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The kinetics of the onset of long-range order during very nonequilibrium Bose condensation 
in an interacting Bose gas is analyzed. The nonequilibrium state which arises after the 
establishment of short-range order is distinguished by both the presence of a vortex s t ruc tu re  
a clump of vortex filaments-and the presence of anomalously large fluctuations in the 
regular part of the phase of the order parameter. The latter can be expressed in terms of a 
highly nonequilibrium distribution of long-wave phonons. The rise time of the 
topological long-range order (and thus the rise time of true superfluidity) associated with the 
annihilation of the vortex structure is found to be macroscopically long (and to depend 
on the size of the system). The time required for the appearance of a genuine condensate, for 
which relaxation of long-wave phonons is also required, is also found to be 
macroscopically long. Depending on the conditions, this time may turn out to be longer than 
the relaxation time of the vortex structure. 

1. INTRODUCTION 

The interesting problem of the kinetics of the forma- 
tion of a Bose condensate has recently taken on particular 
importance in connection with attempts to experimentally 
observe BoeEinstein condensation and superfluidity in 
nonequilibrium systems with a finite lifetime. The systems 
involved here are systems such as spin-polarized atomic 
hydrogen (Refs. 1-3 for example), a gas of excitonsM or 
biexcitons (Ref. 7, for example) created in a pulsed fash- 
ion, and atomic systems at ultralow temperatures reached 
by laser cooling (Ref. 8, for example). In all these cases we 
are dealing with gaseous systems of low density, i.e., with 
weakly interacting Bose gases. A study of the kinetics of 
Base-Einstein condensation in this case can reveal the ba- 
sic features of this phenomenon in an arbitrary Bose sys- 
tem, while retaining the possibility of a quantitative com- 
parison of theoretical and experimental results. 

Since there is no Bose condensate at the initial time, 
while at equilibrium the system must have acquired a con- 
densate with a macroscopic number of particles-a num- 
ber comparable to the total number of particles-the ki- 
netic problem is a problem of the time evolution of a highly 
nonequilibrium system. There is no single relaxation time 
under these conditions, as was discussed in Refs. 9 and 10. 
This time depends on the phenomenon under study or, 
more precisely, on the correlation properties which deter- 
mine this phenomenon. The time scales for the formation 
of the various correlation properties may be radically dif- 
ferent. On the other hand, the methods actually used to 
experimentally observe Bose-Einstein condensation are 
based on the implicit assumption that the corresponding 
correlation properties are established over times shorter 
than the lifetime of the system. 

The onset of a hierarchy of times is associated with 
that step of the evolution in which most of the particles 
which eventually form the equilibrium condensate are in 

the low-energy interval E < no6,-where no is the equilib- 
rium density of the condensate, ~ = 4 & a / m  is the effec- 
tive vertex of the two-particle interaction, a is the s-wave 
scattering length, and m is the mass of the particles. In this 
so-called coherent region, the kinetic energy of the parti- 
cles is lower than the potential energy, and the particle 
modes cease to be independent. The strong interaction be- 
tween modes leads to the progressive formation of coherent 
correlation properties. In this case, in view of the large 
occupation numbers nk> 1, we know that the system can be 
described adequately in the coherent region by a classical 
c-number field $(r,t) whose evolution obeys the equation 
(t5=1) 

In the limit t + oo the solution of Eq. ( 1 ) corresponds to a 
complex order parameter with certain values of the abso- 
lute value and phase characterizing the equilibrium state of 
the interacting Bose gas for T < T,. In the course of the 
evolution, the magnitude and phase of the field $ fluctuate 
wildly. The coherent correlation properties arise only after 
these fluctuations relax. 

