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A quantum mechanical analysis of the time development of radiation from a system of N 
identical three-level emitters initially in excited states is given for the two-stage de- 
excitation scheme. For N= 1 and N = 2 (the exact resonance case), the corresponding 
transition probabilities are evaluated and the frequency and angular dependence of the 
radiation is discussed. 

In Ref. 1, using the time-dependent quantum mechan- 
ical theory due to Weisskopf, Wigner, and ~ e i t l e r , ~ ' ~  the 
time development of formation of coherent spontaneous 
photon radiation (or the Dicke effect4) has been obtained 
for a system of N identical two-level atoms initially in their 
excited state. In particular, for a two-atom system (N= 2), 
the time-dependent probability is predicted for the process 
of the induced emission of a photon by an excited atom 
acted upon by a spontaneous photon from another atom. 
Reference 5, based on the results of Ref. 1, considers the 
space-time interference picture due to the detection of one 
or two photons from a system of two simultaneously ex- 
cited and spontaneously emitting atoms; it is shown that in 
the general case, when the atoms interact strongly via the 
radiation field, the interference phenomenon is rather com- 
plex in character and is determined by the combination of 
the Brown-Twiss effect6 and the "classical" interference 
from two coherent emitters. It should be noted that the 
methods employed in these studies enable one to obtain the 
wave function of a system of identical atoms for any time, 
taking all the relevant level widths and phase relations into 
account. 

In this work, the same quantum mechanical formalism 
is used to consider effects caused by the radiation of pho- 
tons from a system of identical three-level emitters which 
are initially in their uppermost excited state. As far as the 
experimental situation in laser and Mossbauer spectros- 
copy is concerned, the detected radiation often comes from 
emitters for which a three-level description is adequate. In 
this case it is evident that-unlike two-level systems-not 
only coherent spontaneous radiation involving two 
(atomic or nuclear) transitions, but also the mutual influ- 
ence of the transitions should be observable. 

Most generally, the time evolution of a system of N 
three-level emitters (hereafter referred to as atoms) lo- 
cated at fixed points R1, R2 ,... RN and having nonoverlap- 
ping wave functions u, ( r - Ri) (n =O is the ground state of 
the atom; n= 1, 2 are the first and second excited states, 
respectively; i= 1-N) is described by the equation 

Iz) are the initial, final, and intermediate states, respec- 
tively; and H(t )  is the standard Hamiltonian2 for the in- 
teraction of an atom with a radiation field. Only transitions 
between the levels 0 and 1 and 1 and 2 are allowed, the 
transitions 0-2 are forbidden, and also the usual require- 
ments of the Weisskopf-Wigner approximation are im- 
posed, namely, the summation over the intermediate states 
in ( 1 ) includes only one-photon transitions, and the emis- 
sion (absorption) of each photon leads to the de-excitation 
(excitation) of the atom. To the intermediate states 
summed over in ( 1 ) one can associate an invariant number 
A( (z) ) which satisfies the following rules: 

Here fl (q) is the number of atoms in the upper 
(lower) excited state, and Npkhot and qhot are the numbers 
of photons emitted in 2-1 and 1-0 transitions (see Fig. 1). 
Let ji be the label of an atom in the first excited state and 
si the number of an atom in the ground state. Then any 
intermediate system state is conveniently indexed as fol- 
lows: 

where ki and qi are photon wave vectors. In the following, 
writing zeros in place of indices indicates the absence of 
corresponding atoms or photons in a given state. For the 
matrix elements in ( 1) we introduce the notation 

d 
i ( a ( t ) i ) =  (1) J I S  J Z . " J M  

I d  S,, S2" 'SL  

where the operator U(t) determines the state of the system kl ,  k2- ' .kM = a  k l ,  k 2 ' . . k M  ( f ) ,  (4) 
4 1 .  9 2 " ' 9 ~  

for any time t>O, it being assumed that at t=O all the 
atoms are in the upper ( n  =2) excited state; 1 i), (a) ,  and 
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FIG. 1. Schematic energy level diagram for an isolated three-level atom. 

