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The asymptotic form of higher orders of the l/n expansion is analyzed for multidimensional 
problems of quantum mechanics and atomic physics. Problems in which variables can 
and cannot be separated are discussed. Examples of the former are the molecular hydrogen 
atom and the Stark effect; an example of the latter is the hydrogen atom in electric 
and magnetic fields. The asymptotic form is always factorial. Its parameters can be calculated 
through a calculation of electron tunneling trajectories by the "imaginary time" method. 
Possible types of singularities of the asymptotic parameter a at the collision point of the 
classical solutions are determined. 

1. INTRODUCTION 

Although the l/n expansion, also known as dimen- 
sional scaling, is still a new method in quantum mechanics 
and field theory, it has already found numerous applica- 
tions (see, for example, Refs. 1 4 ) .  In particular, it has 
been applied successfully to the hydrogen atom in strong 
electric and magnetic the Yukawa and HulthCn 
potentials,9,10 and the problem of two Coulomb centers 
(the molecular hydrogen ion H;; Refs. 11-14). The 
present state of this method, various versions of it, and 
applications in the theory of atoms and molecules, quan- 
tum chemistry, etc., are discussed in a collection of 
papers.4 

Interest has recently been attracted to the asymptotic 
form of higher orders of the l/n expansion. In addition to 
being of theoretical importance, this topic is important for 
calculations on atomic states at a spectroscopic accuracy. 
This question has been studied by numerical  method^'^"^ 
and also analytically.14~16 In the present paper, which is a 
continuation of Ref. 14, we look at the asymptotic form of 
higher orders of the l/n expansion for potentials which are 
not spherically symmetric. 

Let us outline the paper. Section 2 contains the formu- 
lation of the problem and a brief discussion of results. Sec- 
tion 3 deals with the problem of two Coulomb centers (the 
molecular ion HZ) and compares our analytic expressions 
with numerical  calculation^.^^ Section 4 deals with the hy- 
drogen atom in electric and magnetic fields. Using this 
example, we show that a calculation of an electron tunnel- 
ing trajectory by the "imaginary time" rneth~d".'~ also 
yields parameters of the asymptotic behavior in multidi- 
mensional problems, in which variables cannot be sepa- 
rated in the Schrodinger equation. The Stark effect and the 
Zeeman effect in the hydrogen atom are analyzed in Sec. 5. 
Section 6 contains a qualitative analysis of the singularities 
of the asymptotic parameter a near the collision point of 
the classical solutions (v=v* in the notation of Refs. 8 and 

10). The results are briefly discussed in Sec. 7, which is the 
final section of this paper. 

Technical details of the calculations and some of the 
lengthier equations are set aside in appendices. This paper 
uses atomic units. 

2. ASYMPTOTIC FORM OF HIGHER ORDERS OF THE l /n 
EXPANSION 

The literature reveals various versions of dimensional 
scaling, which differ in certain details (e.g., the "displaced" 
l/n expansion419). Below we discuss a version of this 
method which was proposed in Ref. 10 and which can be 
used for both a discrete spectrum and quasistationary 
states (resonances). Some corresponding examples can be 
found in Refs. 6 and 10. A similar approach was recently 
developed by Kais and ~erschbach. l9 

The energy eigenvalues (which are complex in the case 
of quasistationary states: En,=Er-ir/2) can be expanded 
in powers of the "small parameter" l/n: 

where n=nr+l+ 1 is the principal quantum number of the 
level (nr=O, 1,2, ... is fixed; I+ a, ), E is the "reduced" en- 
ergy, and k is the order of the l/n expansion. The coeffi- 
cients dk)  can be calculated from recurrence relations 
which are convenient for numerical calculations. The re- 
sults of numerical calculations of higher orders of the l/n 
expansion, up to k-40, are reported in Refs. 13 and 16. 

For all problems discussed below, the asymptotic ex- 
pression for dk)  is of the Dyson form:20 
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where a,b, etc., are some constants which can be calculated 
(a, and c, are complex; S=arg a,). The nature of the a 
symptotic behavior [i.e., Eq. (2.2) or (2.3)] may vary with 
a variation in the coupling constant or in other parameters 
of the problem; see Ref. 11 and especially Fig. 1 .  

For spherically symmetric potentials V(r), the calcu- 
lation of the asymptotic parameters a and c reduces to 
quadratures.'4,21 We begin our analysis of multidimen- 
sional problems with the case in which variables can be 
separated in the Schrodinger equation. We then move on 
(Sec. 4) to the general case, which requires a new ap- 
proach. 

