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Corrections of order a4Rm to the positronium P levels are found. The calculation is reduced 
to ordinary perturbation theory for the nonrelativistic Schrodinger equation. The 
perturbation operators have Breit structure and are obtained by calculating the scattering 
amplitudes of nonrelativistic particles. The resulting energy corrections are 
8E(2IPI) =0.06 MHz, SE(~~P, )  =0.08 MHz, S E ( ~ ~ P ~ )  =0.025 MHz, S E ( ~ ~ P ~ )  = -0.58 
MHz. 

1. INTRODUCTION Here we present the results of our analytical calcula- 
tions for the corrections of order a4R, to the positronium 

High-precision measurements of positronium structure P levels. In the case n =2 the results for the fine-splitting of 
provide a unique test of quantum electrodynamics. The P levels can be directly compared with the data extracted 
typical accuracy reached in the measurements of the pos- from the experimental results of Refs 2, 5, and 6. 
itronium 2 3 ~ 1 - 2 3 ~ J ( ~ = 0 ,  1,2), 1 3 ~ 1 - 2 3 ~ 1  and 2 3 ~ 1 - 2 1 ~ 1  in- Similar corrections for the electron-electron interac- 
temals is a few MHz (Refs. 1-6).') The corrections of tion in helium were obtained numerically in Ref. 17. 
order a4Rm (Rm= 109 737.315 682 7(48) cm-' is the Ry- 
dberg constant) 7-9 are insufficient now for the comparison 
of quantum electrodynamics with those experimental data. 

The two-body bound state QED problem is certainly of 
independent theoretical interest. The generally accepted 
theoretical approach to it goes back to Refs. 10-12. This 
approach starts from the introduction of a relativistic two- 
body wave equation, which can be solved exactly and in 
the nonrelativistic limit reduces to the Schrodinger equa- 
tion. Then a perturbation series is developed about the 
exact solution. 

Our approach is different. Its application to the cor- 
rections which are logarithmic in a is described in Refs. 
13-1 5. The corrections discussed in Refs 13-15 and here 
are of relativistic origin and can be found as follows. We 
construct effective perturbation operators from the scatter- 
ing amplitudes for nonrelativistic particles diagrams and 
then use those operators in the standard perturbation the- 
ory for the nonrelativistic Schrodinger equation. 

The corrections of order a410g( l /a)  R, to the positro- 
nium levels were calculated recently by ~ e 1 1 ' ~  and then by 
us (in Ref. 15 we have corrected a numerical error made in 
Ref. 14). This shift exists in the S states only and varies 
with the principal quantum number n as n-3. The loga- 
rithmic structure of this correction allows one to treat the 
relativistic effects as a perturbation when deriving the re- 
sult. However, if one tries to go beyond the logarithmic 
approximation, the logarithmic integrals which are cut off 
at the electron mass l/m should be treated exactly, and the 
problem becomes extremely involved. 

Fortunately, for states of higher angular momenta, 
L > 0, the situation is better since their nonrelativistic wave 
functions fall off at small distances. Therefore, the integrals 
arising in the perturbation theory converge in the nonrel- 
ativistic region, which makes the problem quite tractable. 
The main difficulty (which we underestimated at the be- 
ginning of the work) is in the "book keeping." 

2. CONTRIBUTIONS OF IRREDUCIBLE OPERATORS 

We start with the kinematic correction resulting from 
averaging the second-order term in the dispersion law for 
electrons and positrons 

p2 p4 p6 
Jm2+P2-m=G-s+m+... , (1) 

Using the equations of motion we find 

The substitution of the nonrelativistic Coulomb expecta- 
tion values for l/#, 

reduces this energy correction to 

6 3 where &,=ma /n . 

159 JETP 78 (2). February 1994 1063-7761 /94/02015Q-06$10.00 @ 1994 American Institute of Physics 159 



2.1 Relatlvlstlc corrections to the Coulomb Interaction 

This perturbation operator will be extracted from the / scattering amplitude for free particles. It is convenient to 
consider the positron as an electron of positive charge. 
Then the scattering amplitude due to the single Coulomb 
exchange is 

where 

P(P',P) =u+(pl)u(p),  q=pl-p. 

(7 ) PIG. 1. Z-type double-Coulomb exchange. 

