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We use a path integral method to develop a theory which enables us to calculate the 
statistical operator for a solvated electron in a molecular disordered system in terms of the 
density correlation functions of the surrounding medium. With this method we 
determine the effective potential and free energy surface as functions of the molecular 
microstructure of the medium. This, in turn, makes it possible to evaluate the shape of the 
absorption spectrum, its maximum, and its width. We give for a classical polar liquid 
a qualitative study of the effect of the state of the medium (its temperature, pressure, and ion 
density) on the absorption maximum and the width of the absorption band. The 
estimates obtained agree with the experimental data. 

1. INTRODUCTION 

There is at present a vast amount of experimental data 
on the absorption spectra of solvated electrons in various 
molecular The existing theory (see Refs. 3 and 4 
and also the review of Ref. 5)  enables us to calculate this 
absorption spectrum if we know some characteristics of the 
vibrational spectrum of the medium and the electron state. 
One basically assumes in that case that the vibrations are 
harmonic. 

However, for disordered systems the experimental de- 
termination or the theoretical calculation of the vibrational 
spectrum of the medium meet with considerable difficul- 
ties. This relates, first of all, to materials with complex 
molecular structure and a high degree of molecular disor- 
der (as an example we mention glasses, polymer melts, and 
so on). The behavior of such disordered media is statistical 
and can be described by a set of correlation functions. A 
classical liquid can also be considered a topologically dis- 
ordered system6 whose local microstructure is determined 
by the density correlation functions. In a number of cases 
(see, e.g., the review of Ref. 7 about molecular liquids) 
there exist well developed methods which enable one to 
calculate these correlation functions numerically or analyt- 
ically. 

The basic idea of the present paper is rather general 
and consists in finding, by using a statistical formulation, a 
connection between the shape of the absorption spectrum 
of a solvated electron and the density correlation functions 
of the surrounding medium. Attempts to determine this 
connection have been made many times in the case of a 
solvated electron (see Ref. 8 and references given there). 
However, we shall use a special technique, namely the path 
integral m e t h ~ d . ~  This technique enables us to calculate 
directly the statistical operator and thereby to determine 
the various equilibrium and kinetic characteristics of the 
electron state. 

The light absorption process is determined by the dy- 
namic behavior of two interacting subsystems: the electron 
state and the molecular medium in which the electron re- 
sides. In the general case it is necessary to study a chain of 

coupled equations of the Bogolyubov-Born-Green- 
Kirkwood-Yvon type.10 We consider a more simplified sit- 
uation and assume that the surrounding medium follows 
the change in the state of the electron adiabatically. 

In the second part of the paper we consider the state- 
ment of the problem and obtain the basic relations con- 
necting the probability for absorption and the statistical 
operator of the initial and final electron states. In the third 
part we derive the basic relations which determine the way 
the statistical operator depends on the density correlation 
functions of the medium. In the fourth part we find the 
connection between the effective potential for the solvated 
electron and the molecular microstructure of the surround- 
ing medium. In the same part of the paper we obtain equa- 
tions which determine the ground state and the first excited 
electron state in this potential. Different possible shapes of 
the absorption spectrum are studied in the fifth part of the 
paper. To demonstrate the possibilities of the method we 
give in the sixth part of the paper a qualitative study of the 
effect of the state of a classical polar liquid, its temperature, 
pressure, and ion density, on the absorption maximum and 
the absorption line width. We also give there a comparison 
of the results obtained and the experimental data. At the 
end of the paper we present the conclusions and a brief 
discussion of the results. The Appendix contains the deri- 
vation of some important formulas. 

2. STATEMENT OF THE PROBLEM 

We assume that the characteristic relaxation time of 
the electron state is considerably longer than the relaxation 
time of the surrounding medium, i.e., that the electron is in 
a state of equilibrium or quasiequilibrium with the me- 
dium. 

As the surrounding medium we consider a uniform 
molecular fluctuating medium of classical particles with an 
interaction energy U. 

We introduce the equilibrium density correlation func- 
tions of the medium, x , ,  which are defined as fo l l~ws: '~  
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Xexp[ -PU(R,Rf,R3 ..., R,]. 