3. THE PROBLEM OF TWO CENTERS 

The nonrelativistic problem of two Coulomb 
 center^,^^'^^ 

is of interest in the theory of molecules, p catalysis, etc. In 
this case the coefficients of the l / n  expansion in (2.1) 

FIG. 1 .  Higher orders of the l/n expansion for the problem of 
two centers with Z, =Z,= 1 and m=n-1 (nodeless states). The 
curves are labeled with the values of the "reduced" distance 
RIIk=logI E ' ~ ' ( R )  I]. 

depend on the internuclear distance R.  The first term, do', 
corresponds to the energy of an electron in a classical orbit. 
We first consider the case Z 1  = Z2 = 1 (the molecular hy- 
drogen ion) and the states with m=n-1 and n- cu (or, 
equivalently, n= 1 and D -  C U ,  where D  is the dimension- 
ality of the An equation for d O ) ( R )  follows in 
a straightforward way from the condition for an equilib- 
rium of the forces acting on an electron in its proper frame 
of reference." The first two terms of the l / n  expansion can 
be written in parametric form: 

The succeeding coefficients d k )  can be calculated from re- 
currence relations. Here we have 0 < T < 1/3 (these values 
correspond t o  R  < R* = 33/2 2-2), and the quantities 

2 ~ = n  E and R  =nP2R are "reduced" values of the electron 
energy and of the distance between the Coulomb centers. 
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FIG. 2. Profile of the effective potential along 
the variable 7 in the problem of two centers 
with Z , = Z , .  a)  R > R , ;  b) R < R , .  

For brevity we will be omitting the tilde from R (for the 
ground term we have n= 1, and the difference between R - 
and R disappears). 

A numerical analysis""3 shows that we have d k )  = k! 
as k -  co. The asymptotic parameter a satisfies a <O at 
R < R, and a > 0 at R > R, ; a (R)  increases sharply as R 
approaches R, (as is clear from Fig. 1). We will show that 
the R dependence of a can be derived in analytic form. 

Transforming to the elliptical  coordinate^^^ 

and carrying out the gauge transformation 

we find one-dimensional Schrodinger equations of the type 

A2d2xl/dc2+2[e- U ( ~ ) I X ~ = O ,  

in which A-0 plays the role of Planck's constant, and the 
effective energy e and the effective potentials U and V are 
given by - 

I e=s ER'=~ RER~, 

where Z, = (Z1 fZ2)/2,  and f l  is a separation constant. 
At this point we set Z+ = 1 and Z- =O; these values cor- 
respond to the H: ion. We consider two cases. 

1) R > R,= 1.299 038 ... . The potential V(7) is a two- 
well potential (Fig. 2a) in which there are symmetric and 
antisymmetric states with slightly different energies (but 
with identical l/n expansions). The l/n expansion is con- 
structed around one of the minima (7 = f v0 in Fig. 2a). 
Its divergence stems from the possibility that an electron 
will tunnel from one minimum to the other along an in- 
stanton trajectory. In this case, a summation of series (2.1 ) 

by the Bore1 method leads to r /2 ,  the imaginary part of 
the energy, which is equal to the tunneling probability.') 

In the limit n- co, with the quantum numbers 
nc=n,=O, the l/n expansion for the energy leads to the 
equations 

whose solution is 

as can be verified quite simply by direct substitution of 
these expressions into (3.5 ) . Here go, + qo are the elliptical 
coordinates of the equilibrium classical ~ r b i t , ~ '  and we 
have 1 < go<fl  and - w < e < - 1/2. Since we have 
V(7) - V(qo) = -e[(r12-r)i)/(1 -r12)]2, we can write 
(cf. Ref. 14) 

with the R dependence of '7, being found from Eqs. (3.6). 
Assuming r={c2, we can write these equations in the 
simpler form 

In particular, with r= 1/3 we have cO=fl ,  qo=O, R=R,, 
and e= - 1/2. Expression (3.7) for the barrier transmis- 
sion was derived in Ref. 12, but it was not pointed out 
there that this expression also determines the asymptotic 
parameter a. 

In the limit '7 '0 we have 
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TABLE I. Borel parameter So for the molecular hydrogen ion. 

from which we see that the effective potential V(q) 
changes in form at R = R, . 

2) R<R,  (Fig.2b).Inthiscasewehave -1/2<e<O 
and 

0.2 
0.4 
0.6 

0.8 

1.0 

1.2 

1.4 - 

The point qO=O is thus an equilibrium point, and the turn- 
ing points move out into the complex plane: 
qtY2 = 1 + 1/2e < 0. Hence 

60 

where 

k Calculation method 

Note. Here So= (2a)-', where a is the asymptotic parameter in (2.2). Calculation method 
A is based on Eq. (3.9), method B is based on Eq. (3.7),  and meeod C is that of Ref. 13. 
For convenience in comparison with Ref. 13, we show values of 1.5R, where R is the reduced 
distance between the Coulomb centers. 