The first and fastest stage of the relaxation corresponds 
to a substantial suppression of nonequilibrium fluctuations 
of the magnitude of $, i.e., of the densitySg The correspond- 
ing time scale is equal to the correlation time 

- 
T,= l/noU. (2) 

This step of the relaxation leads to the appearance of a 
short-range order in regions with a typical size - 

rc= ( 2 m n o ~ )  - 'I2, (3) 

with correlation properties which are approximately the 
same as those characteristic of systems with an intrinsic 
condensate. All processes for which the dependence on the 
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presence of a Bose condensate stems from the correlation 
properties at distances r(rc behave as if the formation of 
the Bose condensate had gone to completion.9 In particu- 
lar, this is true of the decrease in the probability for inelas- 
tic processes1'"2 and of the nonlinear increase in reaction 
rates13 with increasing density which accompanies Bose- 
Einstein condensation in an external field.I4 The state 
which forms in this step thus contains a quasicondensate, a 
characteristic feature of which is the presence of small fluc- 
tuations in the field amplitude (i.e., in the density of the 
quasicondensate), while the large fluctuations in the phase 
generally persist. The latter circumstance predetermines 
the absence of a long-range order. In the momentum rep- 
resentation of the particles, there is of course no genuine 
6-function peak in this case, as would be characteristic of a 
Bose-Einstein condensate for T < Tc . 

There are two aspects to the absence of a long-range 
order. The first stems from the unavoidable appearance of 
a large number of topological defects in the course of the 
evolution of the nonequilibrium system. These defects are 
vortex rings or a clump of vortex filaments, whose maxi- 
mum size is limited only by the size of the system. In 
general, this situation leads to the absence of topological 
long-range order and thus to the absence of a true macro- 
scopic superfluidity. The second aspect is associated with 
the anomalously large fluctuations in the nonsingular 
(smooth) part of the phase. These fluctuations disrupt the 
nondiagonal long-range order (i.e., prevent the formation 
of a true condensate with a &function peak in the density 
at k=O; more on this below). The time scales of the relax- 
ation of the topological defects and of the nonequilibrium 
phase fluctuations turn out to depend on the geometric 
dimensions of the system. In this sense they are arbitrarily 
large in comparison with rc given by (2) and also in com- 
parison with the time scale rkin, which corresponds to the 
evolution of the system before the particles of the future 
condensate reach the coherent energy interval. The time 
rkn is determined by the usual time scale for binary colli- 
sions of particles: 

where u is the scattering cross section, and V T  the thermal 
velocity of the particles. 

Our purpose in the present paper is to analyze the 
kinetics of the onset of the long-range order, the onset of a 
macroscopic superfluidity, and the onset of a true conden- 
sate. 

The appearance of a well-developed vortex structure 
during the evolution of a nonequilibrium system can be 
understood easily on the basis of the following simple con- 
siderations. We consider a time t)rc, at which quasicon- 
densate correlation properties have already arisen in re- 
gions of size ro(t) 9 rc . At this time there are obviously no 
phase correlations at distances r >  ro(t). We imagine that 
this system is broken up into blocks of size I>  r,(t). The 
absence of a coupling between the values of the phases in 
neighboring blocks predetermines the appearance of vortex 
rings with a size on the order of I. If we break up the space 
into blocks of large size 1', then the same arguments lead to 

the conclusion that vortex rings of size I' arise. As a result 
we can assert that the number of vortex rings of size - R in 
a unit volume has a dependence 

The primary relaxation channel for the vortex rings is 
the self-annihilation of these rings which results from a 
dissipative interaction with elementary excitations of the 
system (Ref. 15, for example). The small rings, with 
higher velocities, are the first to disappear. Let us assume 
that the minimum radius in the distribution (5) at the time 
t is R(t).  It  is easy to verify that the average ring radius is 
on the order of iT (t) and that the total length L of a vortex 
filament in a unit volume is 

This assertion means that the relaxation of the vortices at 
any time t is actually associated with the rings of a single 
size scale, *(t). 

