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Nonlinear diffusion of the magnetic flux in a soft superconductor is investigated for times 
before the flux creep becomes significant. Situations in which linearization of the 
equations of motion for magnetic induction is impossible are discussed. It  is shown that this 
problem differs significantly from the classical nonlinear-diffusion problems that arise, 
for example, in combustion theory. The solutions of the magnetic-induction evolution equations 
are described. The IVC characteristics of a type-I1 superconductor are obtained with 
allowance for the inhomogeneous distribution of the magnetic vortices over the 
superconductor. It is shown that a constant magnetic induction B, sets in the interior of the 
sample in the case of an external magnetic field H,(t) =Ho+H1 sin wt, with I B, I % 1 Ho 1 
if I H1 I % I Ho I .  Moreover, an external periodic magnetic field can induce a nonzero B, even if 
the constant component of the external field is zero. The evolution of the spatial 
distributions of the magnetic flux inside a superconductor following application of an external 
field H,(t) = H1 sin (wt+ q )  is considered. It is shown that the magnitude and sign of 
magnetic flux m penetrating into the interior of the sample is determined by the phase q of 
the external field at the instant of its application. The asymptotic values are here 
m K t-' for a slab with a parallel applied field and m oc t-'I4 for a semi-infinite specimen. 

1. INTRODUCTION geometry (semi-infinite specimen or plate) with a one- 
component magnetic induction13 B,(x,t) = B(x,t) 

The discovery of high-temperature superconductivity 
has increased greatly the number of experimental and the- 
oretical investigations of the diffusion of the magnetic flux at  (2) 

(magnetic vortices) in type-I1 superconductors (see Refs. 
1-3 and the citations therein). Generally speaking, the 
problem of nonlinear diffusion is a classical one and can be 
formulated for a great variety of physical systems (e.g., 
combustion4). Its various aspects were touched upon in 
many studies, it was included in many textbooks, and the 
solutions of the corresponding equations are the subject of 
several monographs (see Refs. 4-9 and the citations 
therein). Similar problems are encountered also in the in- 
vestigation of self-organization processes,10 in the problem 
of strewing a heap of sand,11712 etc. 

The references cited involved in fact the solution of an 
equation of the type 

where n is a positive quantity (e.g., density), y =const > 0, 
DN is the coefficient of "nonlinear diffusion," t the time, 
and x the coordinate. We consider for simplicity only the 
one-dimensional problem and disregard the sources. 

Nonlinear magnetic-flux diffusion in type-I1 supercon- 
ductors differs in at least one respect from the aforemen- 
tioned problems described by Eq. ( 1). The point is the 
local magnetic induction B(r,t), unlike n, is a vector quan- 
tity and the evolution equation for it should differ most 
substantially from the classical equation ( 1 ) . We obtain 
this equation in the next section in the simplest and most 
lucid form for a soft superconductor in one-dimensional 

where DB is the corresponding coefficient. Evidently Eq. 
(2) differs from ( 1 ) only by the function sign B in the 
right-hand side. We shall see that this difference is ex- 
tremely important in those situations in which B(x,t) can 
reverse sign. It must be stated that Eq. (2) can be mod- 
ernized and generalized to include the case of a hard su- 
perconductor, creep, e t ~ .  

Note that the magnetic-flux diffusion in superconduct- 
ors was considered in the available papers only in problems 
where the equation for the magnetic induction can be 
lineari~ed,"~ or where the equation is not linearized but 
there is no need to consider the vector character of B. (The 
last case involves, for example, investigation of the creep of 
the flux-Refs. 14 and 15 and the citations therein). We, 
on the contrary, consider just situations in which the dif- 
ference between Eqs. ( 1 ) and (2)  is important. In partic- 
ular, when an external alternating magnetic field is turned 
on. The experimental evolution of the spatial distribution 
of the magnetic flux in a an HTSC upon application of an 
oscillating low-frequency magnetic field was investigated in 
Ref. 16 (see also Ref. 17 and the citations in both). Here, 
however, since we are interested only in those principal 
singularities of nonlinear diffusion which are connected 
with the presence of the function sign B in Eq. (2),  we 
shall discuss only the simplest case of a one-dimensional 
soft superconductor (i.e., a zero critical current). We con- 
fine ourselves also to diffusion over times for which the 
creep of the flux need not be taken into account. These 
constraints still prevent us from describing a real experi- 
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ment, but we shall show that the behavior of even this 
simplified system is not trivial. In view of the complexity of 
the corresponding evolution equations for the magnetic in- 
duction, the solution of the posed problems calls for nu- 
merical investigations. We shall therefore not pay serious 
attention to these questions. 

In Sec. 3 we describe the general structure of the so- 
lutions of Eq. (2) in the case of an applied (or reversed) dc 
magnetic field or electric current. These solutions, in par- 
ticular, will be used next to consider more complicated 
situations. In Sec. 4 we discuss the IVC (current-voltage 
characteristics) obtained for type-I1 superconductors from 
Eq. (2). We shall demonstrate that owing to the inhomo- 
geneous distribution of the vortices across a current- 
carrying slab, the IVC should differ greatly, even for the 
thinnest slabs, from those obtained in the single-particle 
approximation (for a soft superconductor this would mean 
proportionality of the voltage to the current along the 
slab). It will be shown that application of a strong enough 
dc magnetic field alters substantially the form of the IVC. 
We shall also touch upon the IVC of hard superconduct- 
ors. 