-1.720950 
- 1.062 376 
-0.705 527 

Z-0.7 
-0.474 800 620 
-0.474 795 
-0.313841 191 
-0.313841 21 
-0.197 516621 
-0.197516618 
-0.112797 

- 
and the parameter r = r ( R )  is defined as in (3.2). In con- 
trast with the preceding case we have a ( R )  <O here, and 
the stable classical orbit is symmetric: qO=O, r1 =r2. The 
variable T has a simple geometric meaning: r=cos2 a, 
where a is the angle at a Z vertex of the triangle (Z,Z,e). 
From the equations above we find 

where A =  -In R. We also note that a (R ) has a power-law 
singularity as R -* R, : 

60 

A 
A 
A 
C 
A 
C 
A 
C 
A 
C 
A 

where A + = l / d ,  A-=- J2 /3 ,  and h=(R-R,)/ 
R*- =to. 

Equations (3.7) and (3.9) completely determine3) the 
dependence of the parameter a on the internuclear distance 
R. Let us compare these equations with the results derived 
by Lopez-Cabrera et al. ,I3 who calculated higher orders of 
the 1/D expansion for the molecular hydrogen ion. Using 
numerical methods, they studied the singularities of the 
Borel transform FB(S): 

Calculation method 

If the singularity closest to zero is at the point S =So and is 
of the form FB(S) c ( S o 4 ) - P ,  then we have 
dk) a k ! ( 2 ~ ~ ) - ~ k ~ - '  as k- m. We thus have the following 
relationships between parameters: 

1.6 
I 1.8 
I 2.0 

2.2 
2.4 
3.0 

1 4.0 
' 5.0 

7.0 
10.0 

In addition, the gauge transformation used in Ref. 13 dif- 
fers from (3.3), so the numerical value of the reduced 
distance R in Ref. 13 differs from that in the present paper 
by a factor of 1.5. The region R < R, was studied in Ref. 
13, and it was shown by numerical methods that we have 
So(R) <O and p= - 1/2 in this region. These results cor- 
respond to a square-root branch point in the Borel trans- 
form. As can be seen from Table I, the values of the Borel 
parameter So given in Ref. 13 (they were calculated by the 
method of quadratic PadbHermite approximants) are in 
complete agreement with the analytic expression (3.9). Ta- 
ble I also shows several values of So for the region R > R,, 
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-0.052 563 
-0.013 569 

0.003 68 1 
0.038 463 
0.089 708 
0.294 164 
0.720 999 
1.202 939 
2.253 090 
3.943 259 

. .  . 
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for the case in which the singularity of the Bore1 transform 
F(6)  lies on the positive semiaxis, so that series (2.1) is no 
longer sign-varying. The effect is to complicate the sum- 
mation of this series by ordinary methods. 

To conclude this section of the paper, we note that in 
addition to the turning points in the coordinate q which we 
discussed above, there are also some turning points in {. 
Since the potential U(f) has a unique minimum (=go in 
the interval 1 < < co , these points can either be complex 
or lie in the nonphysical region f < 1. As a result, the pos- 
sibility of tunneling in the potential U(f) leads to a com- 
plex parameter a, and to the appearance of terms like (2.3) 
in the asymptotic behavior. The details are in Appendix A. 

The results calculated for the asymptotic parameters a 
and a, are shown in Fig. 3, from which we see that we have 
I a I > 1 a,] for R > 0.0858. The contribution of the complex 
singularity at 6,= 1/2a, to the asymptotic behavior of dk) 
becomes significant at R 50.2, where it is manifested in 
oscillations of the coefficients of the l/n expansion with 
increasing k [see (2.3)]. Oscillations of this sort have in- 
deed been observed in numerical calculations of dk' both 
at R (0.2 and at R 2 5 (see Fig. 1 and Ref. 1 1 ) . 

4. THE HYDROGEN ATOM IN EXTERNAL FIELDS; THE 
IMAGINARY-TIME METHOD 

The problem of the hydrogen atom in an electric field 
$ and a magnetic field 2F is more complicated. In this 
problem, variables cannot be separated in the Schrodinger 
equation. We assume that the fields are uniform and par- 
allel, and we consider states with magnetic quantum num- 
ber m=n-1. These are the states which are closest to 
classical mechanics in the limit n-, UI (Ref. 27). Higher- 
order perturbation theories for this problem are discussed 
in Ref. 28. 

The l/n expansion is constructed around the classical 
orbit, whose radius ro=ro(F,B) is found from the 
equation4) 

FIG. 3. The parameters Ial (solid curves 
1-4) and la,J (dashed curve) versus the in- 
ternuclear distance R. Here we have ZI = 1 in 
all cases. 1,2,3, 4-Z2 = 1,1.5,2,3, respectively; 
dashed curve: ZI = Z2 = 1 .  For curve 1, the or- 
dinate scale has been changed by a factor of 5; 
i.e., values of 0.2 1 a(R) I are plotted. 