Note that the vortex structure which arises in the 
course of the evolution is apparently more complex, being 
somewhat more reminiscent of vortex clumps than of en- 
sembles of vortex rings. In studying the kinetics of such a 
clump (Ref. 16, for example), one uses the average dis- 
tance between the filaments as a basic length scale. The 
same length scale determines the average radius of curva- 
ture of a characteristic element of the vortex structure. 
Since this parameter is associated with the total filament 
length L by the same relation (6), the kinetics of these two 
models is actually the same. 

Since the radius of the core of vortices is of order r, [see 
(3)], we can ignore the core thickness for t 9 r C ,  assuming 
R(t)  9 rc . In general, the phase @ of the field +h can be 
written as the sum 

Here cPo is the value of the phase imposed by the configu- 
ration of the vortex structure, while q, is the regular part of 
the phase. To eliminate some ambiguity we must supple- 
ment the relation 

(for an arbitrary contour around the vortex filament) with 
the condition v2ao=0 (everywhere except at the vortex 
filament itself). 

Using the same picture of uncorrelated blocks, we see 
that the difference between the values of the phase q, in 
neighboring blocks, smoothed over the size of a block, is on 
the order of T. Since the size I>  ro(t) of a block is arbi- 
trary, we have the following estimate of the Fourier com- 
ponents of the phase q, which correspond to k g  l/ro(t): 

I pk 1 2- l/k3. (8) 

After a quasicondensate forms, the spectrum of nonequi- 
librium elementary excitations becomes an acoustic 
spectrum.9 Using the known relationship between 1 pk 1 
and the phonon occupation numbers (Ref. 17, for exam- 
ple), we can reduce the problem of the relaxation of the 
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fluctuations of the field g, to the problem of the relaxation 
of a nonequilibrium phonon distribution with occupation 
numbers 

where c is the sound velocity. It is interesting to note that 
this distribution leads to a logarithmic divergence of the 
correlation function (g,(r)g,(O)) at large distances, in 
close analogy with the corresponding result for the 2D 
case. 

The kinetics of the formation of the long-range order 
thus reduces to the relaxation of a vortex structure whose 
total length depends on the leading scale in accordance 
with (6) and on the nonequilibrium phonon distribution in 
(9). 

2. FRICTION FORCE EXERTED ON A VORTEX FILAMENT 

In analyzing the relaxation of a vortex structure, we 
must first determine the frictional force f exerted on a unit 
length of a vortex filament as the latter moves through the 
interacting Bose gas. We are interested in the temperature 
range 

n o 6 4 T 4 T C .  (10) 

In this range, thermal excitations are essentially identical 
to free particles, and their wavelength satisfies the inequal- 
ity 

x4rc. (1 1) 

The wavelength of the particles is thus small in comparison 
with the core radius of the vortex filament, which is of 
order r,, as we have already mentioned. We can thus treat 
the motion of the particles in the core region semiclassi- 
cally. By virtue of ( lo) ,  a particle is scattered only weakly 
by a vortex core, transferring only a small fraction of its 
momentum to the vortex. It is easy to show that the mo- 
mentum transferred in the direction of motion in a single 
scattering event is 

A P , - P T ( ~ O ~ / T ) ~ ,  (12) 

where p, is the thermal momentum of the particles. In the 
coordinate system moving with a filament at a velocity v, 
the flux of normal excitations across a unit area is 

Writing the longitudinal friction force in the form 

f = Dv, 

and using ( 12) and ( 13 ) , we find 

Using the temperature dependence p~ - f i  and p, 
= p ( ~ / ~ c ) 3 / 2 ,  we can rewrite this expression as 

is the quantum of circulation. [A numerical factor has been 
omitted from ( 14).] 

We have derived a very important result: Over the 
broad temperature range corresponding to ( 10) in a Bose 
gas, the frictional force exerted on a moving vortex fila- 
ment totally independent of the temperature. For 
T - noU, i.e., at the lower limit of the interval ( lo), which 
coincides with the boundary of the acoustic region, expres- 
sion (14) is literally the same as the result derived by 
1ordanski?18 for the frictional force exerted on phonons. 

