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We consider a semiphenomenological model of developed turbulence based on the 
Navier-Stokes equation with an eddy viscosity v(k)k2- k213 and a random external force. 
We use an infrared perturbation theory (and also a direct single-loop approximation 
calculation) to show that all IR divergences (i.e., the singularities as L-. oo, where L is the 
external scale of the turbulence) vanish in the single-time correlation functions. This 
means, in particular, that in the model considered, the energy spectrum is described by the 
Kolmogorov "5/3 law." We calculate the velocity pair correlator and the response 
function in the simplest approximation of the IR theory and discuss their analytic properties. 

1. INTRODUCTION 

An important characteristic of (homogeneous, isotro- 
pic) developed turbulence of an incompressible viscous liq- 
uid is the turbulent energy spectrum, which is determined 
by the single-time velocity pair correlator 

(q,,(x,t)q,,(x+r,t)) dlrelkrpi,(k)D(k) (1) 

through the relation 

d ~ ( k )  = c d P - ' ~ ( k ) / 2 ,  cd= (d- 1 )sd/(2?7) , 

Here q,;(x,t) is the transverse (by virtue of the incompress- 
ibility condition) velocity vector field, d >  2 is the arbitrary 
(for generality) dimensionality of x space, k is the momen- 
tum (wave vector), P. . (k)  =Gij-kikj/k2 is the transverse 

a/2 projector, and Sd=2?7 /r(d/2)  is the surface area of the 
unit sphere in d-dimensional space. 

According to the main assumption of the phenomeno- 
logical Kolmogorov-Obukhov theory (Ref. 1, 521; Ref. 2, 
Ch. 3, 533), the turbulent energy spectrum in the inertial 
range L %  l/k$ l D  (where L is the external scale of the 
turbulence, i.e., the characteristic size of the large-scale 
vortices which pump in the energy, and I ,  is the dissipative 
length at which viscosity becomes important) is deter- 
mined by a single parameter W, the average energy pump- 
ing power (equal, with a minus sign, to the average rate of 
dissipation). Dimensionality considerations then deter- 
mine the spectrum, apart from a numerical factor, in the 
form 

and it is explained by the strongly developed fluctuations in 
the parameter W. In the framework of various models, the 
index 6 in (4) is connected with the statistical character- 
istics of the large-scale vortices which pump in energy 
(Ref. 1, 525) or with the dimensionality of fractal struc- 
tures formed by small-scale vortices in the dissipation 
region. 6 

As a microscopic model of developed turbulence one 
considers usually the Navier-Stokes equation with an ex- 
ternal random force which imitates the pumping of energy 
by large-scale pulsations (Ref. 1, 528.4) : 

Here q, is the velocity field, p and F are, respectively, the 
pressure and the transverse external random force per unit 
mass, R =  -vd2, or in the momentum representation, 
~ ~ = v k ~  with the kinematic viscosity coefficient v. We as- 
sume for F a Gaussian distribution with zero mean and a 
given correlator: 

The pumping function d,(k) is assumed to be concen- 
trated in a region of small k- 1/L, the parameter W takes 
on the meaning of the power conveyed by the random 
force, and its average value is connected with the function 
dF through the relation: 

where A =  1.3 to 2.3 is Kolmogorov's constant. 
J 

Both experimental and theoretical evidence is known 1" a number of papers7-' a modification of the model ( 5 )  

in favor of some dependence of the turbulent spectrum in and (6) was in which One 

the inertial range on the external scale of the turbulence; R ~ =  yk2'3, dF(k) =ak-d. 
see the discussion in 525 of Ref. 1, Ch. 3 of Ref. 2, and p. (8) 