Here x1(R)  denotes the average density of the medium, 
whereas x2(R,Rf) is the density-density correlation func- 
tion, which is related to the structure factor, 
xss, a Sss, .This correlation function can be determined 
from molecular modeling; for simple liquids one can obtain 
information about the behavior of this function from 
experiments.' 

In our case the state of the electron can be described by 
a statistical operator p ( r  ( t )  ,xI ,x2 ,... ) that depends on the 
electron coordinate r( t )  and the correlation functions of 
the medium. The probability W(w) for the absorption of 
light can be written as an integral over the time t of a 
product of the statistical operators pin of the initial and p 
of the final state, 

Xexp(-iwt)pf - dt. ( : ) 
Here w is the frequency of the absorbed light, d is the 
matrix element of the electron-photon interaction for the 
transition from the initial to the final state, and fl is the 
reciprocal temperature. In the aforementioned relation 
Zin=pin(B) is the partition function for the initial state of 
the electron. 

In the general case the probability for absorption in- 
cludes summation over all initial and final electron states. 
However, we retained only one term of the sum in (2), 
namely, the one characterizing the transition from the 
ground state to the lowest excited state of the electron. As 
a rule, notwithstanding this simplification, this enables us 
to determine rather well the absorption maximum, and in 
a number of cases to estimate the absorption line width as 
well. 

We note that the states of the electron and the medium 
are correlated and connected by certain general relations 
that determine the free energy surfaces of the initial and 
final electron states. The problem of determining the effect 
of the medium on the absorption spectrum consists in eval- 
uating the integral (2), taking into account the fact that 
the states of the electron and the surrounding medium are 
correlated. 

We define the free energy Fin of the initial and Ff of 
the final state as 

where B=it/?i is a complex variable. Equation (2) can 
then be transformed into a complex integral of the form 

i m  

~ ( w )  =d2 JPim exp[-8F(b,o)d$, (4) 

where 6 F  denotes the expression 

SF(@,@)= [(B-@)Fin(P-O) + O ( F f ( Q )  - f iw) I 

-In zin(P). 

To calculate the probability for the absorption of light 
it is necessary to evaluate the electron statistical operator 
in a molecular fluctuating medium for the complex vari- 
able 0, and to determine the free energy surfaces of the 
initial and the final states of the electron. 

3. EFFECT OF CORRELATIONS OF THE MEDIUM 
ON THE STATISTICAL OPERATOR 

We can write the statistical operator, p of a solvated 
electron in a medium of classical particles as the usual 
configurational integral over the particle coordinates R, 
and a path integral over the electron coordinate, 

In this form S denotes the action for the electron 

S r , , . . .  R = dB -i i(0)'+ x u,(r(8) -R,)]. J I m  S 

(6) 

In Eq. (6),  m is the electron mass and us is the pairwise 
potential of the interaction of the electron with the sth 
particle in the medium (the index indicates that this po- 
tential may differ for different kinds of particles if the me- 
dium contains several kinds of particles). We note that this 
potential can be estimated from the scattering by an indi- 
vidual atom. 

The dimensionality of the integral (5 )  is very large, 
and the main problem in evaluating this integral lies in 
judiciously reducing this dimensionality while preserving 
all interesting physical properties of the system. we study. 

Most importantly, we note that the statistical operator 
can be transformed to 

where the effective action Seff depends only on the electron 
coordinate and the correlation functions of the medium, 
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Here xs=xl is the average density of the particles of the 
sth kind and the density- nsity correlation functions 
xss, are defined simply. 

In Eq. (8),  fs(r(0)  -R) is the generalized Mayer 
function for an electron, 

Equations (8)  and (9)  determine the effect of the sur- 
rounding medium on the statistical operator of the electron 
in terms of the density correlation functions of the me- 
dium. 

In the general case, we can retain in Eq. (8)  correla- 
tions of those orders that we need. However, in many prac- 
tical cases we can neglect higher correlations in (8) ,  i.e., 
assume that A=O and that the medium is described by a 
Gaussian distribution of the density fluctuations. This is 
the standard method to reduce the dimensionality of a sys- 
tem in statistical physics. lo 

By neglecting all non-pairwise correlations, we have 
thus reduced the dimensionality of the configurational in- 
tegral to a calculation of ordinary double integrals. 

