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The question of the role of boundary conditions in quantum mechanics is considered for the 
example of spin-1/2 particles possessing a magnetic moment and situated in an 
Aharonov-Bohm field. The formalism of self-adjoint extensions of operators used in the 
theory of short-range potentials is analyzed, and the limits of its applicability in the case of the 
action of an external magnetic field are discussed. The physical consequences of the 
existence of an anomalous magnetic moment of the particles for this model are investigated. 

1. INTRODUCTION 

The Aharonov-Bohm effect,' which was once widely 
discussed in connection with the role of electromagnetic 
potentials in quantum mechanics, has now acquired new 
importance because of interesting analogies-in particular, 
with the behavior of particles in the vicinity of a cosmic 
string,2 and, in general, with the distinctive features of 
quantum theory for spaces having conic ~in~ulari t ies.~ In 
the original Aharonov-Bohm model the effect arises when 
quantum spinless charged particles are scattered by an in- 
finitely thin, infinitely long solenoid containing a finite 
magnetic flux @. Since there is no magnetic field outside 
such a "string," there are no forces in the classical sense 
acting on the particle either. We note that, besides the 
situations listed above, an interaction of a similar "topo- 
logical" character is also encountered when conduction 
electrons are scattered by line defects in the crystal lattices 
of solids-dislocations and dis~linations.~ There are inter- 
esting applications of the Aharonov-Bohm effect in the 
theory of anyons, which is currently being developed with 
the aim of explaining the phenomenon of high-temperature 
superconductivity .5 

The problem of taking spin into account in effects of 
this kind turns out to be far from simple, and requires a 
careful analysis of the boundary conditions of the problem. 
Otherwise, the danger arises that the dynamical evolution 
of the particles will be incorrectly described as a conse- 
quence of violation of the condition that the Hamiltonian 
be self-adjoint. Attention was first drawn to this in papers 
devoted to the behavior of fermions in the vicinity of a 
cosmic string,6 and in the study of Aharonov-Bohm scat- 
tering for relativistic particles with spin 1/2 and g =  2 (Ref. 
7). The supersymmetric interaction that arises in this scat- 
tering permits a considerable simplification of the analysis 

f = @/q0= N+S with N =  [@/ao], where @,=2rrfic/eo is 
the quantum of magnetic flux.) 

In this paper we analyze the case g#2. The existence 
of an anomalous magnetic moment of the particle violates 
the supersymmetry of the interaction, and, as we shall 
show below, causes the zero modes to transform into or- 
dinary bound states and an additional energy level to ap- 
pear. We shall confine ourselves to the nonrelativistic case. 
In the analysis of the spectrum of the Pauli Hamiltoriian 
and of the boundary conditions imposed on the wave func- 
tion of the particle in the region of the field source, one uses 
the method of self-adjoint extensions of operators that has 
been developed in the theory of &potentials or short-range 
potentials.g The necessity of introducing a special har- 
monic is demonstrated, and the influence of characteristics 
of the singular behavior of this harmonic in different phys- 
ical situations for particles outside the source is traced. We 
also investigate the limit R-0 (R is the radius of the 
magnetic-field tube), and, thereby, the possibility of using 
the model of a magnetic "string" for an adequate descrip- 
tion of the scattering of fermions in an Aharonov-Bohm 
field. 

2. ANALYSIS OF THE BOUNDARY CONDITIONS AND 
SPECTRUM 

We shall consider a nonrelativistic electron with mass 
M, charge e= -eo, and magnetic moment p=gp$3 
[(g- 2)/2 -a,  > 0] in the vicinity of a magnetic string with 
an Aharonov-Bohm electromagnetic potential 

and magnetic field 

- - 

of the spectrum of the Dirac Hamiltonian: In particular, it In this case the Pauli equation 
is easy to demonstrate the existence of N modes with 
zero energy E = O  (one for each quantum of magnetic flux 
contained in the solenoid).' (Here we assume [& (P+?A)'- ( p H ) ] P ( r )  =m(r) 
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can be represented in the form 

where we choose p,=O and sz=fi/2. (It is easy to see that 
in the opposite case, when St f  H, there will not be any 
interesting physical consequences.) We shall attempt to 
avoid the difficulties caused by the 6-potential by introduc- 
ing the operator 

which is defined only on wave functions regular at the 
origin. However, if, using the scalar product in L ~ ( R ~ )  

we construct the adjoint @ of the original operator H ~ ,  it 
is easy to show that 

i.e., the domain of definition of @ is wider, and, therefore, 
the operator H0 is not self-adjoint. Following the method 
of von Neumann, we shall analyze its defect index. For this 
it is necessary to find all the eigenfunctions corresponding 
to the complex eigenvalues of @ : 

Let 2 = ip2, where p2 > 0 and has the dimensions of en- 
ergy. Then, expanding the wave function in Fourier har- 
monics, 

where the radial wave function satisfies the equation 

and using the condition that the wave function be square- 
integrable, we find that solutions of (2) are possible only 
for the harmonic m= -N corresponding to the smallest 
value of the total angular momentum, and can be ex- 
pressed in the form 

In this case the defect indices (m,n) are equal to (1, l ) ,  
and it is necessary to introduce a one-paramete: family of 
self-adjoint extensions of the original operator Ho only for 
the harmonic m = - N: 

if.0 + 

where 

h ^ f , a ~ + ( ~ ) = * i p 2 ~ + ( p ) .  