In an analysis of the evolution of a vortex structure, 
the magnitude of the dissipative interaction is character- 
ized by the dimensionless parameter 

In the case at hand, this parameter becomes 

In an interacting Bose gas, in the temperature interval 
( lo) ,  the parameter a is thus independent of T and is 
always small in comparison with unity. At lower T, in the 
phonon region, the parameter a begins to fall off sharply 
with decreasing ternperature:18 

3. RELAXATION OF A VORTEX STRUCTURE 

A vortex ring of radius R (or an element of a vortex 
structure with a radius of curvature R) ,  moving with a 
proper velocity UR- 1/R through a fluid at rest, is known 
to undergo a continual decrease in size because of energy 
dissipation in the course of the interaction with the excita- 
tions of the system. The lifetime of such a ring before 
complete self-annihilation is given by (Ref. 15, for exam- 
ple ) 

where 

In the case at hand, and in the temperature interval ( lo) ,  
we have yh z D' z - ropn  (Ref. 19) and yo= D. Hence 

Using ( 16) and ( 17), we find the following expression for 
the time TR : 

This time is of course also independent of the temperature. 
We now wish to determine the distance lv, over which 

a ring of radius R moves in a time TR. We can find I" 
directly :I5 

where l v z  P S ~ & / Y -  
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In the case at hand we find 

An important point is that in a weakly interacting Bose gas 
the following condition holds in all cases: 

This result means that in the structure which arises in the 
course of the evolution of a nonequilibrium Bose gas the 
vortex rings of any scale undergo multiple intersections 
before they collapse. That this is true can be seen even from 
the distribution (5), which predicts that a ring of radius R 
will encounter at least a ring of similar size over a distance 
-R.  The same can be said of a vortex clump, for which 
there exists, at any time, a length scale E ( t )  which char- 
acterizes the average distance between filaments and the 
effective radius of curvature of linear elements in the 
clump. 

Under these conditions, we are naturally led to ask 
about the probability for the reconnection of filaments 
when they intersect each other. If this reconnection prob- 
ability is small, the inequality (24) plays no role. The re- 
laxation of the vortices in this case would be determined at 
each instant by the minimum size of the unannealed vortex 
rings [which actually determines the total length of the 
vortex filaments, according to (6)] and by the correspond- 
ing value of rR from (22). In a clump a corresponding role 
is played by R(t)  and thus rR=qt). Actually, however, 
there is no basis for assuming that the reconnection during 
the intersection of vortex filaments would be unlikely. In- 
deed, the opposite opinion has been expressed quite fre- 
quently (Ref. 16, for example). If this is the case, then the 
picture of the relaxation of a vortex structure in the limit 
a ( l  will change substantially. The reason is that the re- 
connections should lead to the appearance (superposed the 
main size scale, dictated by the characteristic distance be- 
tween filaments) of kinks of smaller size. A kink with a 
small radius of curvature r will rapidly "precess" around 
the main filament ( v,- l/r), causing a relatively rapid re- 
laxation of this small element of the vortex structure. In 
the limit a41 [see (23)], a large number of such kinks 
should arise at the leading scale, and specifically these 
kinks can dominate factors in the relaxation of the vortex 
structure. In the limit a(1, and with a reconnection prob- 
ability of order unity, a relaxing vortex structure will ob- 
viously constitute a clump of vortex filaments, not a hier- 
archy of vortex rings. 

Milliken et ~ 1 . ~ '  have suggested that the appearance of 
kinks due to reconnection should lead to a substantial in- 
crease in a dissipative interaction. They demonstrated that 
the incorporation of this circumstance leads to Vinen's em- 
pirical equationY2' although this equation is not the same as 
when it was originally proposed. The suggestion by Mil- 
liken et ~ 1 . ~ '  that the kinetics of the intersection of vortex 
lines is governed by the local kink velocity looks incorrect: 
It is quite obvious that this kinetics should be determined 
by the velocity of the elements of a filament of the main 
scale 1 (t)  . This circumstance changes the results consid- 
erably. 