4. EFFECTIVE POTENTIAL FOR A SOLVATED ELECTRON 

The next step consists in evaluating the statistical op- 
erator of an electron with the effective action (8).  An es- 
timate of this statistical operator can be obtained by the 
trial action m e t h ~ d . ~  For a localized state of the electron it 
turns out to be possible to obtain by the trial action method 
an effective Schrodinger equation that determines the state 
of the electron in a molecular medium. We note that the 
way given below to obtain such an equation is analogous to 
the optimum fluctuation method." 

Using a trial action So we can estimate the statistical 
operator as follows 

where 

(So-Seff)s0= J (So-SeR)exp( -so) Dtrl. ( 11) 

Equation (10) is valid for any real So, but the estimate 
(10) for the statistical operator will be optimal if we 
choose the parameter So such that the right-hand side of 
(10) is a maximum. To do this we interchange the inte- 
gration over space and the path integral. The problem re- 
duces to evaluating (f,) and ( fJs,).For a localized state 
of the electron we can evaluate the generalized Mayer 
function if we know the wave function of the electron for 
some trial action. 

We introduce a trial action So with a potential Vo, 
which determines a set of electron wavefunctions #, with 
energies En,  

Using a two-level approximation and considering only the 
ground state #in and the first excited state # of the electron 

we obtain (see Appendix) an estimate of the Mayer func- 
tions for the initial f ('") and final f ( f )  states of the elec- 
tron, 

. - 
( f:f)(P)) =exp[-P I #;(r)us(r-R)dr - 1. I 
The functional free energy can be expressed as 

where 

For the final state we obtain a similar expression for the 
functional with the appropriate substitution of f c f )  for 
fin). 

We have thus reduced the path integral (7 )  to an or- 
dinary functional of the energy that depends on the wave- 
function 4 of the electron, the potential u(r-R) of the 
interaction of the electron with a single particle, and the 
correlation functions X, and x,, of the medium. 

The best estimate of the partition function is deter- 
mined by the optimum choice of So, #,, and #f. This 
leads to the problem of finding the extremum of the free 
energy functional F, which yields the effective Schrodinger 
equation for the ground state and excited state wave func- 
tions of the electron, 

This Schrodinger equation has a simple physical interpre- 
tation. The electron induces fluctuations in the density of 
the medium and locally changes the average density of the 
medium, after which the electron is self-localized in these 
local fluctuations. This mechanism is similar to the mech- 
anism for forming a fluctuon.12 

Equation ( 17) determines a self-consistent potential 
for the electron that is in complete equilibrium in a molec- 
ular medium. The long-range and short-range parts of the 
potential are the same as the result of the continuous and 
semicontinuous theories of the self-consistent field for a 
solvated electron,13 and the effective potential can be writ- 
ten in the form 
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Here O ( r )  is the Heaviside step function, rp is the radius of 
the well, and Vo the depth of the well, which is determined 
by the parameters of the medium in a complicated way, but 
in the classical limit as 0-0 we find 

where we have uo= JL(r)dr; L is the short-range part of 
the potential of the interaction of the electron with the 
particles of the medium, p = B a ,  is the average density, 
and S(0)  is the Fourier component of the structure factor 
for k = 0. 

In turn, Up is the polarization part of the effective 
potential, which is defined as 

The whole discussion given above can also be repeated 
for electron states in partial equilibrium with the medium 
and, in particular, for the case in which the electron po- 
larization is not in equilibrium with the electron configu- 
ration and it is necessary to eliminate it from Eqs. (13) to 
(17); this is the adiabatic (polar) approximation. The dif- 
ference between the adiabatic and the self-consistent treat- 
ments of the state of a solvated electron were discussed in 
Ref. 14. In the simplest case one can take this difference 
into account by replacing the factor c= 1 - ( I /€)  by the 
Pekar factor ceff= (I/€,) - (I /€) ,  where E ,  and E are the 
high- and the low-frequency dielectric constants of the me- 
dium. 