323 of Ref. 3 and the literature cited there, and also the The choice (8)  corresponds to the assumptions of the 
later Refs. 4, 5, and 6. The deviation from the spectrum Kolmogorov-Obukhov theory in the sense that the param- 
(3) is usually written in the form eters a and f' have the dimensionality of W while the 
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zeroth approximation of perturbation theory in the dimen- 
sionless parameter g= a/? reproduces the spectrum ( 3 ) . 
In correspondence with the ideas of Ref. 2 one can 
consider9 the model (8) as the analog of the fluctuation 
theories of critical phenomena which for the Kolmogorov- 
Obukhov theory corresponds to the self-consistent field ap- 
proximation. We must note some inconsistencies in the 
model (5)-(8). Simultaneously with an effective turbulent 
viscosity and the correlator (8) of the random force, the 
contribution of the nonlinearity in the Navier-Stokes equa- 
tion (5) is completely taken into account and it shapes 
them. [Usually in papers on the application of the renor- 
malization group (RG) in the theory of turbulence, the 
correlator of the random force is chosen in the form (8) 
and its independence of the viscosity is proven; see Refs. 10 
and 1 1 .] 

The external scale L of the turbulence and the dissi- 
pation length ID are taken into account in the model (5) to 
(8) through an infrared (IR) cutoff of the momenta in all 
perturbation theory diagrams at the magnitude m -- L- ' 
and an ultraviolet (UV) cutoff at I,'. The Ward identity, 
which expresses the Galilean invariance of the theory, 
guarantees the cancellation of the UV singularities of the 
diagrams in each order of perturbation theory, so that the 
correlation functions have a finite limit as ID+O and are 
independent of 1, in the inertial range. In the m -. 0 region, 
the separate contributions of perturbation theory contain 
strong (powers of m) IR singularities, but these singular- 
ities are not connected with dynamic interactions (which 
shape the spectrum) of the vortices but with the kinematic 
effect of the transfer of vortices in the inertial range as a 
whole by large-scale vortices of size ~r L, so that they are 
removed by transforming to a frame of reference moving 
with the constant random velocity of the large-scale vorti- 
ces and do not thereby affect the shape of the spectrum.12 
Technically, the splitting off of singular contributions con- 
nected with the transfer is realized by means of various 
schemes in infrared perturbation theory (IRPT; see Refs. 
13, 14, and 15). 

After eliminating the power singularities there remain 
weaker singularities (logarithmic in m as m-0). Their 
contributions were summed in Refs. 7 and 9 using a RG 
technique (in the form of Wilson recursion relations in 
Ref. 7, and in a quantum field formulation in the two-loop 
approximation in Ref. 9), applied directly to the IR diver- 
gences of the perturbation theory diagrams (as for the le- 
gitimacy of such an approach, see below). As a result, one 
found in Ref. 7 for the spectrum (4): f (kL)  I: l/ln(kL), 
and in Ref. 9: f ( k ~ )  ~r ( k ~ ) - "  61: 1 . 7 ~  loF2 (the differ- 
ence between the results of Refs. 7 and 9 is explained, in 
particular, by the fact that in Ref. 7 one assumed that 
y < 0, which changes the nature of the stability of the fixed 
point in the RG. 

We show in the present paper that all contributions 
which are singular as m -0 in perturbation theory for the 
model (5)-(8), both the power and the logarithmic ones, 
vanish completely when one changes to single-time corre- 
lation functions. This proves, in particular, that the energy 
spectrum in the model (5)-(8) has the Kolmogorov form 

(3). The vanishing of the singular contributions in single- 
time correlators is explained by the fact that they are con- 
nected with the kinematic effect of the transfer in the in- 
ertial range of turbulent vortices by large-scale vortices, the 
velocity of which depends on the time, and that they are 
completely removed by transforming to the appropriate 
frame of reference. The neglect of the time-dependence of 
the velocity of the large-scale vortices is the cause of the 
apparent "penetration" of the external scale L in the iner- 
tial range in Refs. 7 and 9. A Galilean transformation with 
a time-dependent parameter was considered in Refs. 10 
and 11. 