We shall show next that in the case of a low-frequency 
alternating magnetic field of frequency w and amplitude 
H(Hcl < H < Hd where HC1 and Hc2 are the lower and up- 
per critical field) there appears in the problem a charac- 
teristic length 

where Qo is the magnetic-flux quantum, 7 is the viscosity 
coefficient for Abrikosov vortices, and p, is the resistivity 
in the normal phase. The oscillations of the magnetic field 
penetrate into a soft superconductor to a depth of the order 
of I. In Sec. 5 we assess the magnetic induction B, pro- 
duced in the interior of a soft superconductor (i.e., at dis- 
tances from the surface much larger than I) when an al- 
ternating magnetic field is applied. Clearly, for an applied 
field Ha(t) =H1 sin wt we have B, =O. We shall show that 
in the case Ha(t) =Ho+Hl sin wt the magnetic induction 
is B, =2 1 Hfl l /~1 'I2 sign Ho if 1 Ho 1 < 1 H1 1, i.e., 1 B, 1 
can be much larger than I HoJ. It will be shown that, in 
general, an external periodic magnetic field can induce a 
nonzero B, even if the time-averaged magnetic field, i.e., 
its zeroth Fourier component Ho, is zero. For example, for 
H a ( t ) = H 1 s i n w t + H 2 s i n ( 2 w t + q )  at lHll%IH2( we 
have B, = - 2 sign(H1H2 sin q )  1 HlH2 sin q / 3 ~  ( 'I2, i.e., 
the answer depends on the relative phases of the harmonics 
of the external field. A periodic external field can thus 
pump a dc magnetic field into the considered nonlinear 
system. 

In Sec. 6 we consider the transient that follows the 
application of a periodic external magnetic field, namely, 
the evolution of spatial distributions of the magnetic flux in 
the interior of the superconductor, i.e., at distances exceed- 
ing the characteristic length I from the surface. In the case 
Ha(t) =H sin(ot+q), where q, is the phase of the field at 
the instant of the application, we shall show that the 
magnetic-flux distribution in the interior of the supercon- 
ductor has the following behavior. Immediately after the 

application, within a time of the order of one period of the 
field (i.e., w-I), a flux is injected into the interior of the 
sample (at a distance of the order of I from the surface). 
The sign and value of this flux depend on the initial phase 
q of the field. This flux starts to diffuse into the interior of 
the sample, and also leaves it through the surface. We shall 
see that the spatial distribution of the flux in the interior of 
the superconductor evolve as if the external magnetic field 
were zero. It will be shown as a result that for a semi- 
infinite sample the coordinate of the distribution front has 
an asymptote x f a  t114, and the total magnetic flux m in 
the superconductor, averaged over the time within the lim- 
its of the external-field periods, behaves like m a t-'I4. The 
system loses, in power-law fashion, the information on the 
initial phase (or on the phase collapse) of the applied field. 

2. EQUATION OF NONLINEAR DIFFUSION OF MAGNETIC 
FLUX 

We begin with a derivation of the equation for the 
evolution of the magnetic induction B(r,t) in a type-I1 
superconductor for the simplest case of a one-dimensional 
geometry, a slab or semi-infinite sample with an external 
magnetic field Ha(t)  parallel to the surface (the yz plane), 
so that B,(x,t) = B(x,t). For the time being, however, we 
confine ourselves to the assumption that the vector B is 
parallel (or antiparallel) to the z axis, and r is a vector in 
the xy plane. We start with a model of a two-component 
magnetic gas. Its first component has a density nl(r,t) and 
consists of particles with magnetic moment Q,. The vector 
Q, is directed along the z axis, and ( Q, I =Qo is the 
magnetic-flux quantum. The second component, with den- 
sity n2(r,t) consists of particles with a magnetic moment 
-@. The system is spatially homogeneous along the z axis. 

The equations of motion are 

Here vi is the velocity of the particles of the ith component, 
the term nln2/6 describes the recombination (cf. electron- 
hole gas), and 6 is a dimensional constant. Note that the 
last terms of Eqs. (3) can in principle be chosen in another 
form. We, however, have used the simplest possibility. By 
virtue of symmetry we have vl = - v2 - v. We proceed now 
to the equations of motion for v= n1 - n2 and n = nl + n2 

Let us find an expression for v. Assuming viscous mo- 
tion of the vortices, we have 

where 7 is the viscosity coefficient for vortices and is con- 
nected with the resistivity p, by the known relation12 
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c is the speed of light, and U is the potential energy of a 
vortex belonging to the first component, i.e., a vortex with 
a magnetic moment directed upward. For soft supercon- 
ductors (i.e., with pinning disregarded) we have 

where B is the magnetic induction, equal to @v in the 
system considered. Consequently 

Equations (4) and (6) (together with the corresponding 
initial and boundary conditions which we shall discuss 
later) determine the kinetics of the considered vortex sys- 
tem. 