Here, Y(p)  E D(L f,a) if 

where Yo( p) E D( H ~ ) ,  C is an arbitrary complex constant 
quantity, 8 is the parameter that labels the variants of the 
self-adjoint extensions, a. is a dimensional parameter 
([ao] -p) that cannot yet be determined, and H(,lv2)(x) are 
Hankel functions of the first and second kind. Using the 
well known asymptotic behavior of the Bessel functions at 
small arguments: 

we can describe the sought general behavior of the wave 
function in the neighborhood of the origin as 

where 

-2 eie/2 sin ( 8/2 + rS/4) 
A=C- 

sin(r6) r ( l - 6 )  ' 

ei0/2 
sin ( 8/2 + 3r6/4) 

B=C- 
sin(r6) r ( 1 + 6 )  

and, hence it is possible to label the variants of the self- 
adjoint extensions by one real parameter d: 

We shall analyze the spectrum of the Pauli Hamil- 
tonian ( l ) ,  but now with the correct boundary conditions 
(4), (5). All nontrivial consequences pertaining to the pos- 
sible bound states can be*obtained by investigating the 
structure of the resolvent R constructed only for hf,, (m 
=-N). Let 

{ ~ ( p ~ k ) = [ h ^ ~ , , - k 2 l - ' ) h ( p ) = f  (p) ,  (6) 

where f ( p )  E D(hf,,), PEG. 
It is easy to see that for the radial equation the resol- 

vent is an integral operator with kernel G(p,pl,k): 

It then follows from (6) that 

If p#pl, then 

and we can construct the Green's function G(p,pl,k) as a 
superposition of linearly independent eigensolutions of Eq. 
(7): 
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with the normalization condition 

The system of relations ( 9 ) ,  (10) permits us to determine 
G(p,pf,k) uniquely: 

J6(kp)H',"(kpf), p < p '  
G(p,pf,k) =- 

H' ,"(kp)~~(kp ' ) ,  p >  p', 

and analysis of the boundary condition for f (p)  from (8) 
gives the vplue a= + oo. Thus, we have constructed the 
resolvent ~ ' ( ~ , k )  for the particular case a= + oo (the 
so-called Friedrich variant of self-adjoint extension). For 
an arbitrary value of d the resolvent l?(p,k) can now be 
constructed using Krein's method:'' 

and, analyzing the boundary condition for f (p) from ( 8 ) ,  
we obtain 

As is well known, the pole of the resolvent makes it pos- 
sible to determine the bound state. Then 

r (1-6)  
p(k)  -+ oo: 2 ~ d =  - ( ~ a ~ ) ~ "  

r (  1 +S) ' 
or k? = - x2 = 2 m ~ / #  < 0. Thus, we can normalize our 
scale d by setting a= l/x, where x characterizes the en- 
ergy of the bound state, and say that the boundary condi- 
tion (4), imposed on the wave function (p+O) for the 
value 

corresponds to a bound state. We note here that this 
method does not permit us to determine the actual magni- 
tude of the energy level and its relationship to the physical 
parameters 1 p 1 and Q,. 

3. REGULARIZATION: MODEL OF A STRING WITH FINITE 
RADIUS 

We now consider a more physical approach-namely, 
we shall introduce a model of a string of finite radius R 
with the magnetic field distributed within it in such a way 
that the total magnetic flux is equal to Q, as before. For 
this, in order to single out the model-independent physical 
results we introduce three different magnetic-field distribu- 
tions that admit exact solutions: 

Model I: H ( p )  =Q,/rR2 (a uniform magnetic field in- 
side the tube). 

Model 11: H( p)  =@/2n-R l/pO(R - p) ("Coulomb"- 
type behavior). 

Model 111: H (  p )  =@/2n-RG(p- R )  (a cylindrical 
6-shell of radius R ) . 