With condition (24) in mind, we can suggest (and will 
demonstrate below) that for each value of a there is a 
certain corresponding characteristic number of kinks on an 
element of a vortex filament of size E( t ) .  For simplicity we 
assume that all the kinks have the same radius of curvature 
r. It is natural to assume that in the course of the intrinsic 
evolution (in the absence of reconnections and in the ab- 
sence of dissipative self-annihilation) the number of kinks 
would remain the same. 

We denote by N the number of kinks per unit length of 
a vortex filament, and we write the balance equation for 
this quantity as follows: 

The increase in the number of kinks, N,, is associated 
with the number of intersections accompanied by recon- 
nection. Statistically, there are 1/i? large-scale elements of 
the half-ring type over a unit length of a vortex structure 
which undergo intersection in a time 

where vjj is the velocity of an element of size R. We know22 
that the intrinsic velocity of an arbitrary element of a vor- 
tex filament is actually determined by the local radius of 
curvature of this filament. For an element with kinks, how- 
ever, the local radius of curvature corresponds to the ve- 
locity at which the kinks precess around the average posi- 
tion of the filament, not by the velocity of the element as a 
whole. It is reasonable to assume that the velocity of the 
latter is determined by the "global" radius of curvature of 
scale R. We are then led to the estimate 

Using the relation between R and L [see (6)], we then find 

The numerical coefficient f also contains a reconnection 
probability factor. 

The decrease in the number of kinks, N- ,  is deter- 
mined by their self-annihilation. Let us assume that we 
have a distribution of kinks with respect to radius r which 
is characterized by a function f,. Expressed in terms of a 
unit length of the vortex filament, this function is normal- 
ized by the condition 

Under the assumption that the kinks do not overlap, we 
have r,z 1/N as an upper limit on this integral. If the size 
distribution of the kinks which are produced is compara- 
tively uniform, then it is easy to see that small kinks man- 
age to undergo "annealing" in the course of the evolution, 
and the function f, shifts toward larger sizes. (The anneal- 
ing of small kinks itself causes only a very slight decrease in 
the total length of the vortex filament, L.) Clearly, the 
self-annihilation of the bulk of the kinks will be character- 
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ized by a time determined by the length scale rN. Corre- 
spondingly, using expression (22), we find the following 
expression for N- : 

Along with (25), we need to write an equation for L: 

The "incoming" term L+ is not present in the pure relax- 
ation problem, since it exists only to the extent that the 
quantity v, (the velocity of the relative motion of the nor- 
mal and superfluid components) is nonzero. We will nev- 
ertheless retain this term, keeping the more general prob- 
lem in mind. As was found by  ine en,^' we have 

The disappearance of kinks described by expression 
(30) is accompanied by a decrease by -N-rrN in the 
length of a vortex filament per unit time. This quantity, 
which is expressed per unit length must be multiplied by L 
in order to find the rate of decrease of the total length of 
the filaments in a unit volume. As a result we find the 
following expression for L - : 

In analyzing the question of the relaxation of topological 
defects, we need to solve Eqs. (25) and (30) simulta- 
neously, setting 15, =O in the latter. This nonlinear system 
of equations has the simple solution 

From (30) and (32) we immediately find [ignoring the 
logarithmic N dependence in (32) and (29) and the L 
dependence in (27)] 

Substituting (33) and (34) into (25), and using (27) and 
(29), we find A and also our final expression for L: 

The constant f in this expression is made up of the con- 
stants f ', g2, and f3. The constant f is proportional to the 
reconnection probability factor in the course of an inter- 
section, raised to the power -2/3. 