We substitute into (7) the solution of the free-particle 
Dirac equation 

where w is a bispinor describing a particle at rest, 

The corrections of fourth order in v/c are 

We have neglected here the operator proportional to 
since its expectation value in the coordinate repre- 

sentation (6(r)A+As(r)) vanishes for P states. The ex- 
pectation value of the operator ( 1 1 ) is again conveniently 
calculated in the coordinate representation. Its spin- 
independent part is 

Now, because of the Coulomb interaction the electron 
(positron) can go over to a negative-energy intermediate 
state. The corresponding contributions are described by 
Z-diagrams of the kind presented in Fig. 1. Here the par- 
ticle staying in a positive-energy state can be treated in the 
nonrelativistic approximation. Specifically, the large en- 
ergy denominator, equal approximately to 2m > En, due to 
"heavy" intermediate states, and the small matrix element 
(which vanishes in the nonrelativistic limit) of the Z-line 
make the power of a in the perturbation sufficiently large. 
In this way we get for the perturbation operator 

ap' a p  ap' u(p+k) u(p+k)  a p  - +2m2m-5% 2m 2m G) 

($ (PI2-dl2) = ([P2,[P2,;]] ) Going over to the coordinate representation, we note that 
the last integral is in fact the convolution of the Fourier- 
transform of the operator in/? with itself. So, 

=2([f  ,[p2,;]]) =4(r-4). (12) 
(18) 

The treatment of the spin-dependent operators is some- 
what more complicated. We go over to the Fourier trans- Note that the integral in ( 17) formally diverges at large k. 

forms of the operators: It can be easily seen, however, that the divergent part is 
independent of the momentum transfer q. Therefore in the 

d3q 4 ~ q  . in coordinate representation the corresponding operator is J m3 7 eqr=7 ( 13) just 6(r). Its expectation value is nonvanishing only in S 
states, where it can be shown to contribute (by accurately 

d3q 4nqgj . Sij-3ninj cutting off the linear divergence at k-m) a correction of 

m7- e ' q r = + 4 r n i n j 6 ( ' )  , ( 14) the order 

then use the equations of motions and the expectation val- 2.2 Single exchange 
ues (4), as well as the value of the radial wave function 
derivative at the origin In the noncovariant perturbation theory the electron- 

positron scattering amplitude due to exchange of one mag- 

In this way we get 

netic quantum is 
(15) 
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Here 

is the matrix element of the current taken over the solu- 
tions (9) of the free Dirac equation. In the dispersion law 
for the electron and positron the nonrelativistic approxi- 
mation suffices. 

We start from the contribution to the perturbation op- 
erator produced by the v2/c2 corrections to the currents: 

Here we have again neglected the terms with vanishing 
P-state expectation values. Going over to the coordinate 
representation by means of ( 13), (14) and 

we obtain 

Let us consider now the retardation effect. To this end 
the currents can be taken in the leading approximation: 

For momentum transfer on the atomic scale, q-ma, the 
perturbation of interest originates from the second-order 
term in the expansion of the factor 
[En- (p2+p'2)/2m -q]-' in ( 19) in powers of 
(En- (P2+p'2)/2m)/q: 

At first sight, the expectation value of this operator di- 
verges linearly at small q. This divergence can be demon- 
strated however to be unrelated to the order-ma6 correc- 
tion we are interested in. Indeed, let us split the integration 
over q into two regions, from 0 to A and from A to ca where 
ma2(A(ma. In the second region our expansion is appli- 
cable and the result of integration contains a term propor- 
tional to 1/A. Since the initial integral is independent of A, 
this term cancels in the sum with the integral over the first 
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region calculated without expanding. On the other hand, 
this last integral has no contribution of the a 4 ~ ,  order 
independent of A. Therefore, taking as the Fourier- 
transform of 

the operator 

we finally get 

Since a magnetic quantum propagates for a finite time, 
it can cross arbitrary number of the Coulomb ones. Simple 
counting of the momentum powers demonstrates that it is 
sufficient to include diagrams with one and two Coulomb 
quanta (dashed lines) crossed by the magnetic photon 
(wavy line). In the first case, Fig. 2, the perturbation op- 
erator arises as a product of the Pauli currents (25) and 
the first-order term in the expansion in 
(En - (p2 +p12 /2m )/q: 

In the second case all the elements of the diagram in Fig. 3 
should be taken to leading nonrelativistic approximation: 

All the integrals in (30) and (3 1 ) are convolutions of the 
already known Fourier-transforms of powers of r. In this 
way we get for the first operator: 

and for the second one: 

~ ( 1 )  = " [15(1-i) + ~ S L - Z ( S L ) ~ + S ~  
MCC 25.3.5 
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FIG. 2. Single-magnetic-single-Coulomb exchange. FIG. 4. 2-type single-magnetic-single-Coulomb exchange. 

One more energy correction of order a4Rm associated 
with single magnetic exchange is due to Z-type diagrams 
(see Fig. 4). To leading approximation one gets easily 

Standard calculations give now 

2.3 True radiative corrections 

Curiously enough, even the true radiative corrections 
of order a4Rm to the P-level energy can be presented in a 
simple form practically without special calculation. They 
can be easily demonstrated to be confined here to anoma- 
lous magnetic moment contribution to the single magnetic 
exchange, i.e. to a trivial modification of the usual Breit 
Hamiltonian. With this contribution the Pauli current be- 
comes 

where 

It should be noted here that the anomalous magnetic mo- 
ment contributions to the first-order retardation effect and 
to the diagram in Fig. 2 cancel. This corresponds to the 
absence of corrections of order v/c to the Breit magnetic 
exchange. In this way we get the following correction to 
the P-level energy: 

FIG. 3. Single-magnetic-double-Coulomb exchange. 