A great many papers have been devoted to the problem 
of a foundation of the Kolmogorov scaling in the frame- 
work of a micromodel such as (5), ( 6 )  (see Refs. 13 and 
14 and the literature cited there). In those papers one usu- 
ally considered skeleton self-consistency equations with 
"dressed" lines (Wyld's diagram technique), and the prob- 
lem posed is to prove the existence in those equations of 
Kolmogorov type solutions. Skeleton diagrams with Kol- 
mogorov lines contain IR divergences of the kind described 
above, and the problem is reduced to proving that they 
vanish in single-time correlation functions. Such a proof 
was obtained in a paper by Belinicher and ~ ' v o v ' ~  in the 
framework of an "internal diagram technique," and in a 
preprint by Tur and ~anovsk i i "~  using the so-called "bal- 
listic mode" elimination procedure. 

It is necessary to make clear that in the present paper, 
in contrast to Refs. 13 and 14, we consider not a micro- 
scopic, but a semiphenomenological model of the kind of 
Refs. 7-9, with an effective vortex viscosity and a random 
force correlator of the form (8). Instead of the self- 
consistency equations, we use in this case the usual pertur- 
bation theory in the coupling constant g=a/y3, which 
turns out to be possible since the correlator (8) is also 
nonvanishing in the inertial range. 

The plan of our paper is the following. We perform in 
$2 an explicit calculation of the contributions which are 
singular as m -+O in the single-loop approximation for the 
velocity pair correlator, and we verify that they vanish in 
the single-time correlator. We briefly discuss the applica- 
bility of the RG technique and the renormalization theory 
to remove IR divergences. We give in, Sec. 3 a general 
proof of the vanishing of singular contributions for single- 
time correlators in all orders of perturbation theory. It is 
based on a generalization of IRPT in the form of Ref. 15, 
which makes it possible to take into account the time de- 
pendence of the large-scale field. We obtain explicit expres- 
sions for the pair correlator and the response function in 
the simplest IRPT approximation, the first of which repro- 
duces the single-loop result of $2 when we expand the 
perturbation theory series in g.  We note that the IR diver- 
gences lead to a vanishing of the singularities of the re- 
sponse function in the w plane. In $4 we discuss the results 
obtained. 
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(vv) = - + + + FIG. 1 .  Pair correlator (qq) in the one-loop appmrima- 
tion. 

2. SINGLE-LOOP APPROXIMATION 

The stochastic problem (5)-(8) is equivalent to the 
quantum theory of two transverse vector fields = q,ql  
with the action6' '0'11 

S ( Q ) = q ' D ~ ' / 2 + q ' [ - d @ - R q -  (qd)q] .  (9) 

Here DF is the random force correlator (6) with the func- 
tion dF from ( 8), the operation R has the form ( 8) in the 
k representation, and we assume the necessary summations 
over the vector indices of the fields and integration over 
their arguments. 

The action (9) corresponds to the standard quantum 
field diagram perturbation theory with bar propagators, 
which in the w, k representation have the form 

and from its analysis it is clear that the contributions which 
are singular as m -0 are generated by the region of small 
k z m ,  i.e., by the "soft" line (q~rp)~;  when we evaluate 
them we can completely neglect the k dependence of the 
"hard" momentum q in Aij and R,, i.e., we can set q=p. 
By virtue of isotropy we can make the substitution 
Pmm, (k)  + 6,,, (d  - 1 )/d, after which we can change to 
an integral over k = ( k 1 , 

with the coefficient Cd from (2). In (14) we have written 

dk 
I (z) = 

kRt(Rk+z) 

(The vector indices omitted from (10) are all common to One can easily evaluate the integral ( 151, which gives 

the transverse projector), and the triple vertex (compare Ref. 9)  : 
q' (qd )q  = q'iVij~j4)s/2 with vertex factor 3 

I ( z )  =- {R;' +z - ' l n (R , /~~)  
Vi,,(k) =ikPij(k) + ikjPis(k), (11) 22 

where k is the momentum entering into the vertex through 
the field q'. All momenta are bounded from below 1 k 1 Gm, 
by the quantity m= L-' ,  which is of the order of the re- 
ciprocal of the external turbulence scale. The role of the 
coupling constant is played here by the dimensionless pa- 
rameter g=a/y3, with a and y from (8). 