We can draw several important conclusions from (34) 
and (35). We first note that the number of kinks over the 
length scale &(t)  of the vortex structure is totally indepen- 
dent of the time: 

This result means that the size scale of the kinks which 
determine the relaxation of the vortex structure follows 
X(t) in a linearly [the solution in (34) and (35) was de- 

termined for times such that the conditions i ? ( t ) ) i ? (~ )  
and rN(t) ) rN(0) hold]. The increase in the number of 
kinks with decreasing a stems from the increase in the 
ratio (24). From (35) we find the time scale for the onset 
of long-range order in a system of size Do: 

This time and hence the rise time of the intrinsic superflu- 
idity thus depend on the size of the system. In general, this 
time may be many orders of magnitude greater than the 
formation time of a quasicondensate. Only in small vol- 
umes can the time scale for the appearance of true super- 
fluidity become comparable to the quasicondensate forma- 
tion time. Since we have ~ ~ - l / a ' ' ~ ,  we would have 
TV- l /a  in the absence of reconnections [see (22)]. This is 
very important, especially if the temperature falls below 
noU when equilibrium is reached, where a falls off very 
sharply with decreasing T [see (la)]. Reconnection may 
thus turn out to be extremely important for the possibility 
of observing superfluidity in nonequilibrium systems which 
have a finite lifetime. 

The system of equations found here for N and is 
valid for an arbitrary system in the limit a 4 l ;  in particu- 
lar, it is valid for describing the kinetics of a vortex struc- 
ture in helium. (In this case, of course, a would have a 
different temperature dependence.) Interestingly, the 
steady-state solution of Eqs. (25) and (30) leads to the 
result 

which reproduces well the L ( T) /v~ ,  dependence found at 
low T [a( T )  4 11 in helium in experiments in which the 
vortex structure is generated in oppositely directed flows of 
normal and superfluid components. 

4. FORMATION OF NONDIAGONAL LONG-RANGE ORDER 

In general, the appearance of topological long-range 
order and thus macroscopic superfluidity does not in itself 
imply the onset of nondiagonal long-range order with a 
constant value of the phase along a homogeneous system. 
If the nonequilibrium phonon distribution in (9) has not 
relaxed by this time, it will again disrupt phase correlations 
at large distances. The reason is the anomalous dependence 
of nk on k, which leads to an infrared divergence in the 
phase correlation function. The presence of superfluidity or 
the absence of nondiagonal long-range order makes a non- 
equilibrium 3D system very similar to an equilibrium 2D 
system for 0 < T < TKT, where TKT is the Kosterlitz- 
Thouless temperature. 

The damping of nonequilibrium phonons naturally 
falls off with decreasing k. This statement means that the 
time scales for the formation of nondiagonal long-range 
order are determined by the relaxation of extremely long 
sound waves. In a homogeneous system, the following con- 
ditions holds for them: 
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where I is the mean free path of the particles. Relation (39) 
corresponds to the hydrodynamic regime of sound dissipa- 
tion. By the time t, quasicondensate regions with sizes on 
the order of R(t)  are free of vortices. The attenuation of 
sound with k-R-'(t) is thus approximately the same as 
that in a genuine superfluid. We can thus use the superfluid 
hydrodynamic equations (Ref. 23, for example). 

In an analysis of sound in this case, the system of 
linearized hydrodynamic equations can be reduced to the 
two following equations when dissipation is ignored: 

Here s is the entropy per unit mass. Treating p and T as 
independent thermodynamic variables, we find the follow- 
ing results for small deviations of the parameters in the 
sound wave: 

Substituting (41) into (40), we find a system of equations 
for p' and T'. Equations (40) and (41) hold in the general 
case. Using these equations for a weakly interacting Bose 
gas, we find results which are quite different from the re- 
sults for superfluid helium. 

In the temperature interval ( lo) ,  normal excitations 
have a dispersion relation which is essentially the same as 
that for free particles. The normal component thus has 
properties very similar to those of ideal Bose gas. It thus 
becomes possible to analyze the solution of Eqs. (40) and 
(41 ) directly. 