We rewrite the Pauli equation in the general form 

Here, a= * 1 indicates that the spin projection is parallel 
(antiparallel) to the direction of the magnetic field. After 
the angular dependence has been factored out, in the same 
way as was done in ( 3 ) ,  the radial equation will have the 
form (p,=O) 

where 

For us the case m= - N is the most interesting. We shall 
consider first the "outer" solutions, i.e., the region p > R. 
For E<O a bound state, described by the wave function 

Y-N=K~(  J--Ep), (13) 

is possible. The logarithmic derivative of this solution is 
equal to 

For states in the continuum E >  0 (scattering states), the 
radial wave function in the general case has the form 

and its logarithmic derivative is equal to 

The expressions (14)-(16) can be analyzed for different 
values of$ E, and R. In particular, the limit R -0 for E < 0 
gives 

Using the explicit solutions of Eq. (12) for the different 
distributions of the magnetic field inside the tube, we can 
find the values of the logarithmic derivatives of the "inner" 
solutions in the same limit for the bound states (E < 0). 

Model I: 
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( ,f is a confluent hypergeometric function). 
Model 11: 

Model 111: 

The magnitude of the energy level for the first two models 
is determined by the condition for matching at the bound- 
ary of the tube: 

For model I11 it is necessary to consider the discontinuity 
of the first derivative: 

The solutions ( 18) and ( 19) are possible only for g > 2 and 
o= - 1, i.e., the spin should be antiparallel to the field. The 
energy level is determined in this case by the transcenden- 
tal equation 

,LR 26 r (  i +s) g-2 cpi 
(T) = 

-- 
r ( i - 6 )  2 2 ' (20) 

and its magnitude depends on the choice of model. It is 
easy to show that for this solution the boundary condition 
( 11 ), predicted by the theory of self-adjoint extensions, is 
fulfilled. We note that for R-0 the given bound state is 
preserved only if there is a corresponding "renormaliza- 
tion" of the coupling constant a,: 

This phenomenon is characteristic of the theory of 
6-potentials, and was first considered by Berezin and 
Faddeev. 

The presence of a bound state also leads to singularities 
in the scattering of particles with spin. As R+O and for 
St 1 H, in addition to the ordinary Aharonov-Bohm scat- 
tering additional scattering occurs, described by the coef- 
ficient B- ( B, -r 0 for m# - N) : 

where x is the bound-state energy determined by (20). The 
expression for the scattering cross section in this case has a 
form analogous to the Breit-Wigner formula. 

For a finite value of R in the case g=2 there exists a 
level E=O with degeneracy N. The outer wave functions in 
this case have the form 

and in the limit p+O we should formally discard them 
because of the requirement of square integrability of the 
wave functions. Taking the inner structure into account 
gives the radius R the meaning of the boundary of exist- 
ence of the outer solution (23), and eliminates the singu- 
larity. This analysis is a particular case of the well known 
result concerning the number of zero modes in a magnetic 
field of arbitrary configuration.' 

For g#2 (to be precise, g > 2), the breaking of the 
supersymmetry lifts the degeneracy, and the additional at- 
traction due to the interaction of the anomalous magnetic 
moment of the particle and the field of the tube causes the 
solutions (23) for the zero modes to pass over into wave 
functions of additional bound states: 

A situation analogous to that considered above arises: In 
the limit R-0, for formal reasons we must discard these 
wave functions. Nevertheless, if we take the inner structure 
into account and make the corresponding "renormaliza- 
tion" of the coupling constant: 

it is possible to retain them. We note that the "renormal- 
ization" conditions (21) and (25) are incompatible, and, 
therefore, in the limit R-0 it is possible to consider only 
either the "quasizero" modes (24) or the "true string" 
bound state ( 13). 

4. CONCLUSION 

We have shown that the method of self-adjoint exten- 
sions of operators and the analysis of regularized models 
give similar results for particles with spin in an Aharonov- 
Bohm field only for N=O. Generally speaking, for N#O, 
solutions of the Pauli equation arise that are regular in the 
region p < R but are formally singular outside this region 
( p >  R )  in the limit p(R) 40.  We cannot discard them, 
since they can correspond to real bound states. One way 
out of this could be a more general mathematical scheme of 
analysis of the &potentials than that proposed in Ref. 8 
and demonstrated in Sec. 2 of this article. 

For real physical situations, when a, and R are small 
but nonzero (e.g., for the electron, ae=O.OO1 16), in the 
sense of the applicability of our analysis [( 17), (20), (22)] 
it is evident that 1 + N  bound states, corresponding to dif- 
ferent energy levels, can exist simultaneously. 
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Similar conclusions are also valid for real cosmic 
strings of finite radius with trapped magnetic flux. Gener- 
ally speaking, it is not correct to attempt to reduce the 
interaction of such a string with fermions to the choice of 
some boundary condition for the solution of the corre- 
sponding equation describing the motion of the particles in 
a space with a conic singularity (or to construct a one- 
parameter family of self-adjoint extensions of the Hamil- 
tonian), since this can lead to the loss of a number of 
physical effects. 
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