It is easy to express in terms of v and n the electric field 
E induced by the moving vortices. To this end we multiply 
the first equation of (4) by @. This yields 

(the curl has here only a z-component). Comparing this 
relation with Maxwell's equation, we get 

The scalar potential is obtained from the condition div 
E=O: 

In one-dimensional geometry we have q = O .  
The system (3) or (4) differs from the equations used 

to describe chemical reactions between diffusing 
c ~ m ~ o n e n t s , ' ~  primarily the nonlinearity of terms with 
spatial derivatives. We shall not investigate here the most 
interesting solutions for nonzero 6 ,  but consider only equa- 
tions that are considerably simpler in the limit of very 
intense recombination, when 6-0. In this limit it follows 
from the second equation of the system (4) that n2=$, 
i.e., n= 1 v (  . As a result, the first equation of (4) yields 

and an expression for the electric field is obtained from (8) 
by replacing n with v. The final equation for the evolution 
of the magnetic induction in a soft superconductor in the 
case of one-dimensional geometry is: 

E-zqax ( B g s i g n  B). 

Just this equation will be used henceforth. The electric field 
has in this case only one component 

Qo dB 
E =-- B - sign B. 

4 ~ 7 1 ~  ax 

E, is proportional to the vortex flux 
J, (dv/dt + JJ,, /ax = 0) , which has only an x-component. 

Note, without a rigorous proof, that Eq. ( 11 ) can be 
generalized to include a linear Josephson structure--an ex- 
tended Josephson junction having periodically disposed 
pinning centers and a nonzero critical-current density j, 
(see Refs. 20-22)-in the following manner: We replace 
dB/dx in ( 1 1 ) by the expression 

if I aB/dx I > 4rjJc and by zero if I dB/dx I < 4 ~ j J c .  (E. 
H. ~ r a n d t ~  attempted to use a similar expression for the 
average vortex velocity to describe magnetic-flux diffusion 
in hard superconductors.) 

We shall assume that it is possible to set on the bound- 
ary the magnetic induction equal to the external magnetic 
field (parallel to the surface) : B(xb ,t) =Ha(t). We disre- 
gard here the surface currents which are important for a 
more complex sample geometry'p3 than in the present pa- 
per (we have shownz2 that, particularly for Ha consider- 
ably larger than Hcl, the difference between B(xb) and Ha, 
due to the surface current, is insignificant for the system 
considered). 

3. SIMPLEST SOLUTIONS OF THE MAGNETIC-INDUCTION 
EVOLUTION EQUATION 

Let us examine briefly the form of the solutions of Eq. 
( 1  1) in the simplest case of a constant or zero external 
magnetic field, since we shall need some of these solutions 
later. We seek solutions in the self-similar form 

where A and C are dimensional constants, such that 
A/C' = 4 ~ ~ / @ ~ ,  and g=x/Ct" is the dimensionless coor- 
dinate. Substituting ( 13 ) in Eq. ( 1 1 ) and comparing the 
powers t of different terms of the equation obtained, we 
find it necessary to have /3= 1 - 2a in the self-similar solu- 
tion. The equation for g takes thus the form 

In contrast to the linear diffusion equations, the equations 
considered here have solutions with distinct  front^.^ It is 
easy to verify that the solutions of Eq. ( 14), which vanish 
at the finite points (g(go) =0, I go 1 < oo ), can be only lin- 
ear or square-root functions near go (i.e., near the front): 
(a)  g a  (6-go) and ( b ) g a  1 g-tol 'I2. It is evident from 
Eq. (12) that in the first case the electric field E, and the 
vortex flux J,, vanish at the point to,  while in the second 
case E, and J, differ from zero. 

Thus, if g(<)  = O  and hence Ey=O on one side of the 
point go, whereas g(g)#O on the other side, the case (a) 
should be realized on account of the continuity of the elec- 
tric field. If the external field differs from zero and vortices 
flow into (or out of) the sample (e.g., at the point x=O), 
meaning Ju#O, it can be seen from (12) that we should 
have g=a+bt ,  where a and b are constants. If, however, 
vortices flow through the surface when the external field is 
turned off, the solution near the surface should take the 
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form (b). Finally, if g ( f )  > 0 on one side of go and g(f )  < 0 
on the other, it is readily seen that at this point the flux J, 
(as well as Ey) differs from zero, and g(f )  on both sides of 

1 /2 fo takes the form (b): g ( ~ + f o - O ) = c - ( ~ o - ~ )  , 
g(f-,fO+O) =c+ ((-go) 'I2. Since the electric field is con- 
tinuous, the relation between the coefficients in these ex- 
pressions is c+ = - c- . 

The exponent a (meaning also P) in ( 13 ) can be de- 
termined by stipulating that the value of g(g) near the 
surface and the front be expressed by one of the depen- 
dences listed above. The number of variants is limited, and 
so is correspondingly the set of values of a. We present the 
results directly, without detailed derivations. 

We begin with an already known Let a flux 
SdxB(x,t=O) =O be injected at the instant t=O into an 
infinite sample (it is assumed that B(x,t<O) =O). The 
quantity SdxB(x,t) is, naturally, independent of time. The 
question is: how does B(x,t) over a long time? In this 
situation we have in the self similar case a = 1/3 =B, and 
the solution has a symmetric form with a maximum value 
B,,, a t1l3 in a distribution center with coordinate 2, and 
the coordinate diverge on both sides of the fronts 
lxffXl at113. 

