tables can be found in Ref. 26. In 
the isotropic approximation, the Debye-Waller factor is 
exp(- Wh) =exp( -0.5 (u2) h2). The constant (u2) can be 
found by averaging the data reported in Ref. 25; here we 
use (u2) =0.0026. The constants Cr and Ci in this specific 
case (A=0.861 ) are C,=-1.5322.10-~ and 
Ci= 3.157 respectively. The values of dispersion 
corrections can be found in Ref. 27, and the photoabsorp- 
tion cross sections in Ref. 28. At the wavelength involved, 
the dispersion correction A fk, is approximately 0.4, and 
the corresponding values for 0 and B can be neglected. 
The dipole parts of the photoabsorption cross section are o 
:=6085, a := 55, and a [=9. 

The nuclear scattering occurs from iron atoms only, 
and the directions of the internal magnetic field at the 
nuclei of two atoms in the same unit cell can be approxi- 
mately considered opposite. Scattering occurs via excita- 
tion of the spin I=3/2 state, with reradiation in the tran- 
sition to the 10= 1/2 ground state. Accordingly, M,= 1/2 
and - 1/2, and Me= - 3/2, - 1/2, 1/2, and 3/2. Here the 
sequence of quantum numbers corresponds to increasing 
energy of the levels. Selection rules allow the six transitions 
shown below together with the value of the quantum num- 
ber M, the squares of the corresponding 3 j  symbols, and 
the transition energy, in the units of I?, measured from the 
mean value. The sign of the quadrupole splitting constant 
is also given. 
n Transition M (3j12 AEon/r P,, - - - - -  
1 -3/2+ - 1/2 1 3/12 -54.93 1 
2 - 1/2+ - 1/2 0 2/12 -31.79 -1 
3 +1/2+-1/2 -1 1/12 -8.64 - 1 
4 -1/2- + 1/2 1 1/12 8.64 -1 
5 +1/2-+1/2 0 2/12 31.79 -1 
6 +3/2++1/2 -1 3/12 54.93 1 

(49) 

The Lamb-Mossbauer factor in the isotropic approxi- 
mation is 

irrespective of the index m. Moreover, in specific calcula- 
tions the values ~ = 0 . 9 5  and a=8.21 have been used. The 
total transition energy is 

where h= 1 +E, ,541 is the correction due to the effective 
field at the nucleus, A= 1.95 is the quadrupole splitting 
constant, and C=3 is the chemical shift. 

The nuclear scattering matrix can thus be written in 
the form 

f l + i f 4 ) k + 1 +  (f2+fs)p0+ (af,+t f6)k-,1, 

(51) 

where f n  = [2fi(o - wn)/T + i]-' are resonance factors for 
the six indicated transitions, 

Here h, k, and I are the indices of the reciprocal lattice 
vector h;,. 

In Eqs. (53) and (54), the vector no determines the 
orientation of the magnetic field at the iron atom with 
coordinates (0,0,0). This vector is strictly orthogonal to 
the (1,1,1) direction of the reciprocal lattice, i.e., it is in 
the plane of the crystal surface. However, it can have an 
arbitrary direction in the plane itself. We introduce an an- 
gle cpH and define the direction of the vector no in the 
following way: 

no=a sin qH+ b cos p H ,  (55) 

Here, as before, Z is the unit vector of the inward normal 
at the crystal surface. 

5. DIFFRACTION GEOMETRY: POLARIZATION 

To calculate the full kinematic scattering matrix, it is 
necessary to find expressions for the three vectors em, em, 
and sm in each beam, with m = 0, h, and g. The problem is 
solved in the simplest way if the formulas from Pinsker's 
book3 are used. The reciprocal lattice vectors h and g define 
a circle of radius R. For a vector R from the center to a 
point 0 we have 

The coefficients a and b are then easily found: 
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FIG. 2. Geometry of coplanar three-beam diffraction. 

In the general case Kso=R+cp, where p=P/P is a 
unit vector in the P=[hg] direction. Obviously, c = 

=t d m ,  and the sign is found from the condition 
so,> 0. In the coplanar case c=O. The vectors in question 
are 

sm = so+ hm/K, em,= E/E, E = [ps,] , 
(59) 

emu= [smem,l, Ym=smz 

Thus, all geometric quantities necessary for the calculation 
of polarization matrices can be found automatically. It is 
only necessary to give the indices of two reflections, h,k,l 
and h',k1,l', and the coordinates of the inward normal to 

the surface hit by the beam in the reciprocal lattice basis 
Zh, Zk, and ZI. The latter are almost always - 1, - 1, and 
- 1. The choice of the polarization vectors in the form 
(59) is convenient in that in the coplanar case all vectors 
em=p coincide with those for two-beam diffraction. The 
magnetic field polarization vectors are mm,=em, and 
mmo= - em,. 