J I ,  J~ . - -JM-I  
S], S2' "SL 

kl ,  k2"'kM 
H'"' ( t )  

Here e represents the electromagnetic coupling constant, 
y,, is the Dirac vector, and e,, the polarization vector. In 
the following, the factorization d,d) = exp( - i R d p )  Cp ( d  
= j ,  s; p= k,q) is used. Q i j = ~ i - ~ j  are the energy differ- 
ences between the atomic levels (Fig. 1); V is the normal- 
ization volume of the radiation field; k= \ k ( and q= ( q 
are the corresponding photon energies. 

On substituting (3)-(8) into ( I ) ,  carrying out the 
partial summation and changing to the Fourier compo- 
nents of the amplitudes with respect to frequencies we find 

N-M- L 
kl,kz...k~, 

=6M,&L,0+ T-1 [ I [ z C?*T 
'l19Qz...QL v=l k 

Here E is the energy of the system as a whole; E is the 
positive infinitesimal specifying pole avoiding rules; 8L,M 
the Kronecker symbol; and T[x] the Einstein function 

where ni is the number of times the quantity q occurs 
among a], a2 ,..., aL . 

The system of equations (9) enables one to obtain in a 
formal manner an exact solution (exact meaning within 
the above approximations) for the complete set of state 
amplitudes of a system of an arbitrary number of three- 
level emitters. It is not hard to show that the number of 
equations in the system is determined by the number of the 
atoms considered and is equal to 

N N-M 

e ~ h - ~ = 3 ~ .  
M=O L=O 
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THE CASE OF AN ISOLATED ATOM (N= 1) 

For N= 1, from (9) we have 

Solving the system (12)-(14) and changing to the time 
representation we obtain the following expressions for the 
amplitudes: 

exp[-i(q-k-q)t]exp( -irg) 
+(&2-k-q-l~k) [&2-&1-k- i (~k-~q) ]  

(17) 

where rk and rq are the standardly defined halfwidths of 
the corresponding levels (see Refs. 1 and 7 and Fig. 1 ). 

Since in real experiments one is usually interested in 
2-1 transitions, it is appropriate to consider the differential 
probability for the emission of a k-photon by an individual 
atom per unit time, 

Substituting (15)-(17) into (18) and summing over 
the energies and angles of the q-photons and the angles of 
the k-photons gives 

Expression (19) makes it possible to trace the time 
dynamics of the formation of a wave packet in a resonant 
medium. Evaluating the derivative dIl/dt, we obtain after 
some manipulation the condition on the extremum points 
[cf Eq. (19)]: 

FIG. 2. Dependence of the left-hand (curves I)  and right-hand (curves 
2) sides of Eq. (22) on time (the value of A- is fixed, A- >0) .  Solid 
lines: o=3A- ; dashed lines: m=3.64A-. Curves 2 are superimposed on 
each other. 

A-#O. As rq+O (A- + - r k ) ,  we go over to the two- 
level case, and because the right-hand side of (19) de- 
creases with time, for any nonresonant frequencies (o#) 
we have an infinite sequence of alternate maxima and min- 
ima. For a three-level atom ( r@)  and A- >0, the re- 
gion of the emission rate growing monotonically in time to 
its saturation, broadens relative to the two-level case from 
a single point w=O (the center of the line) into a band 
(o ( < 3.648-, where the numerical coefficient is obtained 
from the first extremum condition (see Fig. 2). As one 
goes further away from the line center the number of ex- 
tremal points increases but remains finite (Fig. 3), each 
event as the rhs exponential touches the next lhs oscillation 
crest in Eq. (22) corresponding to an inflection point; 
whereas a slice through the ridge gives rise to two extrema, 
first a maximum and ' then a minimum. For 
A- <O(rq< I?,), the situation is qualitatively indistin- 
guishable from that for two levels (Fig. 3). For A- =0, 
Eq. (22) is replaced by the trivial o sin(wt) =0 yielding an 
infinite number of extrema in analogy with the case A- < 0. 