We have so far not encountered any solutions that 
reverse sign in the considered interval. Such solutions can 
appear, in particular, when a constant external magnetic 
field H is applied [the sample is considered in this case to 
be semi-infinite (x > 0), so that B(x =O,t > 0) =HI. As- 
sume that prior to the application of the external field the 
vortex distribution B(x > 0,t < 0) = H inside the sample is 
homogeneous. It is easily seen that in the self-similar solu- 
tions ( 13) one should have in this problem a= 1/2 and 
8 = 0  (since B(x=O,t > 0) is fixed on the boundary). All 
the possible self-similar solutions obtained in this case are 
shown schematically in Fig. 1 (we assume without loss of 
generality that H >  0). We do not present here actual ex- 
pressions for such solutions. Note that near the surface 
such solutions are linear functions of the coordinate. If 
H- =0, then g(f )  is a linear function of the coordinate in 
the vicinity of the front xf(t) is a linear function of the 
coordinate. If H- < 0 the solution reverses sign at the point 
xf(t) cc t1l2. In its vicinity, as explained above, we have 

We shall need below to know the behavior of the dis- 
tribution of the magnetic flux 

injected into a superconductor in which B(x,t < 0) =0 in a 
zero external field H,(t) =O. Two situations are possible in 
this case. In the first the flux is injected into a slab of finite 
thickness and flows out of it over long times through both 
surfaces. It is readily seen then that a =O (P= 1 ), and the 
scaling function g ( f )  (curve I of Fig. 2) is symmetric and 
has a square-root variation in the vicinities of both zeros 
(i.e., on the surfaces). Thus, B(x,t) a t - lg(x/ l ) .  Note 
that the general form of the spatiotemporal distribution of 

FIG. 1. Schematic form of the scaling functions g(6 )  [see (13) and ( 14)] 
upon application of a constant external magnetic field H> 0, if the vor- 
tices are uniformly distributed at the initial instant over a semi-infinite 
soft superconductor. Each curve corresponds to a separate value of the 
magnetic induction in the specimen at the initial instant. 

the magnetic induction over long times is independent of 
the actual form of the initial distribution of the injected 
flux, i.e., self-organization is observed. 

In the second situation a portion of the magnetic flux is 
injected at the instant t=O into a semi-infinite sample in a 
zero external field. The flux escapes gradually from the 
sample through a unit surface (x=O). In addition, the 
B(x,t) distribution has a front that moves away from the 
surface. The self-similar solution has thus a square-root 
form near the surface and a linear one near the front. It can 

FIG. 2. Scaling functions g(6)  describing the evolution of the magnetic 
flux injected into a superconductor in a zero external field [see (13)l. 
I--a=O, B= 1-for a slab. 2---a= 1/4, p= 1/2-scaling function for a 
flux injected into a semi-infinite specimen. The scales of the axes can be 
consistently changed (see the structure of Eq. (14) for g) .  
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be verified that in this case a= 1/4 (P= 1/2). The depen- 
dence of the front coordinate on the time has the form 

X f m P4. 
As a result B(x,t) m t - ' /2g(~/~t1/4),  where C is a dimen- 
sional constant that depends on the initial distribution. In 
this case, the total magnetic flux in the superconductor is 
m m t- 'I4. 

4. CURRENT-VOLTAGE CHARACTERISTICS (IVC) OF 
TYPE-II SUPERCONDUCTORS-ALLOWANCE FOR 
INHOMOGENEOUS VORTEX DISTRIBUTION 

We confine ourselves for the time being to a constant 
external magnetic field and a constant current. Let a total 
current J (per unit length along the z axis) flow through a 
soft-superconductor slab of thickness L or, equivalently, 
assume that a magnetic field 

Hoa = H+ 2rJ/c, 

is applied on one side of the slab, and a field 

HLa = H- ~vJ/c .  

on the other. After the end of the transient (i.e., at a suf- 
ficiently long time after the field or current is turned on), 
an equilibrium density distribution of moving vortices is 
established in the slab. It follows from Eq. (1 1) with 
boundary conditions 

B(0)=Hoa, B ( L ) = H L ~  

that this distribution is of the form 

B(x) = m s i g n  g, 

g(x) = B~ sign B 

This means that in the case I HI > 27rl Jl/c, i.e. when Hoa 
and HLa are of the same sign, we have 

(see Fig. 3, curve I ) .  If, however, I H I < 27r 1 Jl /c and con- 
sequently sign Hoa= -sign HLa=sign J ,  the B(x) distri- 
bution should have a zero at the point 

and take the form 

B(x)=sign Jsign H+-J -- H ~ +  - J [ (  : ) XL ( (Z: ) 2 ) ]  

i.e., it consists of two square-root functions joined at the 
point xo (see Fig. 3, curve 2). The magnetic vortices move 
then from one side of the slab to the other, producing an 

FIG. 3. Schematic diagram of distribution of vortices across a slab in the 
presence of a constant external magnetic field H and a current J. I- I HI 
>2alJl/c, 2-IHI <2~lJ(/c. 

electric field. (In the case I HI < 27r ( Jl /c there exist also 
antivortices moving in the opposite direction and annihi- 
lated by the vortices at the point xo.) 