6. SPECIFIC EXAMPLE 

The theory developed above makes it possible to study, 
with the help of numerical simulation, any multibeam con- 
figuration. A detailed analysis of all pertinent effects is 
beyond the scope of this paper. Here, as an application of 
the theory, we consider one case of coplanar three-beam 
diffraction from the 1,1,1 and 3,3,10 planes'3 of the 14.4- 
KeV Mossbauer line (il=0.861 A) in a FeB03 crystal. 
The geometric parameters are shown in Fig. 2. This case is 
of interest in that the 1,1,1 ( H )  reflection is structurally 
forbidden-i.e., the electronic scattering amplitude is zero 
and nuclear scattering occurs with a change in polarization 
state, and only for the four extreme lines of the hyperfine 
structure. The 3,3,10 ( G )  reflection is structurally allowed. 
In this case, along with electronic scattering, nuclear scat- 
tering occurs without a change in the polarization state. 

Such a qualitatively different character of scattering by 
two sets of planes is impossible in the case of x rays, and 

FIG. 3. Energy and angular dependence of the 1,1,1 
and 3,3,10 reflection coefficients for the sigma- 
polarized plane wave in the two- (left) and three- 
beam (right) cases. 

(E-E0)K 
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has never been considered. Furthermore, the character of 
the interaction for various hyperfine components strongly 
depends on the orientation of the magnetic field at the 
nucleus. Another new feature is that the coefficient in front 
of the resonance factor in the amplitude of scattering with 
polarization variation is purely imaginary, while in the case 
of scattering without polarization variation it is strictly 
real. This should obviously markedly weaken multiple in- 
teraction. Moreover, while the H-reflection is symmetric, 
i.e., the incident and diffracted beams form the same angles 
with the surface, the G-reflection is, on the contrary, mark- 
edly asymmetric (&=a. 1034). As follows from (22), 
this results in the G-wave amplitude being ten times 
smaller than that of the H-wave, and, consequently, the 
influence of the G-wave on the H-wave is much weaker 
than that of the H-wave on the G-wave. 

The features noted above, which can be found by a 
preliminary analysis, are fully confirmed by the results of a 
straightforward numerical calculation of the reflection in- 
dices as functions of the energy position between reso- 
nances (energy spectra) for various deviations from the 
Bragg angle. I have calculated two-dimensional energy- 
angle arrays for different values of the incident beam po- 
larization (pi or sigma) and magnetic field orientation at 
the nucleus. The strongest interaction arises for the sigma- 
polarized incident beam and the magnetic field in the scat- 
tering plane (qH=O). Figure 3 shows the calculated re- 
sults for this case. The reflection coefficients 

where m = h,g and s= r,a have been calculated for polar- 
ized radiation. To give a graphic example of multiple in- 
teraction, the two- and three-beam curves are shown in two 
plots of the same row. It is worth noting that for the indi- 
cated deviations from the Bragg angle, the two-beam case 
is impossible. It can be realized experimentally by varying 
the frequency of the incident radiation or some crystal 
lattice parameter (e.g., the temperature) at other angles. 
The curves are purely illustrative, and have been obtained 
by setting the matrix elements corresponding to the second 
reflection to zero. 

As follows from the calculations, over the range of 
angles corresponding to three-beam diffraction, the 
H-beam intensity varies only slightly, while the G-beam 
intensity decreases markedly. The decrease in reflection for 
Bragg diffraction, when we go from the two-beam to the 
three-beam case, is a standard effect in the case of x rays,173 
and is usually accounted for by energy conservation ( a  
100% reflection becomes a 50% one, but in two beams). In 
this case the reflection coefficients are not so large, and the 
phenomenon is a phase effect, i.e., the amplitudes of the 
waves scattered from the 0- and H-beams into the G-beam 
have different phases, which leads to their attenuation. It is 
necessary to note that the decrease occurs only at angles 
large in comparison with the dynamic Bragg angle, which 
corresponds to AOZ-~O". For small angles, on the con- 
trary, the reflection increases slightly. 

The main feature of multiple diffraction in general and 
of the present case in particular is the possibility of study- 
ing simultaneously a variety of diffractive reflections both 
in isolation and conjointly. The large number of parame- 
ters describing the interaction and diffraction geometry 
turn the study of each specific case into an independent 
investigation, and the amount of experimental data is 
much greater than in the two-beam case. The main result 
of this paper is a general formulation of the problem and a 
procedure for the analysis of specific physical situations. 
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