Here F=n4%'; B= n3R;  and F,  B, and r are "reduced" 
variables. We should take that root of Eq. (4.1) which 
becomes equal to unity when the external fields are turned 
off: 

It can be shown (Appendix B) that the effective potential 
U(p,z) for this problem has a minimum (which corre- 
sponds to a point of stable equilibrium, rO) only in weak 
magnetic fields, F < F, ( B) . At F = F, , the barrier disap- 
pears from the potential U(p,z). Following Ref. 6, we call 
this field the "classical ionization threshold." For the cal- 
culation of F,( B) we note that at F =F,( B) the two roots 
of Eq. (4.1 ) coalesce. Hence we find the dependence of F, 
on B, which can be conveniently written in parametric 
form (O<u<l ) :  

In particular, with u=O we have 

[these values correspond to the Stark effect in the hydrogen 
atom for Rydberg states (O,O,n-1 ) with n)l]. The other 
limiting case u -+ 1 corresponds to an ultrastrong magnetic 
field; the asymptotic expression for F,( B) is given in Ap- 
pendix B [Eq. (B6)]. A calculation from (4.2) yields the 
curve in Fig. 4 for F, ( B). The magnetic field stabilizes the 
classical orbit, so F, ( B) increases along with B. 

At F>F*(B) ,  the radius of the orbit and the coeffi- 
cients dk) of the l/n expansion become complex. Such a 
solution has no physical meaning in classical mechanics, 
but when we go over to quantum mechanics it is specifi- 
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FIG. 4. The critical field F ,  (atomic units). 

cally this solution which makes it possible to describe 
(within the framework of a l/n expansion) not only the 
shift but also the width of the quasistationary levels in a 
strong field." 

Let us examine the asymptotic form of higher orders of 
the l/n expansion. To determine the parameter a in (2.2) 
we use the imaginary-time method, which was developed 
previously for calculating the probability of particles tun- 
neling through an oscillating barrier. This method has been 
used in the theory of multiphoton ionization of atoms and 
ions by the field of an intense light and also in the 
problem of e'e- pair creation from vacuum in a variable 
electric field.30 It was also applied to steady-state problems 
in Ref. 3 1 . ~ )  For O < F < F ,  we have 

1 
a=- S= Jrz pdr = J: r2dt, 

2 I m S '  

where the action S is calculated along a tunneling trajec- 
tory which connects the minimum of potential (B2), 
ro= (po,zo), with the turning point r,, which lies on the 

constant-energy surface a: U(r) = U(ro). Here we have 
io=i2=0 (this condition singles out from the bundle of 
classical trajectories that for which Im S reaches a 
minimum;18 this circumstance determines the exponential 
factor in the tunneling probability and thus the asymptotic 
parameter a ) .  The a surface is the boundary of the classi- 
cally allowed region, and the electron trajectory which we 
are seeking is analogous to an instanton tunneling trajec- 
tory. Since the potential U is quadratic in r-ro near ro, the 
time of motion of the particle along this trajectory is infi- 
nite. This circumstance is reflected in (4.4). 

A tunneling trajectory satisfies the classical equations 
of motion but with an imaginary time t=ir. In the numer- 
ical integration it is convenient to treat the variable T as a 
"physical" time, 

(the potential changes sign in the process), and to inte- 
grate this equation starting from some point r ; ~  a. In vary- 
ing r;, we need to ensure that the trajectory ends at the 
point of the minimum, ro. 

Figure 5 shows a contour map of the effective potential 
f i (pz) .  We see that the tuzneling trajectory runs along the 
crest of the potential U 02 which the saddle point 
s= (p,,z,) lies. The potential U is approximated near ro by 
an "inverted-oscillator potential," so all trajectories are un- 
stable. 

The trajectories in Fig. 5 correspond to the initial ex- 
cursions Ap = p; - p2 shown in Table 11. Because of the 
exponential instability of the trajectory, an excursion 
Ap- lop6 grows to a size visible to the eye as the point ro 
is approached. It is not possible (in the numerical calcula- 
tion) to go from r; to ro in the literal sense. Accordingly, 
the integral in (4.4) is evaluated from r; to the point (r,) 

FIG. 5. Tunneling trajectories in the "imaginary 
time" method. Solid curves 1-8-Classical trajec- 
tories, with the parameter values in Table 11; 
dashed curves-constant-energy surfaces for po- 
tential (B2) ;  s-saddle point. Here F=0.15 and 
B=0.2. 
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TABLE 11. Parameters of tunneling trajectories. 

Note. Here Ar= I ~ , - T O  I ,  T is the time it takes the particle to move from the point rl to TO, and 
r, is the point of the trajectory which is closest to ro. Here Nos. 1-8 correspond to the case 
F=0.15, B=0.2, and the corresponding trajectory numbers in Fig. 5. 

No. / dp 

at which the trajectory comes closest to the point ro. With 
increasing field B, and as F approaches F, ( B) , the trajec- 
tories become more unstable, since the crest of the poten- 
tial U ( p , z )  becomes progressively sharper. 