It follows from Eqs. (1 1) and (12) that the electric 
field produced by motion of vortices in the steady state is 
constant in the cross section of the slab [i.e., Ey(x) =const] 
and coincides, naturally with the value Ey obtainable by 
integrating ( 12) over x: 

E,=E, 

'J'o -- 
87rc7 L sign H~,- H;, sign HLa) 

We have used here the continuity of B(x). (Note that it 
follows also from the form of ( 12) that in a soft supercon- 
ductor, in contrast to a hard one, gy(t)  is determined only 
by the values of Hoa(t) and HLa(t) at the very same in- 
stants of time, and is therefore an "inertialess" quantity 
independent of the preceding evolution of the system. The 
value of Ey sets in therefore immediately after H and J are 
turned on, with no transient process, while Eq. ( 18) for Ey 
turns out to be valid also for time-dependent H( t )  and J or 
J ( t ) .  It follows from the last relation that if I HI > 27rI JI /c 
(Fig. 3, curve I ) ,  then 

where J= j L, and for I HI < 2a  I Jl /c (i.e., in the situation 
illustrated by curve 2 of Fig. 3), we have 

795 JETP 77 (5), November 1993 V. V. Bryksin and S. N. Dorogovtsev 795 



and the complete form of the IVC is far from linear. The 
IVC break at the point 1 HI =277l Jl /c is due to a transi- 
tion to a one-component system of vortices (or antivorti- 
ces) at fields I HI > 277 I Jl /c, meaning due the vanishing of 
their annihilation. Note that in the case H<2.rrl J l /c  the 
resultant electric field depends already not only on the 
current density j ,  but also on the total current J through 
the sample i.e., on the slab thickness L if j is given). In 
particular, for H=O we have 

The equations obtained can be generalized to include 
the case of a linear osephson structure (extended Joseph- 
son junction with periodically placed pinning center, hav- 
ing naturally a nonzero critical-current density j,). From 
the analogs of Eqs. ( 11) and ( 12) for such Josephson 
structures (see the comments at the end of Sec. 2) it fol- 
lows, in particular, that for I HI > 277 I JI /c 

where Jc= jcL, and for H=O 

5. PUMPING A CONSTANT MAGNETIC FIELD BY AN 
ALTERNATING ONE AND RELATED EFFECTS 

We consider now a regime that is stationary even in the 
case of alternating external fields. For the time being, let 
the total current be zero. If a field H,(t) = H  sin wt, is 
applied, Eq. ( 1 1 ) can be rewritten in the nondimensional- 
ized form 

ah a a --- h  - sign h , 
a T - a u ( a ~  ) 

where h = B/H, ?=at, and u  = x / ( ~ @ d 4 r ~ w )  'I2. We 
can introduce thus a characteristic length 

For H/HC2- w- lo2 Hz, pn- 10-'-10-~ S 1 -  cm [the 
resistivity in the normal phase for the largest classes of 
superconductors) the range of I is 10-~-0.3 cm. Using, for 
example, a numerical solution of Eq. ( 1 1 )] [or (24)] it is 
easy to verify that the magnetic-field oscillations penetrate 
from the surface into the interior of the sample to a depth 
on the order of I (see Fig. 4a). 

Let now the applied field be 

4 6 8 x l l  

FIG. 4. Instantaneous spatial distributions of the magnetic induction in a 
semi-infinite specimen (x  > 0) in the case of a periodic external magnetic 
field H,(t)-results of a numerical solution of Eq. (1 1). The solid and 
dashed lines correspond to different instants of time following the end of 
the initial relaxation. a-HJt) =HI sin wt, b-H,(t) = Ho+ HI sin or, 
HdH,=O. 1.  Note that in the last case B,  is considerably stronger than 
Ho . 

We consider a semi-infinite specimen (x > 0).  (Strictly 
speaking, we would actually have to deal here with a slab 
of thickness L)I  or, when examining the state of the su- 
perconductor in the interior of the specimen, the coordi- 
nate of the corresponding point should be large compared 
with I but finite. In practice we shall not touch upon these 
fine points. We note only that relations L ) I and (25) lead 
to constraints on the considered frequency w.) We use the 
boundary condition B(x =O,t) = H,(t) . 

In the presence of several harmonics in (26) (as fol- 
lows again, e.g., from the numerical solution of Eq. ( 11 )- 
see Fig. 4b) the magnetic induction B(x= co ) = B, in the 
interior of the specimen after the termination of the tran- 
sient is is independent of time and is not necessarily zero. 
The last statement remains in force also if H,(t) contains 
harmonics with not only commensurate but also noncom- 
mensurate frequencies. 
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To obtain B, we can multiply Eq. (1 1) by x and 
integrate over x from 0 to co . After (accurate) integration 
by parts we have 

From the assumption that B is independent of x in the 
interior of the specimen, it follows that B, is likewise 
independent of time [see Eq. ( 1 1 )I. After the end of the 
initial relaxation, B(x,t) becomes a periodic function of 
the time for any x, and the integral of Eq. (27) over the 
period vanishes. It follows from (12) that in this case the 
time-averaged electric field (i.e., the zeroth Fourier com- 
ponent of the field E,,) is equal to zero at any point. As a 
result, 

We have thus obtained for the induction B, a very simple 
expression which is in fact independent even of the 
external-field frequency. (What depend on the frequency 
are the duration of the transient and the thickness of the 
surface layer in which B depends on the coordinate and 
oscillates with time.) If H,(t) given by (26) has only one 
harmonic m#O, we have B, from (28). For the only 
harmonic m =0, the induction B, is equal to Ho. 