We denote by pT the temperature-dependent part of 
the motion. In an ideal Bose gas we have, as we know, 

We thus have 

where c is the Bogolyubov sound velocity 

c= ,I=. (43) 

On the other hand, we have 

where c, and c, are the specific heats at constant volume 
and constant pressure, respectively. 

Using these relations, we find that the system (40) is 
amenable to the following self-consistent procedure. In the 
first equation we can ignore the term with AT', while in 
the second we can omit the term containing ( # ~ ' ) / ( a ? ) .  
As a result, it follows from the first equation that the sound 
velocity is given by (43); from the second equation we find 

Actually we have found only one mode: the so-called 
condensate acoustic mode. However, this is precisely the 
mode in which we are interested, since the other mode is 
essentially independent of oscillations of the phase of the 
condensate wave function. 

Since the product ps is independent of the density in an 
ideal Bose gas, we can conveniently determine the normal 
velocity v, from the equation 

~ ( P s )  
a t  

+ psvv, = 0. 

Using (44) we then find 

Having derived results (45) and (46), we can use the stan- 
dard procedure for determining the attenuation of sound 
(Ref. 23, for example). A direct analysis shows that under 
the conditions assumed here the dissipation due to viscos- 
ity is small in comparison with that due to thermal con- 
ductivity. As a result, we find the following expression for 
the time scale for the attenuation of sound: 

where K is the thermal conductivity. A direct calculation of 
K puts this result in the form 

(we are now writing ti explicitly again). The time rph si- 
multaneously determines the time scale for the damping of 
phase fluctuations, r,(k). Let us compare the relaxation of 
a vortex structure with radial scale 1 [see (37)] with 
r,(k=R-'): 

At the temperatures under consideration here, this ratio is 
essentially always much greater than unity. We thus find 
an important result, which shows that phase fluctuations 
relax more rapidly than the vortices annihilate and that the 
onset of topological long-range order is accompanied by 
the onset of nondiagonal long-range order. 

The picture of phonon relaxation changes significantly 
in a system of bounded size if the mean free path of the 
particles is set by this size or even becomes larger than Do 
in the case of specular reflection (a  "magnetic wall"). In 
this case, condition (39) is violated, and the hydrodynamic 
sound-absorption regime is disrupted. A direct scattering 
of phonons by normal excitations becomes the dominant 
mechanism. In this case the phonon relaxation time found 
in Ref. 24 turns out to be 

For Ik- 1, where I=: 1/8ra2n, expression (50) becomes the 
same as (48). 

Comparing this result with the limiting value k- Df l  
with rv( DO), we find 
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Since the core radius is of order rc, this relation is mean- 
ingful only under the condition Do% rc. In many cases, the 
ratio (51) is much greater than unity. The qualitative as- 
sertions made above thus remain in force. When the gas 
parameter is sufficiently small, and T is relatively close to 
the low-energy boundary of the interval ( lo), however, the 
ratio (51) may become less than unity. This means quali- 
tatively that the nondiagonal long-range order is reached 
after the topological long-range order, and there exists a 
time interval in which there is true superfluidity but no 
nondiagonal long-range order. In this case the relaxation 
time of nonequilibrium phase fluctuations is determined by 