If one introduces the line halfwidth r ( t )  at half- 
maximum as the frequency for which 

then the time dependence of this function, as calculated 
from ( 19), takes the form shown in Fig. 4. For t-, CCI we 
obtain the familiar result r ( t =  UJ ) =rk+rq (Ref. 7). 

arb, units I 

FIG. 3. The same as Fig. 2 for A- >0, o=7A- (solid lines) and A- <0, 
0=51A-l (dashed lines). 
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r, arb, units P, arb. units 

FIG. 4. Dependence of the half linewidth of the radiation of an isolated FIG. 5. Dependence of the function P(rk,rq) on rk for a fixed value of 
atom on time for rq fixed. Curve 1: rk=0.5rq; curve 2: rk= 1.5rq. rq. 

TWO-ATOM CASE (N=2) YO= al~2qlq2 (29) 

The time development of a two-atom system is de- For the exact resonance case ( k = a z l ,  q=fllo), ex- 
scribed by the system of equations given explicitly in the pression (24) after integration over the q-energies becomes 
Amendix. The exact solution of the svstem (A1 )-(A91 * * . . ,  . 
turns out to be extremely cumbersome. We present here dW(kl,kz,ql ,@,t= ao 
the result for the case t= ao, when the differential proba- dk1dk2daqldaq2 
bility for the total de-excitation of a two-atom system is 
determined by the state amplitude given in (A9). We have =16~~(rk~r~)~-~(ki,kz,qi,%) 

dW(k,,k,,qr,~z,t= a - y2 
(23) 

xC1+cos[(ql-q2)(Rl-R2)13 
d ~ ~ q l d e  - 1 aklk2q,q2 1 2- 

xC1+cos[(kl-k2)(Ri-R2)13, (30) 
As shown in Ref. 1, if the interatomic distance is large 

in comparison to the half wavelengths of interest, that is, P( r k  , r4)  = - 881 + 16gz - 883 - 8g4 + 8g5 
for I R1-- R2 I >A2,/2, A2d2, Ail = 2 h i j  (which is usually 
the case experimentally), we may neglect the nondiagonal - 1286+887-2g8, (31) 

elements of the linewidth matrix. In this approximation we gl = [ 4 r g ( r k +  rq) ( rk- rq)2(rk+ 3rq)  (3rk+ rq) ] -1, 
obtain (32) 

where flq is the solid angle into which the q-photons are 
emitted. The divergences of the terms (32)-(39) for 
rk=rq cancel out and the function P(rk,rq) remains 
continuous; the graph of the function is shown in Fig. 5. 
From (30), the contributions to the angular dependence of 
the emission rate from the q- and k-photons are seen to 
factorize. 

In conclusion, a brief discussion of the above results is 
in order. As follows from the expression ( 19) (N= 1 ) for 
the transition probability from the upper excited state, 
there may occur new effects as compared to two-level sys- 
tems. First, we have a broadening of the frequency region 
over which the emission rate grows monotonically with the 
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time, and second, there is a rather peculiar dynamics of the 0 

wings. This circumstance can have an essential role to play (f2-'2-k1-q1+i')ailql 

in the dynamics of wave packet formation in the propaga- 
tion of relatively short pulses in such media. 

For a two-atom system and r,+O-which is equiva- 
lent to equating to zero all the state amplitudes describing L -L 

the presence of q-photons-we note that Eqs. (A1)-(A9) 
characterizes a system of two two-level atoms. Reference 1 
gives a qualitative extension to the N) 1 case, which is 

2 
presumably valid--at least for rk$ r,-for the three-level - El - kl - k2 - ql + iE) a; , 
situation as well. 1 291 

12 

d,:'*T(kl,k2)a~, 1 2  

APPENDIX 
0 0 

For N = 2, the equations for the corresponding ampli- +d,~'*~(k1,q1)a~~~+d,~'*~(k2,q1)a~~~~ 
tudes, according to (9), take the form 

1 2 
1 + d,:'*ai2+ E C', : 'T(~~ h9ql)aklk2ql 
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Z d,:'T(kl ,k2,q2)a:lk2q2 , Translated by E. Strelchenko 
k1 I This article was translated in Russia and is reproduced here the way it 

was submitted by the translator, except for stylistic changes by the Trans- 
(A5) lation Editor. 
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