We give in Fig. 1 a diagram representation of the ve- 
locity pair correlator (qq )  in the single-loop approxima- 
tion, i.e., up to g2. The lines without cancellations corre- 
spond to the bare propagator ( q q ~ ) ~ ,  the lines with 
cancellations to (qq'), with the end q' canceled. We first 
evaluate the contributions of the I-irreducible self-energy 
loops which enter through factors in (qq) ,  and which are 
shown in Fig. 2. According to ( 10) and ( 11 ) the loop in 
Fig. 2(a) corresponds to the analytic expression (compare 
Ref. 9)  

The first two terms are singular as m - 0 and the last one is 
finite; we neglect it in what follows. (Note that there is 
apparently an error in the coefficient of In R, in the ex- 
pression in Ref. 9 corresponding to ( 16). Expressions ( 14) 
to (16) are thus the singular part of the loop in Fig. 2(a). 
We now turn to the diagram in Fig. 2(b), for which 

Ai j (~ ,k )  where 

X k d ( 0 2 + ~ : )  ( i ( ~ - W )  +R,) y 

(12) 
Bij= Vimn(~)Pmml(k)Pnnt(q) VjrnPnt( -p), 

in which f l  and p are the external frequency and momen- 
tum, w and k are integration variables in the loop, we have 
written q=p-k, and 

is the contribution of the vector index factors in (10) and a b 
( 11 ) . The integration region over k in ( 12) is restricted by 
the conditions k,q<m. Integrating over @, we are led to the FIG. 2. Single-loop contributions to the I-irreducible functions (VIP) 
expression and (9'~'). 
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and the rest of the notation is as in ( 13 ) . The singularities 
as m -0 are again produced by the soft lines ( q ~ q ) ~ ,  i.e., 
the region of small k and q. Their contributions are the 
same because of the symmetry of the diagram in Fig. 2(b), 
so we consider only the contribution from small k- m and 
take the second contribution into account by a factor 2. As 
before, we make the substitution q+p, Pmm1(k) 
4 S,,, (d  - 1 )/d and change to an integral over k: 

where I is the integral ( 15). Expression ( 18) is the singu- 
lar contribution of the diagram of Fig. 2(b). 

Comparing Figs. 1 and 2 for the singular part of the 
correlator (qq) in the single-loop approximation, we find 

where we have written z= - iQ + R, , a =zz* = R2 + R; . 
All terms are proportional to the projector Pij(p); the first 
one is the contribution from the bare propagator and the 
second and third are complex conjugates by virtue of ( lo). 
Substituting Eqs. (14), (16), and (18) into (19), we find 

The a-dependence is contained in the factors 
A,=A,(R,p), which can be written in the form 

The single-time correlator is obtained by integrating (20) 
over R. It is clear from the representation (21) that both 
the power and the logarithmic singular parts of (20) will 
then vanish. One can also easily obtain an explicit expres- 
sion for the singular contribution (20) in the time repre- 
sentation: 

Here t is the difference in the times of the fields occurring 
in the correlator; the singular contribution vanishes for 
t=O. 

It was assumed in Refs. 7 and 9 that only the power 
singularities vanish in the single-time correlator; the loga- 
rithmic ones were summed using the RG technique applied 
directly to the IR divergences of the model (5 )-(a): the 
RG equation in Ref. 9 expressed the arbitrariness in the 
renormalization procedure removing the IR (rather than, 
as usual, the UV divergences of the diagrams which in the 
language used in Ref. 7 for the Wilson recursion-relation 

scheme corresponds to eliminating parts of the momenta 
near the IR rather than the UV cutoff. A similar applica- 
tion of the RG method is also found in Ref. 17. It is clear 
that it is then impossible to rely on general theorems of 
quantum field renormalization theory, which were devel- 
oped exclusively in connection with the problem removing 
UV divergences (see Ref. 18), and one needs to prove the 
IR renormalizability of the model considered here, or at 
least verify it in the perturbation theory order considered 
(we note, however, that the use of the RG method even in 
the lowest single-loop approximation assumes renormaliz- 
ability of the theory to all orders). It is clear in the present 
case from Eqs. ( 14), ( 15), and ( 19) that the contributions 
that are logarithmically singular as m+O in the 
1-irreducible single-loop diagrams can certainly not be re- 
moved by counterterms which arise by a multiplicative 
renormalization of the action (9) of the form 
const. iR+const .p2'3 for D ( ~ ) ,  and const .p-d for D ( ~ ) ,  
for any choice of constants, and hence the model consid- 
ered here is not IR renormalizable in the aforementioned 
sense even in the single-loop approximation. 