5. CONCLUDING COMMENTS 

It follows from this analysis that the kinetics of the 
Bose condensation in an interacting gas is characterized by 
a hierarchy of relaxation times. The shortest time scale, rC 
given by (2), determines the time scale for the formation of 
a quasicondensate after the excess of particles which form 
the condensate at equilibrium reaches the energy interval 
E < noU. This stage is p~ceded  by a stage of evolution in 
the kinetic region E > now, which is characterized by a col- 
lision time rkin [see (4)]. Since the condition rkin)rc holds 
in a low-density gas, the formation of a quasicondensate as 
a whole is determined by the time scale rkin. Beginning 
immediately thereafter is the stage in which long-range 
order develops, which is characterized primarily by the 
annihilation time of the vortex structure, rV(DO) [see 
(37)]. This time, which is responsible for the appearance of 
topological long-range order and thus true superiluidity, 
turns out to depend on the size of the system: 
rv- m n (  Ddr,). This time may be very long. Vortices 
may annihilate at a surface, which we have not discussed in 
this paper, but this will not change this estimate in any 
fundamental way. Finally, there is yet another time, r,, 
the time scale for the decay of anomalous fluctuations in 
the smooth part of the phase. This is the rise time of non- 
diagonal long-range order with a macroscopically deter- 
mined phase which is constant along the system and, cor- 
respondingly, with a 6-function peak in the particle 
distribution at E=O. The time r, also turns out to depend 
on the size of the system. If the particle mean free path 
satisfies /<Do, then we have 7,-G. It has been found 
that the condition 7, < rv holds in essentially all cases; this 
condition means that the onset of topological long-range 
order is accompanied by the onset of total long-range or- 
der. If the condition /< Do is violated, then both the con- 
dition r, < rv and the opposite condition r, > rv can hold, 
depending on the parameter values. In the latter case, the 
nondiagonal long-range order sets in last. In this case we 
have 7,- DO. 

We have a comment here. When a is very small, the 
so-called Kolmogorov regime may change the essentially 

dissipative relaxation of the vortex structure discussed in 
Sec. 3 of this paper. This regime would correspond to dis- 
sipative annihilation at arbitrarily small scales, which 
would be preceded by a nondissipative energy flux (ap- 
proximately equal to the length of the filaments of the 
vortex structure) in length-scale space, analogous to the 
Kolmogorov regime of turbulence. This flux may arise, for 
example, because of the appearance of smaller scales due to 
reconnection, and it should not depend on a. This problem 
deserves a special analysis. Here we will simply point out 
that experimental results on helium indicate that this re- 
gime has not yet arisen at values a = (Ref. 16). 

In this paper we have analyzed primarily the kinetics 
in a homogeneous system. The inhomogeneous case is dis- 
tinctive because a Bose condensate forms in a small vol- 
ume, leading to a sharp local increase in density. Accord- 
ingly, all the density-dependent processes should be 
enhanced.I3 A sufficient condition here would be the for- 
mation of a quasicondensate and thus relaxation times on 
the order of T ~ , ,  (and rc,  if the time at which the coherent 
region is reached is reduced sharply because of an interac- 
tion with an external medium). At the same time, a sharp 
decrease in the times rv and 7, should correspond to small 
sizes. 

An interesting fact has emerged from the attempt to 
experimentally observe Bose-Einstein condensation in an 
exciton gas created by a laser pulse in a semicond~ctor:~~~ 
During cooling, the trajectory in the (n ,T)  plane reached 
the phase-transition line comparatively rapidly, but did not 
intersect this line. Consequently, Bose condensation did 
not occur. Analysis of the kinetics of Bose condensation 
shows that this could not be caused by the long time scale 
for the formation of a quasicondensate. We believe that the 
reason is a "burnup" of a (quasi-) condensate due to a 
rapid growth of processes which consume excitons (possi- 
bly surface recombination). The motion of a trajectory in 
the course of evolution along a phase-transition line, on the 
other hand, can be understood if we note that at c/c,= 5/3 
adiabatic expansion of an exciton gas should lead to spe- 
cifically this evolution picture. A recent of the ex- 
ample of spin-polarized atomic hydrogen in a magnetic 
confinement system clearly demonstrated that a density- 
dependent decay channel precedes any significant penetra- 
tion into the Bose-Einstein condensate region. 

The question of the possible superfluidity of a nonequi- 
librium exciton gas, proposed in Refs. 4-6, requires a sep- 
arate analysis. That problem is complicated because the 
exciton gas created in a narrow layer of order 1 pm in size 
expands at a velocity on the order of the sound velocity. 
This expansion may promote a growth of the vortex struc- 
ture. 
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