We turn now the interactions between different har- 
monics. We discuss first the simple case 
H,(t) = Ho+ HI sin wt. The direct integration of (28) 
yields directly 

The derivatives aB,/dHo and aB,/aH1 are continuous at 
the point 1 Ho I = I HI I (see Fig. 5) .  In the region 
IHol4 IHII, we have 

B,z21H,,Hl/~1 sign Ho, (30) 

meaning a paramagnetic response with a non-analytic 
B, (Ho) dependence: aB,/dHo+ co as Ho- 0. In this re- 

gion IBm I )  IHoI. 

FIG. 5. Dependence of the constant magnetic induction B ,  in the inte- 
rior of a soft superconductor on the value of the constant component of 
the external magnetic field Ha(?)  = Ho+ H ,  sin ot. 

It follows also from (28) that the induction B, in the 
interior of the sample can differ from zero even if the dc 
component of the external field Ho is zero, meaning "rec- 
tification" of the alternating external field or pumping of a 
constant magnetic field by a variable one. A simple analytic 
expression for B, can be obtained if the first harmonic in 
(26) is considerably larger than all others: I HI I ) I Hm I, 
m#1. Without loss of generality we can put ql =O. Break- 
ing up the integral in (28) into integrals from 0 to ~ / w  and 
from ?r/w to ~ T / w ,  we obtain 

where 

Therefore 

Substituting (33) in (28) we obtain 
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FIG. 6.  Dependence off  [see (28)] on O, 
for H,(t)=H,sinot+Hzsin(20t+p), 
H2/H, =0.1,0.5, 1, 2, IO-curves 1, 2,3, 4, 
and 5, respectively. 

It is evident from (34) that B,=O if Ha(t) has only odd 
harmonics. To this end it is not even necessary to satisfy 
the condition I H1 I ) I Hm I, m#1. Indeed, for any relation 
between the amplitudes of the harmonics in the integral 
(28) we have 

since 

for odd m, hence f =O. If Eq. (26) contains only the first 
and second harmonics and I H1 I 9 I H2 1, it follows from 
(34) that 

B, = -2 sign(H1H2 sin q2)  1 H1H2 sin q2/3.rr1 'I2. 

(35) 

Therefore the sign and magnitude of B, depend on the 
relative phase between the harmonics. Note also that in 
this case B, a: 1 1 lI2(cf. Eq. (30) for 1 H I  1 % 1 HoJ ). 

Numerical calculation using (28) shows that for an 
arbitrary relation between the amplitudes of the harmonics 
the dependence off on the relative phases of the harmonic 
differs only insignificantly from sinusoidal (Fig. 6). This 
difference, naturally, is extremely abrupt for B, [see Eq. 
(2811. 

If (26) has only a first and second harmonic and 
I H2 I ) I HI I, we obtain, proceeding as in the derivation of 
(311, 

where 

dr[d sin r+sin(2r+q2)] Id sin 7 

We ultimately obtain for ] H2 I 9 I HI 1 : 

The induction thus saturates as the amplitude of the sec- 
ond harmonic increases (Fig. 6). In the case of two har- 
monics with numbers 2 and 2n + 1, if I H2 1 9 1 H2.+ 1 1 
(where n =0,1,2, ... and q2=0),  we readily obtain 

B,=sign(H2H2.+1 sign q2n+1) I H 2 n + l I I  

X I sin q 2 n + l / ~ ( 2 n +  1) 1 'I2. (39) 

Other combinations of harmonics can be considered simi- 
larly. 

We proceed now to the case of a nonzero total current 
J( t) through a specimen, a slab of thickness L (0 < x < L) . 
Let J ( t )  be a periodic function with a period commensu- 
rate with that of the external magnetic field H(t)  (which, 
as above, has only a z component, with the current flowing 
along the y axis). Following the procedure used to derive 
(28) and recognizing that we have on the boundaries 

we obtain for a point with coordinate x in the interior of 
the slab 

798 JETP 77 (5), November 1993 V. V. Bryksin and S. N. Dorogovtsev 798 



where T is the period of the function Hoa(t) and HLa(t), 
and ultimately 

~ ( x )  = m s i g n  g. (41 

It is easily seen that (40) and (41) are each a direct gen- 
eralization of Eq. ( 15) obtained for a static external field 
and a static current. 

As already mentioned, expression ( 18 ) [meaning also 
(2 1 )] given for Ey of the preceding section is valid also for 
time-dependent external magnetic fields and currents. In- 
tegrating both sides of Eq. ( 11 ) over time, one readily sees 
that for periodic H( t )  and J ( t )  the zeroth Fourier compo- 
nent of the resultant electric field 

is independent of the field. Thus, E?) coincides with the 
time-averaged left-hand side of ( 18), where H and J are 
already time-dependent quantities. In particular, for H=O 
we have 

[cf. Eq. (28) for J=O]. The rectification effects considered 
above occur thus when current flows through a soft super- 
conductor. The onset of a nonzero dc component of the 
electric field means here the presence of a constant vortex 
flow from one edge of the slab to the other. 