3. INFRARED PERTURBATION THEORY 

We now proceed to a general proof of the vanishing of 
contributions that are singular as m -0 in all perturbation 
theory orders for the single-time correlators of the model 
(9). It is based upon a generalization of IRPT in the form 
of Ref. 15. 

We write the field @ E q,ql  as a sum @ = @ , + @ , of 
a soft, a,, and a hard, @, , component, referring to @ < 

all Fourier components with k=  1 k )  <A, i.e., 

and to @, the remaining contributions with k > A. Here il 
is a fixed arbitrary separating scale which satisfies the re- 
lations pi$A $ m, where m = L-' is the reciprocal of the 
external turbulence scale and the pi are the external mo- 
menta of the correlation function considered. The proof 
given below is valid for any single-time correlators of the 
two fields @=q,ql, and we shall for definiteness consider 
the pair correlator of the hard field q, in which we are 
now interested, which we write in the form of a functional 
integral 

where S ( @ )  is the action (9), and all normalizing factors 
are considered to be included in the differential 
a@ = 59qL9q1. Using the equation 

we can write the correlator (23) in the form15 

D ,  = g @ < ~ ,  (8.1 1 g@.exp s(@) ,  (24) 

where we have written 
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J Q@>expS(@) 

Thus (25) is the propagator of the hard field in a fixed 
external soft field, and (24) is the average over a distribu- 
tion of the soft field taken exactly, i.e., determined by the 
total action S(@). 

We have seen from the example of the single-loop di- 
agrams in Sec. 2 that when calculating the singular contri- 
butions we can completely neglect the dependence of the 
hard lines on the soft momenta. This is equivalent in the 
coordinate representation to neglecting the dependence of 
the soft field on the spatial coordinates, which means re- 
placing the averages (@< (xl ,tl) ...@< (x, ,t,) ) that occur 
in (24) (and they are just the ones that contain all IR 
singularities) by the averages (@,(x,t,) ... @.(x,t,)), 
which are local in space and independent of the argument 
x common to all fields. It can easily be shown that the 
contributions of the soft field q; then vanish in (24) and 
(25), and the denominator in (25) becomes a constant. 
The soft field q. (x,t) can now be replaced by the random 
quantity v=vi(t), which depends solely on the time, and 
whose distribution is given by 

x I 9 9 , e x p  s(o). (26) 

By virtue of what we said above, Eq. (24) takes the form 

and the dependence of the hard propagator on the soft field 
remains only in the last term in the exponent; ( (...) ) indi- 
cates the average (26). 

We change variables in the functional integral over the 
hard fields in (27): 

where v(t) is the random quantity (26). Differentiation 
with respect to the time then produces in S(@, ) a contri- 
bution which cancels the v-dependent term in the exponent 
in Eq. (27), and the latter takes the form 

By virtue of the translational invariance of the theory, the 
hard propagator subject to the averaging ((  ...)) in (29) is 
a function of two arguments, t-t' and 
x - x' -u( t) + u(t' ). The whole of the dependence on the 
soft field is contained in the second argument, and hence 
vanishes for a single-time correlator, i.e., for t=t' in (29). 
All IR singularities contained in the averages of (26) then 
also vanish, as we set out to prove. 