Two of its features are noteworthy. First, it vanishes in 
singlet states, which looks rather natural. Second, it has an 
extra factor 1/1? which reflects its radiative origin as dis- 
tinct from the relativistic origin of other corrections of 
order a4Rm to P-levels. 

2.4 Double magnetic exchange 

Let us consider now irreducible diagrams with two 
magnetic quanta. In our approximation they are confined 
to the type presented in Fig. 5. Their sum reduces to 

where kl=q-k. Now we substitute the products of oper- 
ators in the coordinate representation for the convolutions 
of their Fourier-transforms and take the corresponding ex- 
pectation values. In this way we get 

3. CORRECTIONS OF SECOND ORDER IN THE BRElT 
HAMlLTONlAN 

The next class of corrections of order a4Rm originates 
from the iteration of the usual Breit Hamiltonian V to 
second order in v/c. 

Before proceeding to the calculation, let us note that 
the Breit potential for the positronium (see, e.g., Ref. 18, 
Sec. 84), 
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FIG. 5. Double-magnetic exchange. 

has nonvanishing matrix elements for I A L  I =O, 2 only. 
The contribution of virtual F-levels will be found later. For 
now we average the angular dependence of (41) over the 
P-state wave function: 

After this procedure the perturbation (41 ) can be written 
as follows: 

where 

pr= - i(ar+ l/r) is the radial momentum, while 

is the unperturbed Hamiltonian for the radial motion with 
L = 1 in the Coulomb field. 

According to the standard rules, 

Since all relativistic effects are included here in the pertur- 
bation, the intermediate states I kP) are merely eigenfunc- 
tions of the nonrelativistic Schrodinger equation in the 
Coulomb field. 

The representation (44) enables us to find the energy 
correction (47) without recourse to the exact form of the 
Coulomb Green's function g. Specifically, 

where 

When passing from (50) to (5 1 ) we used the equation of 
motion and also the fact that perturbations in l/r and 1/3  
result in variations of p and y, respectively, in the modified 
Hamiltonian, 

Derivatives in (5 1 ) are taken at P= y = 1. 
Substituting (44) into (51 ) provides us with the ex- 

pression containing just the mean values of l/#, k= 1,2,3,4 
[see (4)]. Equating to zero coefficients of the various pow- 
ers of l/n we obtain 

Finally, substituting the expressions for a, b, c (45), we get 
the contribution of intermediate P states to the iteration of 
the Breit Hamiltonian: 

Transitions to intermediate I; states are induced by the 
operator (Sn) contained in (41 ) . Due to the conservation 
of the total angular momentum such transitions are possi- 
ble in states with J= 2 only. The matrix element squared of 
the operator, (sn12, is easily calculated by the closure con- 
dition: 

We have used here the identity ( s n )  I P) = Sn I P) . 
To calculate the radial part of the correction, propor- 

tional to 
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TABLE I. Fine-structure intervals between 2*+'~, levels (in MHz). 

Experiments Theory 

~ , a ~  
Transitions ~ i c h i ~ a n ~ . '  ~ a i n z ~  Total contribution 

we represent the operator 1/12 in the form 

where 

is the unperturbed Hamiltonian for the radial motion with 
L = 3 in the Coulomb field. The energy correction is again 
expressed in terms of r: 

4. NUMERICAL RESULTS 

Let us summarize the numerical values of the a4Rm 
corrections to the energies of positronium 2P levels. They 
are 

0.06 MHz for 2'P1, 

0.08 MHz for 2 3 ~ 2 ,  

0.025 MHz for 2 3 ~ 1 ,  

-0.58 MHz for 2 3 ~ o .  

We wish to emphasize here that the last correction is 
quite comparable in magnitude to the corresponding loga- 
rithmic correction (of order a4 log a R, ) to the positro- 
nium 2s-levels. The latter, for instance is 0.96 MHz for the 
2 3 ~ 1  Therefore, there is no special reasons to ex- 
pect that the nonlogarithmic corrections (of order a4R, ) 
to the positronium S levels are small. It makes their cal- 
culation a problem of considerable interest. 

Including a2Rm and a3Rm terms we obtain the fine- 
structure intervals between 22S+1~J levels. In Table I these 
theoretical values are compared with the transition fre- 
quencies taken from the results of two recent 

(all systematic and statistical errors are 
added quadratically when extracting the experimental 
numbers 1. 
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