6. EVOLUTION OF SPATIAL DISTRIBUTIONS OF THE 
MAGNETIC FLUX AFTER APPLICATION OF AN 
ALTERNATING MAGNETIC FIELD 

Whereas in the preceding section we discussed the 
steady dynamic equilibrium of an electrodynamic field pro- 
duced after application of an external field, we are inter- 
ested here in the transition to this state. We assume for 
simplicity that at t < 0 there is no external magnetic field 
and the magnetic induction of the specimen B(x,t < 0) is 
zero, while at t>O the external field is 
Ha(t > 0) = H sin (wt + q) .  The frequency w is assumed 
low enough and the field is turned on at t=O within a time 
much shorter than w-I. We use now the results of a nu- 
merical solution of Eq. ( 1 1 ) and compare the resultant 
spatiotemporal distribution of B(x,t) in the interior of the 
specimen [i.e., outside the surface layer-see (25)] with 
the data given in Sec. 3 for a zero external field. 

We shall not dwell here on the peculiarities of the 
numerical calculations made in accordance with the stan- 
dard schemes8923 and specially monitored. We begin with 
the case of a semi-infinite specimen (x  > 0). 

The magnetic-induction spatial distributions obtained 
for certain instants of time t)w-' are shown in Fig. 7, 
where two regions can be distinguished. The oscillating 
part of the magnetic field is concentrated in a surface re- 
gion having an approximate thickness I. This part tends to 
zero after averaging over time within the limits of individ- 
ual periods. The inner part of the distribution does not 
oscillate and varies slowly with time, so that changes in a 

FIG. 7. Coordinate dependence of B(x, t )  in a semi-infinite specimen at 
the instant o t =  195.25 after application of an external field H sin o t  ( t  
> 0). The dashed line shows the distribution at a close instant ot= 192.6. 
The two distributions almost coincide in the interior of the specimen. 

time of the order of a period are hardly noticeable. This 
internal part of the distribution (together with its sign) 
depends on the initial phase q of the applied field. As 
stated in the preceding section, this part of B tends to zero 
with time. Thus, only a near-surface oscillating distribu- 
tions remains after a long time (see Fig. 8, which shows the 
coordinate dependence of the amplitude of the oscillations 
of the induction in the region t-+ co ). The B(x,t) distribu- 
tion has a distinct front xf ( t)  [B(xf (t), t) =O], near which 
B(x,t) is a linear function: 

As seen from Fig. 9, u f a  r'l4 if 741, i.e., 
xf a ~ ' / ~ o - ' / ~ t - ' / ~  for t)w-'. 

On the whole, disregarding near-surface oscillations, 
the complete picture is the following. Following applica- 
tion of an external field, after a time of the order of one 
period, a magnetic field with a strength (and sign) depen- 
dent on q is injected into the superconductor to a depth of 
the order of I. The flux then begins to "spread" over the 
specimen and flow out of it, so that ultimately no vortices 
are left in the interior of the superconductor. 

Moreover, the numerical procedure leads to the as- 
ymptotic form of the magnetic-flux distribution in the in- 
terior of the specimen 

where g is the scaling function while A and C are dimen- 
sional constants. Recall that in Sec. 3 we have already 
encountered just such an asymptotic form of the spa- 
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tiotemporal distribution of the magnetic flux injected into a 
semi-infinite superconductor in a zero external field (see 
Fig. 2, curve 2). Thus, the distribution B(x > l,t > w- ') 
behaves as if, after the first period, the magnetic field were 
altogether zero after injection of the vortices. We shall not 
change here to a rough temporal variable, but prove this 
statement rigorously. 

We did not touch above upon the role of the initial 
phase g,. We shall now consider it briefly, again without 
rigorous proofs. Numerical solution of Eq. ( 1 1 ) for vari- 
ous g, leads to the following conclusion: the non-oscillating 
(i.e., internal) part of the spatiotemporal distribution of 
B(x,t;H*(g,),O) for a zero initial phase and for an external 
field with amplitude H*(g,) = HF (g,). We have introduced 
here the function F ( p )  which shows how the phase g, 
effectively renormalizes the amplitude of the external field. 

FIG. 9. Plot of the front coordinate vs. time. An external field H sin wt is 
applied at the instant t=O. 

FIG. 8. Coordinate dependence of max, B(x,t)  as t- CO, i.e. 
amplitude of induction oscillations in a semi-infinite speci- 
men in the steady state. H,(t)  = H sin ot .  