Note that the separating scale A, which had to be in- 
troduced in the framework of the IRPT as a result of the 
approximations made there, occurs in Eq. (29) and is can- 
celed only when we take into account the nonsingular con- 
tributions that we dropped. The use of the quantum field 
technique of an operator expansion enables us to renormal- 
ize the IRPT without introducing any intermediate sepa- 
rating scale.19 However, we have proposed a more natural 
technique in this case that allows a simple interpretation of 
the results: for instance, one can, in accordance with Ref. 
12, consider the representation (29) as describing the 
transfer of turbulent vortices by the large-scale field v(t). 

We give explicit expressions for the simplest approxi- 
mation of the IRPT in which the self-action of the soft and 
the hard fields is neglected. Neglecting in (27) the self- 
action of the hard field we have: 

where So is the part of the action (9) quadratic in the 
fields. One can easily evaluate the Gaussian integral over 
@, in (30), which represents the bare hard propagator in 
the given external field v(t); in the p,t representation, it 
gives 

with ( p q ~ ) ~  from (22). 
Assuming a Gaussian distribution for v(t), which cor- 

responds to the leading order of the usual perturbation 
theory in g=a/$ for the soft averages (26), we get from 
(31) 

(qq)  = ( q q ) ~  exp H (  T,P), T =  I t-t' 1, (32) 

where we have written 

The correlator in (33) depends only on the modulus of the 
difference u = 1 r-r' 1 ,  which enables us to write (33) as a 
single integral 

Substituting the correlator ( q  ,q, ) in the form ( 10) into 
(26), we find 
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Expression (35) has a finite limit as A- CO,  and its singular 
part is independent of A and has the form 

Substituting this expression into (34) and integrating over 
U, we have 

Expressions (32) and (36) are the part of the velocity pair 
correlator that is singular as m+O in the IRPT approxi- 
mation considered. One sees easily that its expansion in a 
(or equivalently in g=a/y3) reproduces the singular part 
in the single-loop approximation (22) as given in $2. 

For the response function (qp ')  we have in the same 
approximation 

(qpl) = (pql)o exp H, ( q q ' ) o = ~ ( t - t l ) e - R ~ ( t - t ' )  
(37) 

with the function H from (36). Expression (37) corre- 
sponds to a sum of diagrams denoted in Ref. 7 by G,. The 
expression for G, was given in Ref. 7 in the w,p represen- 
tation, but its proof, as far as we know, was not published, 
so we shall not compare it with (37). 

We note that according to (32) and (37), the corre- 
lator and the response function decrease as 
e ~ ~ ( - c o n s t I t - t ' 1 ~ )  as It-tll - a ,  and the expressions 
corresponding to them in the w representation do not have 
any singularities in the whole of the complex o plane. Such 
vanishing of the singularities of the Green function in the w 
representation by virtue of the IR singularities is also 
known in problems about the propagation of waves in me- 
dia with strongly developed fluctuations, and can be com- 
pared with the well known confinement phenomenon.20 
This means, in particular, that the determination of turbu- 
lence viscosity via the position of the singularities of the 
response function, which is sometimes used, makes 
no sense outside the framework of the usual perturbation 
theory. 

4. CONCLUSION 

We have thus shown that all contributions to pertur- 
bation theory that are singular for small m for the model 
(5)-(8) vanish when we go over to the single-time corre- 
lation functions, so that the latter have a finite limit as 
m-0. The energy spectrum thereby has the shape (3) in 
the model considered. The results obtained here are in 
agreement with the Kolmogorov-Obukhov theory, 
whereas e ~ ~ e r i m e n t s ~ . ~  favor the spectrum (4). We have 

noted the phenomenological nature and some inconsis- 
tency in the model considered, but studies based upon mi- 
croscopic theories probably also lead to a justification of 
the Kolmogorov-Obukhov theory in its original formula- 
tion (see Refs. 13 and 14). Following Ref. 11, one may 
assume that Kolmogorov scaling is the exact IR asymp- 
totic behavior of a microtheory. However, if formally small 
IR corrections decrease as m -+ 0 sufficiently slowly (such 
corrections have, for instance, been observed in Ref. 21 in 
the framework of a micromodel based on the maximum 
entropy principle), an m dependence will be observed in 
the inertial range of real turbulence far from its IR bound- 
ary. 
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