5. SHAPE OF THE ABSORPTION SPECTRUM 

We can obtain an estimate such as (10) for the statis- 
tical operator p(6)  for a complex variable 6 if we analyt- 
ically continue the functions Fin(@ and Ff(6)  into the 
complex domain. As a result we get for the integrand of 
(4) 

We shall see below that E:") is a reorganization energy. 
Although it is not especially difficult to get general expres- 
sions for these quantities, we restrict ourselves because of 
the unwieldiness of these expressions to the limiting case of 
high temperatures, P-0. In Eq. (21 ), we can then retain 
only the term with n=2 in the sum, 

E : ' ) _ E ( ~ )  =E 
r - r  

We carry out the analysis of Eqs. (21) and (22) sim- 
ilarly to _what was done in Ref. 4. Depending on the pa- 
rameter_S-B ,@, two limiting cases can be realized: 

1. S) 1 (strong coupling and major reorganization of 
the medium). 

The integral (4) can then be estimated by the steepest 
descent method. In that case the largest contribution to 
(4)  comes from the vicinity of the saddle point and the 
shape of the spectrum is Gaussian: 

where 

Here wmax and A denote the frequency of the absorption 
maximtm and the halfwidth of the absorption line. 

2. S 4  1 (weak coupling and a minor change in the 
state of the medium when light is absorbed). 

In this case it is necessary to take the whole integration 
range into account; the main contribution comes from the 
region with large I Im6 1 , for which the function SF  (6)  is 
linear in 6. The shape of the absorption spectrum will be 
that of a Lorentzian, 

A detailed analysis of Eq. (21) shows that the terms 
dropped from the sum do not qualitatively change the sit- 
uation for those limiting cases, and only lead to a certain 
asymmetry of the absorption line for w>omaX and 
@<Wmax. 

6. EFFECT OF THE STATE OF THE MEDIUM ON THE 
ABSORPTION MAXIMUM AND THE ABSORPTION LINE 
WIDTH 

In the general case one must carry out the calculation 
of the absorption spectrum numerically by solving the 
Schrodinger equation ( 16) and subsequently calculating 
the parameters of the spectrum. To demonstrate the pos- 
sibilities of the proposed method we give in this part of the 
paper qualitative estimate of the effect of the medium 
(temperature, pressure, ion density, and so on) on the ab- 
sorption maximum and the width of the Gaussian absorp- 
tion spectrum for a solvated electron in a classical polar 
liquid. 

We note above all that for a pure Coulomb potential 
we have 

Here U is the potential of the electron in its ground state. 
The last equality in the foregoing relation is obtained using 
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the virial theorem. For a polaron potential we can find 
similarly that fiw,,, = ~ c I  U I where C3: 1 is a numerical 
coefficient of order unity. The short-range forces lead to 
some reduction in this coefficient, C%0.5 to 1, but for a 
rough estimate we can put C= 1 and determine the effect of 
the medium on the absorption maximum through its effect 
on the potential energy. 

We write the reorganization energy as 

where I$! is the reorganization energy connected with the 
change in the effective potential in the well; one can esti- 
mate this energy to be 

The main role in the reorganization energy is played by the 
second term in Eq. (27) for strongly polar media. 

6.1. Influence of the temperature 

We note that the temperature-dependence of the di- 
electric constant is weak, and numerical results" show that 
this dependence does not cause a shift in the absorption 
maximum. Neglecting this dependence, we find that 

In this last estimate we neglected the weak temperature 
dependence of the density and the well radius. Substituting 
Vo- 1-2 eV, we find dfiomax/dT- - 14-28. According to 
Ref. 1, the experimental data fall in this range. 

For the halfwidth of the absorption band we get a 
square-root dependence on the temperature which has 
been studied several times experimentally and theoreti- 
cally: 

6.2. Influence of the pressure 

Proceeding similarly, we find the way the shift in the 
absorption maximum depends on the pressure P: 

dfiw max 

dP 

For highly polar liquids with E )  10, the last term does not 
give more than 10 percent and the behavior of the shift will 
be basically determined by the pressure dependence of the 
density. This correlation was noted experimentally in Ref. 
16. 

6.3. Dependence on the ion denslty 

The presence of ions leads to Debye screening of the 
polarization potential. For a strongly diluted solution, one 
can find that 

where rd= (e2n@) -'" is the Debye radius and n the ion 
density. As a result, 

This estimate correctly determines the sign of the shift in 
the absorption maximum when ions are added, and has 
been observed in experiments."-'9 The above dependence 
was first obtained theoretically in Refs. 20 and 21. 