Figure 6 shows the results calculated for the asymp- 
totic parameter a=a(F ,B)  as a function of the ratio F/F, 
[numerically, we have F*( B) =0.2081, 0.2532, and 0.3449 
for B=O, 0.5, and 1.0, respectively]. As in the other cases, 
we find a-  csi as F-F,.  A numerical analysis shows that 
the "critical exponent" of the singularity in a (F ,B)  does 
not depend on B and that it has a value of -5/4 [cf. 
(5.12)] as in the Stark effect. 

The calculation method described above is valid if the 
tunneling trajectory is real (after transformation to the 
imaginary time r ) ,  with the consequence that the asymp- 

totic parameter a has real values. In the case at hand, the 
situation corresponds to the region 0 < F < F,( B). At 
F > F, , the turning points ro and r2 and the tunneling 
trajectory become complex, complicating the numerical 
calculations. Although it appears that no difficulties of a 
fundamental nature arise here,6) a calculation of a in the 
region F > F, (B)  by the imaginary-time method requires 
further research. The corresponding curves in Fig. 6 were 
constructed by other methods: in the case B=0, they were 
constructed from analytic expression (5.9), while in the 
case with a magnetic field (the dashed curves) they were 
calculated through a numerical analysis of higher orders of 
the l/n expansion (cf. Ref. 16). 

As F-0, the stopping point r2 goes off to infinity. 
However, there is a pair of complex-conjugate turning 

FIG. 6.  Asymptotic parameter a ( F , B )  as a 
function of F/F,, where P ( B )  is given in 
Fig. 4. The curves are labeled with the value of 
the magnetic field B=~)R,  Curves with 
F  < F have been calculated by the imaginary- 
time method; those with F >  F* were calcu- 
lated using other methods, as indicated in the 
text. 

F = 0.5, B = 2 

A I Im S I T 

F = 0.15, B = 0.2 
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points, so we have the characteristic asymptotic behavior 
in (2.3) and complex values of the parameter a (  B) (see 
the following section of this paper). 

5. ZEEMAN AND STARK EFFECTS 

If one of the fields ( g  or X )  is zero, the asymptotic 
form of the coefficients dk) can be found analytically. 

We begin with the case X = O .  To calculate the pa- 
rameter a, we change the sign of & in effective potential 
(B2); i.e., we go over to an imaginary magnetic field. By 
virtue of the symmetry of the problem, we can restrict the 
discussion to tunneling trajectories which lie in the plane 
z=O(p=r). The problem thus reduces to a one- 
dimensional problem: 

In this case the turning points ro and r2 are real, and a 
calculation of the barrier transmission yields 

1 d ( 1 - 2 / 2 1  2/32 32 - l  
Arth a=IIT"'g.w- 2T2] , 

(5.2 

where z = J G o ,  and ro= ro(A) is found from the equa- 
tion 

Here B is the reduced magnetic field [see (4.1)], and we 
have 1 < ro<  W .  The value A=A,=27/256 or 
B= B * = 33/2 - 2-3 =0.6495 corresponds to the collision of 
the two classical solutions (in this case we have ro=4/3, 
2-0, and ...+ w ) .  

To go from (5.2) to the corresponding expression for 
the Zeeman effect, we need to change the sign of the cou- 
pling constant (g and A). In this case, ro(A) remains real, 
and the variable z changes from 1 to 2: 

In this case there is no collision of solutions. Noting that 
we have ~ r t h [ 3 z / ( t +  2)] = ~ r t h  z+Arth(z/2), we find 

32 t + 2  7r 
Arth = Arth - 

+2 
i ,  1<2<2,  

32 (5.4) 

where the plus and minus signs correspond to the upper 
and lower edges of the cut. Similarly, we find 

where 

FIG. 7. Plot of la( B )  I for the Zeeman effect in the hydrogen atom. 

Substituting these expressions into (5.2), we find an ex- 
plicit expression for the parameter a (  B), which is complex 
[see (B8)]. The two possible signs of the imaginary part 
correspond to two complex-conjugate branch points, So 
and 88, of the Bore1 transform; as a result, we find the 
asymptotic behavior in (2.3). 

The dependence of 1 a 1 on the field B is shown by the 
curve in Fig. 7, which has a maximum at B= Bm=: 1.95; 
here we have 1 a (Bm) 1 =0.2133. In the strong-field limit 
we have 1 a(  w ) 1 = 1/27r=0.1592, but this limit is reached 
very slowly: 

(See Appendix B.) This result explains the shape of the 
curve in Fig. 7. 

We turn now to the Stark effect (B=O). The proba- 
bility for the ionization of a hydrogen atom in a weak 
electric field is22933 

where n=nl+n2+ Iml +l,p=n-nl+n2=2n2+ Iml+ 1, 
and n,, n2, and m are parabolic quantum numbers. Using 
Stirling's formula, we find 

- 2, n2) 1 (arbitrary m), 

,= ( n2- 312, n2-1, m s l ,  (5.9) 

2n2+ Iml-1, n2,m- 1 

[the exponent f l  in (2.2) thus depends on the quantum 
numbers]. 