Thus, when the external field is switched on there is in- 
jected into the specimen a magnetic flux 

where 

[see Eq. (25)]. Subsequently the flux evolves as if H,=O. 
We ultimately obtain for long times 

A similar distribution results also from the drop of the 
external-field phase to g,. The function F(g,) has, natu- 
rally, a period 21r. It follows from our numerical calcula- 
tion that 

so that it is similar to but not exactly a cosine. The asymp- 
tote of the time dependence of the distribution-front coor- 
dinate is of the form 

We proceed now to the case of a slab of thickness L)  I*, to 
which an external field, H,(t> 0) = H  sin(wt+g,) is ap- 
plied from both sides. Following the merging of the fronts 
moving from both surfaces of the slab, i.e., at times 
t >  o-'( L/I*)~, B(x,t) acquires distributions of the type 
shown in Fig. 10 (numerical results). Figures 11 and 12 
show the time dependences of the local induction Bc(t) at 
the center of the slab for different L and g,, with Bc(t) =O 
for t < tc < w-'( L / ~ P ) ~ .  This is followed at the center of 
the slab by a signal that depends on the phase q, (or on the 
phase break) of the external field. An asymptotic 
B,(t) cc t-' dependence can be observed for sufficiently 
large L ) P (see Fig. 13 ) . Figure 14 shows the dependence 
of sign Bc(t)max,Bc(t)/H on g,. 

On the whole, the evolutions of the B(x) distributions 
can be interpreted in this case in practically the same man- 
ner as for a semi-infinite superconductor. A flux whose 
value is dependent on H and g, is injected into the interior 
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FIG. 10. Distribution of B(x,t) in a slab of thickness L= 101 at close 
instants of time: ot=46 (solid line), 50 (dashed). The external field 
H sin o t  is applied at the instant t=O. 

FIG. 11. Time dependence of the magnetic induction Bc at the center of 
the slab. L=101, t=O-instant of application of external field 
H,=Hsin(ot+q), q = O  ( I ) ,  q=0.4?r (2 ) ,  q=0.6?r (3). 

FIG. 12. Dependence of the magnetic induction Bc at the center of a slab 
of thickness L= 151 on the time, H,=H sin ot. 

of the sample after an external alternating field is turned 
on. The flux spreads over the slab and escapes from it as if 
the applied field Ha were zero, and the asymptote at 
t ) w d l (  L/2P14 takes the form 

B(x, t )  - - H * ( ~ / P ) ~ ( w t ) - ' g ( x / ~ ) .  ( 45 )  

The reason for the large factor ( L/P12 in ( 45 )  is that, as 
follows from ( 43 ) ,  at the instant t, of the collision of the 
fronts there remains in the interior of the superconductor a 
flux of order P P ( w t , )  - ' I4-  H*P ( P / L ) ,  and we should 
therefore have 

which leads in fact to ( 45 ) .  The function g  is symmetric 
about the center of the slab and is represented in Fig. 2  by 
curve I .  

I I I I I 

5 6 7 8 9 10 Ino t  

FIG. 13. Dependence of In B, on the time L = 151, Ha= H sin at.  
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FIG. 14. Dependence of sign B,(t,p)max,l B,(t,q)/HI on p, L= 101, 
H,=H sin(ot+q). 

Ultimately, in the case of a superconductor in the form 
of a slab, the flux and the magnetic induction in the interior 
of the specimen relax like t-' after the phase collapse. It is 
interesting that a similar relation ( B(x,t% w- ' ( L / P ) ~ )  is 
obtained also if an external field Ha(t) = H sin(wt+q) is 
applied to only one side of the slab, and the field on the 
other size is zero all the time. 

7. CONCLUSIONS 

We have thus demonstrated that the nonlinear diffu- 
sion of the flux in a soft superconductor is characterized, 
even in the simplest case of one-dimensional geometry, by 
a number of nontrivial peculiarities. Such a complicated 
behavior of the system is attributed to a conjunction of two 
factors; the impossibility of linearization and the vector 
nature of the magnetic induction. When an alternating ex- 
ternal magnetic field is applied, a type-I1 superconductor 
plays the role of a unique nonlinear element, a damper, so 
that the magnetic-field oscillations penetrate into the inte- 
rior of the specimen only to a depth I of the order of 
[see (25)]. In the interior of a soft superconductor, on the 
other hand, if the external field Ha(t) is periodic, a station- 
ary magnetic-induction distribution sets in with time, as if 
a constant magnetic field 

were applied to the sample, where ( . ), denotes an average 
over time. Therefore even an external field with a zero 
constant component can lead to the appearance of a non- 

zero magnetic induction B, in the interior of the speci- 
men, and usually B,#(Ha), . If a current flows through 
the specimen, the magnetic induction established in the 
interior of the superconductor is already spatially inhomo- 
geneous and the form of the IVC can be determined only 
when account is taken of this fact. 

The transient initiated by application of an alternating 
external magnetic field is characterized by power-law as- 
ymptotes of a number of quantities (coordinates of the 
fronts and amplitudes of the magnetic-flux distributions, 
the total magnetic flux in the interior of the superconduct- 
ors, etc.), and the actual powers depend on the shape of the 
specimen (we have verified this by considering a semi- 
infinite specimen and a slab). If Ha = H sin ( a t  + p) , the 
magnitude and sign of the flux injected into the interior of 
the superconductors (and subsequently spreads over the 
specimen and flows out of it) is determined primarily by 
the phase of the external magnetic field at the instant when 
it is applied. In sum, we have shown that the system "for- 
gets" the initial phase of the field (or the phase loss) in 
power-law fashion. 
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