For the width of the absorption band we must take into 
account the next terms in the expansion that are propor- 
tional to n, and as a result we find 

where rzp is the characteristic size of the excited state of the 
electron. This dependence also explains the asymmetry in 
the absorption line broadening. Since the broadening is 
proportional to the size of the excited state, the broadening 
will be larger for the higher-energy ls+3p transition, 
which leads to an increase in the broadening of the whole 
absorption band in the short-wavelength direction. Such an 
asymmetry in broadening was observed experimentally in 
Ref. 17. 

Finally we emphasize a last fact. For liquids with a 
significant preponderance of dipole forces we have Uag, 
where g is the Kirkwood factor. It follows from our con- 
siderations that the absorption maximum will be propor- 
tional to this factor. This correlation has repeatedly been 
noted experimentally by different authors (see the reviews 
in Refs. 22 to 24). A more detailed analysis25 shows that it 
is roughly satisfied, which from our point of view can be 
explained by the influence of various effects-for instance, 
the influence of the short-range part of the potential of the 
interaction of the electron with the particles of the medium 
may lead to some deviations in this dependence. 

7. DISCUSSION AND CONCLUSIONS 

We have proposed a method that makes it possible to 
evaluate the effect of the molecular microstructure of the 
surrounding medium on the state of a quantum particle in 
a polar disordered medium of classical particles. Although 
in the present paper we have considered only an excess 
electron in a uniform liquid, we feel that this method can 
also be used to calculate electron states localized in the 
inhomogeneities of the medium. Quantum-mechanical or 
cluster calculations may then be included in the scheme for 
calculating the statistical operator of the quantum particle. 

The method developed here is used to determine the 
shape of the absorption band for a solvated electron in a 
polar liquid. We note that this method can be applied not 
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only for calculating optical transitions but also for any 
other transitions connected with charge transfer, in partic- 
ular for an estimate of the electron transfer rate. In the 
present paper we gave a qualitative estimate of the influ- 
ence of the temperature, pressure, and ion density in the 
liquid on the absorption maximum and the absorption line 
width. The estimates obtained for the shift in the maxi- 
mum and the absorption line broadening agree with exper- 
imental results. These estimates show that the temperature 
dependence and pressure dependence of the absorption 
maximum is basically determined by the way the micro- 
structure of the closest surroundings depends on the state 
of the medium through a change in its configuration. Such 
a conclusion agrees with the results of quantum-chemical 
calculations using a configuration model of a hydrated 
electron.26 At the same time, according to our estimates 
the way the absorption maximum and the absorption line 
width depend on the ion density is determined by the De- 
bye screening of the long-range part of the effective poten- 
tial for the solvated electron. The proposed method thus 
allows us to take into account the influence on the absorp- 
tion spectrum of both the local microstructure of the me- 
dium and the long-range part of the potential for the in- 
teraction of the electron with the medium. 

We hope that this method will be useful not only for 
the widely studied case of an electron in a polar liquid, but 
also for the less trivial examples of media with a high 
degree of molecular disorder such as, for instance, polymer 
liquids or spin glasses. 

APPENDIX: ESTIMATES OF THE GENERALIZED MAYER 
FUNCTION FOR AN ELECTRON 

We obtain relations for (fs(r,(t)),  ( fJs,) (in what 
follows we omit in the equations the dependence of the 
generalized Mayer function for an electron on the particle 
coordinates of the medium). Expanding the exponent in a 
Taylor series, we can rewrite Eq. (9) in the following form 

where p(r;r),p(r,rf;r',r), ... are single-, two-, and multipar- 
ticle density matrices determined by the action So. In the 
general case they are related to the corresponding 
n-particle Green functions, 

where G(r,r) is the single-particle and G, the n-particle 
Green function for Eq. ( 12 ), 

If us<Ein, we can obtain the estimate 

We can neglect the last term in Eq. (A2) for u,(Ei,. In 
that case the n-particle density matrix will simply be the 
single-particle Green function to the power n. As a result 
we get 

We can similarly obtain relations for ( f s  f,,). 
We neglect the contribution from the excited states in 

(A5) when the ground state level, Ein is dominant, i.e., 
when /?(Em-Ein) b-0, 

whence Eq. (9) follows for (f ,). 
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