In the semiclassical approximation it is a simple matter 
to write the barrier transmission [and thus the parameter 
a ( F ) ]  for all fields F < F ,  and for an arbitrary state 
(nl ,n2,m). However, a rather complicated elliptic integral 
arises in the process. Let us consider states (O,O,n - 1 ) with 
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U does not have a minimum at real values 0 < x  < co . This 
situation is modeled by the following example: 

FIG. 8. Plot of 1 a1 versus v = a for the case of the Stark effect in 
the hydrogen atom (F,=0.2081, solid curve) and corresponding spher- 
ical model (F, =O. 148 1, dashed curve). 

n) 1, for which the two turning points coalesce (rO= rl ), SO 

this integral can be expressed in terms of elementary func- 
tions: 

where 

Corresponding to the interval 0 < r < 1/3 are values a ( F )  
>O. At 7= 1/3 or F=F,=212 - 3-', the two classical so- 
lutions collide, and we find 

F-F, 
a ( F ) = ~ f - ~ / ~ ( l + b f l / ~ + b ~  f +...), f =- 

F* 
+ 0, 

(5.12) 

where 

At F > F, , the quantities 7 and a become complex. On the 
whole, the behavior of the parameter a with increasing F is 
the same as for a short-range potential (cf. Refs. 14 and 15 
and Fig. 8 of the present paper). 

6. NATURE OF THE SINGULARITY IN THE ASYMPTOTIC 
PARAMETER a 

As we mentioned above, at v>  v, the equilibrium 
point xO(v)  about which the l/n expansion is constructed 
migrates into the complex plane, and the effective potential 

where q=x-(2xo+x2)/3, and xo and x2 are turning 
points. The quantity a a v, - v vanishes at v= v, ; P >  0 is 
a coefficient of order unity. Setting q= (a/P) '"5, we have 

where the numerical value of the constant el > 0  is not 
important for our purposes (the tunneling region corre 
sponds to - 1 < < < 2, and the maximum of the potential to 
{=g,= 1). In (6.2) we used E= U(qo) = U(q2). 

The oscillation frequency of the particle about the 
point go is w = (4@) 'I4. In the limit v-v, we thus have 

These results were derived in Ref. 14 by a less trans- 
parent method. The frequency w vanishes as v-v,, indi- 
cating that the equilibrium point becomes unstable. 

Equations (5.3) describe the most typical situation, 
but we can also look at the more general case 

where N=3,5, ... is an odd number [in this case the poten- 
tial has an inflection point at v= v, , as for (6.1 )]. Here we 
always have go= - 1 and gm= 1, but g2 depends on N. 
Repeating the calculations, we find 

With increasing N, the singularity of a(v) becomes 
weaker; we have a(v) ao-lac (v,-v)-'/~ at N$1. The 
classical energy has a branch point here, 

and it becomes complex at v >  v, (Appendix C). In the 
usual case we would have N=3, and the exponents of the 
singularities in (6.5) and (6.6) would be -5/4 and 3/2, 
respectively. ' 0 9 1 4  

For the problem of two Coulomb centers with R = R, , 
there is a collision of three (rather than two) classical 
orbits; two of the three are stable, and the third is 
unstable." This situation is described by the potential 

whereaav,-v-+O,P-1, and N=4,6,8 ,... . Asabove, we 
set q= ( a / ~ )  1/N-2g; then go = - 1 and g2= 1 are turning 
points, and we find 

w= J m ,  
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where Q4=l, e6=i2+2,  e g = p + 2 t 2 + 3  etc. Hence 

For the problem of two centers we have N = 4  and 
a a (v,-v)-~'~. We see that these results correspond to 
Eq. (3.13) when we note that the role of the parameter v 
is being played by the internuclear distance R. 

Finally, we consider the following question. The coef- 
ficients in conventional perturbation theory in powers of 
the coupling constant g can grow as Eka (ka)!ak with 
arbitrary a > 0. For the anharmonic one-dimensional oscil- 
lator 

for example, we a = ( N  - 2)/2. The divergence of 
the l/n expansion is always factorial; i.e., we have a=  1. 
What is responsible for this difference between the higher 
orders of perturbation theory and of the l/n expansion? 

As we know,22 the formal parameter of the semiclassi- 
cal expansion is Planck's constant fi, which goes over to 
l/n in the final equations. Assuming analyticity in l/n, 
noting that the barrier transmission (to exponential accu- 
racy) is 

and using the dispersion relations, we find14 dk) cc k!ak as 
k-+ m. We thus always have a=  1 in the case of the l/n 
expansion. 

7. CONCLUSION 

The l/n expansion method has several features which 
distinguish it favorably from other methods-in particular, 
perturbation theory. Among these features are its close 
relationship with classical mechanics, its applicability to 
complicated problems with nonseparable variables, and the 
fact that just the first few terms of the l/n expansion are 
often sufficient for highly accurate calculations of 
energies1@13 and wave functions36 (in particular, for node- 
less states; this result can be explained by the theory of 
coherent states2'). 

On the other hand, one can also point out cases in 
which it is necessary to evaluate dozens of coefficients dk) 
and to sum series (2.1 ) in order to calculate level energies 
accurately enough for comparison with experiment. In par- 
ticular, this is the situation when F is close to F, (for the 
Stark effect in a strong field6). In such cases, the asymp- 
totic form of the coefficients dk) as k-+ becomes impor- 
tant: knowledge of this asymptotic form can be utilized to 
choose a suitable summation method and thus to improve 
the accuracy of energy calculations. 

It has been shown in this paper that the asymptotic 
form of the higher orders of the l/n expansion is factorial 
(by analogy with "Dyson's phenomenon"20 for ordinary 
perturbation theory), and in many cases its parameters can 
be found analytically. For problems in which variables can- 
not be separated, as in the many-body problem, analytic 

calculations are hardly possible, but in such cases one can 
find the parameter a in (2.2) by calculating the tunneling 
trajectory of the particle by the imaginary-time method. 

We wish to thank V. D. Mur for a useful discussion of 
these results and M. N. Markina for assistance in putting 
the manuscript together. 

APPENDIX A 

To evaluate the parameter a, in (2.3), we work from 
an equation analogous to (3.7) : 

where {= (rl+r2)/R, go is the location of the absolute 
minimum of the potential U(c)  ( 1 <go < m ), and is a 
turning point, which can lie either in the nonphysical re- 
gion g < 1 or in the complex plane. In either case the pa- 
rameter a, is complex. 

Assuming R < R, we have to= T - " ~  and 7, =0  [since 
the potential V(g) has a minimum at the origin] and thus 

The variable 7 = r ( R )  is found from (3.2); it ranges from 
0 to 1/3. According to (3.5) we have U(co) = V(0) and 
thus =O. Hence 

- 
- - 

(1-7) 6 [Arth ul- J(  1 +TI ( 1 +37) I 

- Arth u2 & i r ,  

where uj = d q ,  

The imaginary part of (A2) comes from the contour 
around the pole {= 1 in the integral. Here ui are very 
"listless" functions of R: 0.9798<ul<1 and 
0.9983 < u2 < 1 (for R, > R > 0) .  

Figure 3 shows a plot (the dashed curve) of ( a, 1 con- 
structed from Eq. (A2). We see that we have I a, I > I a I at 
R <Rc=0.085 806. At sufficiently small distances R, the 
asymptotic behavior of the coefficients of the l/n expan- 
sion is thus dominated by a term like that in (2.3). Nu- 
merical calculations show that the contribution of the os- 
cillatory terms becomes appreciable as early as R-0.2. 
This result is confirmed through a calculation of the closest 
singularities of Bore1 transform (3.14). With R =O. 1 we 
thus find S= -2.003 1 and S,= 1.3262 ir/2 
( 1 S 1 < ISc[ =2.056), while at R =0.05 we have S= 
-2.6907 and Sc=2.0034&ir/2, so in this case we have 

IS1 > ISCI. 
At R > R,, the calculations are similar, but they be- 

come more complicated because the turning point is i1#O. 
However, it turns out that we have a ( R )  > I a,(R) I, so the 
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complex singularity at S= 1/2ac does not contribute sub- 
stantially to the asymptotic behavior of the coefficients of 
the l/n expansion. 

We note that we have ads- - 1 both as R -PO and as 
R +  co. 

Above we discussed the symmetric case, Z1=Z2= 1. 
For Z1#Z2, the calculations are analogous, but the equa- 
tions are quite a bit more complicated. Here it must be 
noted that tunneling can occur in either 7 or 5. In the 
asymptotic behavior of the coefficients of the l/n expan- 
sion, the dominant term is that for which la1 is at its 
maximum: 

Figure 3 shows results of a numerical calculation for sev- 
eral ( 2 ,  ,Z2) pairs. Also shown here are values of R, for a 
system of unequal charges: Rc=0.0693 for Z2=1.5, 
Rc=0.0588 with Z2=2, and Rc=0.0458 with Z2=3 (with 
Z1 = 1 everywhere). 

APPENDIX B 

States with parabolic quantum numbers nl = n2 = 0, 
m = n-1 correspond in the limit n + co to circular electron 
orbits, oriented perpendicular to the z axis, along which the 
fields 8 and 2Y are directed. After the gauge transforma- 
tion 

the effective potential becomes 

(p,z,q, are cylindrical coordinates). This potential has a 
minimum at the point ro= (po,zo), which satisfies the 
equations 

rp3+! Z= -I;?, p2+z2=3 

(for an equilibrium classical electron orbit). We then find 
Eq. (4.1 ) for the radius of the orbit, ro(F, B) . After solving 
this equation, we find the other parameters of the orbit: 

At fixed B, the effective potential has a minimum only 
in weak electric fields F <F,(B). The solution of Eq. 
(4.1) accordingly remains real out to the point at which 
the roots collide. From this condition we can find the be- 
havior of the "critical field" F, as a function of B. Setting 
F2r;f= ( 1 +2u)/9, we find Eqs. (4.2), and the radius of the 
orbit is 

8 1 r,=ro(F,)=G ( l - u ) ( l - : ~ ) - ~ .  034) 

In particular, with u = O  (in the absence of a magnetic field; 
i.e., the Stark effect) we find (4.3). As B- w , on the other 
hand, we find 

and thus 

where 

c0= 3-3/2, c1 =2/27=0.0741, 

It can be seen from Fig. 4 that at B 2 0.5 the F,( B) de- 
pendence is approximately linear; the explanation lies in 
the numerically small values of the coefficients cl and c3 .  
As the magnetic field is strengthened, the radius of the 
equilibrium orbit, which corresponds to the field F,, 
shrinks: 

r , = ~ - ~ / ~ ( 3 I / ~ - f  B-ll2+...). B-+ co. (B7) 

APPENDIX C 

For a potential (6.4) we have 

P 2 = 2 [ ~ ( q o ) -  ~ ( q ) ]  =const - { c N - ~ c - ( ~ - l ) ) ,  
(C1) 

m =  dm= m a N - 2 / 2 ( N - l ) ,  (C2) 

where q=al/N-l(, go= - 1, and em= 1. The right-hand 
turning point is c2= 2, 1.651, and 1.492 for N =  3, 5, and 7. 
With increasing N, we find c2= 1 + (ln 2N)/N+ ... - 1. We 
also find 

a=~m-N+2/N-2 9 (C3) 

where 

(in the N=3  case, the integral can be evaluated analyti- 
cally, and we have C= 5/6). Using a a v, - v-+ 0, we find 
(6.5). 

In the course of an analytic continuation into the re- 
gion v > v,, the parameter a (v )  becomes complex, and its 
phase S becomes ( v z  v,) 

The splitting of the energies corresponding to the sta- 
ble (q,) and unstable (9,) equilibrium points in potential 
(6.4) is 

Using a: a v, - v and do) < d l ) ,  we then find Eq. (6.6). 
We now consider potential (6.7). If v >  v,, it has a 

unique minimum at q=O, and the turning point migrates 
into the complex plane: 
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Hence 

At v < v* , the appropriate expression follows from (6.2). 
As a result we find 

where v- v* , 

In this case, a (v)  has a power-law singularity, and it 
changes sign when the point v=v, is crossed. For the 
problem of two centers with Z1=Z2 we have N=4, 
J+ = J- = 2/3, and 

in complete agreement with Eq. (3.13), which was derived 
through an analysis of the exact solutions (the role of v is 
played in this case by the distance R). It follows that as we 
pass through R =R, the series in (2.1) changes from a 
constant-sign series to a variable-sign series, in agreement 
with numerical calculations. ''I3 

Note added in proof (7 February 1994). One of the 
present authors (A.S.) has developed an alternative 
method, based on the solution of the Hamilton-Jacobi 
equation, to calculate the asymptotic parameter a in mul- 
tidimensional problems. The time t = i ~  (which is complex 
for tunneling motion) does not appear explicitly in the 
equation, and such an approach is therefore probably also 
applicable when F > F,. Based on the problem discussed in 
Sec. 4 of the present paper, we have shown that one obtains 
the same value of ImS as when the imaginary-time method 
is used to calculate tunneling trajectories. 

')see Refs. 24-26, where this question is discussed in the example of an 
expansion of the energy in inverse powers of R. The energy c(R) is real 
in this problem. The imaginary part of the Bore1 sum of the series 
r / 2  a exp( - 2R/n) cancels out with exponentially small imaginary 
terms in the complete asymptotic expansion of c(R), which was found 
in Ref. 26. 

"There are two classical orbits, which correspond to a localization of the 
electron at one nucleus or the other as R-+ oc (Fig. 2a). 

3'These equations were given in Ref. 14, but no derivation of them has 
been published previously. 

4'See Appendix B and also Ref. 7. The electric field is expressed in units 
of m2e5fi-4=5.14. lo9 V/cm, and the magnetic field in units of 

m2e3di-3=2.35. lo9 G. The results derived below were discussed 
briefly in Ref. 29. 

')see also the paper by ~chmid,~ '  in which the method of characteristics 
is used to calculate semiclassical wave functions and tunneling proba- 
bilities in multidimensional problems. That approach is equivalent to a 
calculation of classical trajectories in an "inverted" potential on the 
basis of the Hamilton-Jacobi equation. 

6'~ompare this situation with the case R < R, in the two-center problem, 
in which the turning points *ql become complex. In that case, it is 
possible to calculate a ( R )  analytically [see Eq. (3.9)], but not numer- 
ically. 
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