
Noise-induced optical multistability 
A. E. Barberoshie, I. I. Gontsya, Yu. N. Nika, and A. Kh. Rotaru 

Moldavian State University, Kishinev 
(Submitted 9 February 1993) 
Zh. Eksp. Teor. Fiz. 104, 2655-2667 (August 1993) 

This paper for the first time predicts that optical multistability can, in principle, be induced 
by noise in a system of noninteracting two-level atoms. In the semiclassical 
approximation in a ring-cavity geometry we derive an equation describing the evolution of 
the amplitude of an electromagnetic field with a multiplicative source of noise in the 
form of a generalized Gaussian delta-correlated random process. A stochastic differential 
equation in the sense of Stratonovich (or Ito) and the respective Fokker-Planck equation are 
also derived. The behavior of the random process at the boundary of the variation 
region is studied and the exact stationary solution for the probability density is found. We 
show that, depending on the intensity of noise and the value of the cooperative 
constant in the theory, stable, bistable, and multistable optical phase transitions can be 
induced by noise in a system of two-level atoms. 

1. INTRODUCTION 

Optical bistability and multistability are the most vivid 
examples of self-organization of systems far from thermo- 
dynamic equilibrium. These phenomena have formed a 
separate field of research in nonlinear physics. The great 
interest is primarily due to the possibility of applications in 
optical data processing and the employment of bistable 
elements in such devices as optical memory cells, amplifi- 
ers, multivibrators, power clippers, and transistors. 

Optical bistability (multistability ) is a manifestation is 
a nonlinear effect in light waves. A luminous flux that has 
passed through a medium may prove to be a multivalued 
function of the incident luminous flux, that is, exhibit a 
hysteresis-loop dependence of the transmitted luminous 
flux on the incident flux. An important aspect in the emer- 
gence of such a dependence in the presence of feedback and 
a nonlinear dependence of the refractive index or the ab- 
sorption coefficient on the light's intensity. The most com- 
plete description of optical bistability and multistability 
can be found in the encyclopedic monograph of Gibbs.' He 
formulates the theoretical basis of these phenomena, de- 
scribes bistable materials and devices, considers optical 
switches, and analyzes instabilities and related self- 
pulsations and the like. In addition, a fairly complete re- 
view of optical bistability in semiconductors can be found 
in Refs 2 and 3. The first to build a theory of optical 
bistability in the excitonic part of the spectrum were Elesin 
and ~ o ~ a e v , ~  and further developments can be found in 
Refs. 5-7. 

Although the phenomena of optical bistability and 
multistability are undergoing intensive investigation both 
theoretically and experimentally, there is a certain lack of 
rigor in the studies of the effect of fluctuations and noise on 
bistability (multistability), optical switching, and periodic 
and stochastic self-pulsations of bistable and multistable 
optical systems. It is well known, however, that the inter- 

nonequilibrium and nonlinear systems not only have no 
disorganization effects but in certain conditions lead to 
noise-induced phase transitions that have no deterministic 
analogs.8 

The first study of noise-induced phase transitions in 
bistable systems was done by Bulsara, Schieve, and ~ r a ~ ~ , ~  
who showed that when the intensity of the noise is fairly 
high, optical bistability is possible for all values of the 
optical-bistability cooperative constant. 

Below we undertake a rigorous study of the phenom- 
enon. We show that intense noise may induce not only 
optical bistability but also optical rnultistability. 

2. OPTICAL BlSTABlLlTY IN A RING CAVITY 

For the simplest model we take a substance consisting 
of isolated (noninteracting) fixed two-level atoms or mol- 
ecules placed in an external electric field. 

In the semiclassical approximation the electromagnetic 
field is considered a classical quantity but the material sys- 
tem is described quantum mechanically via the equation 
for the density matrix, 

dp 
ifi x= [ X p ]  +relaxation terms, 

where the Hamiltonian SY of the problem consists of the 
Hamiltonian of a free atom (or molecule, which we will 
still call an atom) X,, with eigenvalues hl and h 2 ,  and 
the Hamiltonian describing the interaction between the 
atom and the field, 

Here p is the dipole moment of the atom, and E(r,t) the 
electric field at the point where the dipole is located. 

Suppose that a laser field 

nal fluctuations of the medium and external noise in highly E(x,t) = E(x,t)exp(iwt-iqx-ip) +c.c. (3 
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of frequency w, phase cp, and wave vector q acts on a 
system of two-level atoms in the direction x. Then Eq. ( 1 ) 
without relaxation terms assumes the form 

where w2, = w2 - w1 = w12 is the angular frequency of tran- 
sition between the levels, and ~ = 2 p / f i .  Introducing the 
notions of longitudinal and transverse relaxation times T,  
and T2, assuming that the equilibrium density matrix for 
particles in the absence of a field contains no off-diagonal 
matrix elements, and using the substitution 

and Eq. (4), we arrive at the following system of equations 
for the diagonal and off-diagonal elements of the density 
matrix in the rotating-wave approximation: 

where Ao=w2~  -w is the detuning from resonance. Now it 
is convenient to go over to the variables 

FIG. 1 .  Diagram of the ring cavity. Mirrors 1 and 2 
have the transmission coefficient T, mirrors 3 and 4 
are ideally reflecting, and L is the length of the cavity. 

We assume that in the absence of a field only the lower 
level is occupied. Then, combining (6) with (5), we can 
easily get 

This system of equations must be augmented with the sys- 
tem of the Maxwell equations for the electromagnetic field, 
from which we can easily derive the wave equation for E 
(for waves propagating along the x axis), 

where no is the linear refractive index, P is the average 
value of the medium's polarization, 

and N  is the number of two-level particles per unit volume. 
When we combine (3) and (9) ,  in the approximation 

of a slowly varying amplitude Eq. (8) yields 

acp nodg, 2 m  
E -+-- =- Npu. ( a  c a t )  n, 

Equations (7) and ( l o )  comprise the system of equa- 
tions of bistability theory in the model of two-level atoms 
and form the base for further consideration. 
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Now let us consider optical hysteresis in the case where 
the two-level medium is placed in a ring cavity of length L. 
Two mirrors of the cavity have the same transmission co- 
efficient T, while the other two are assumed ideal. We use 
the well-known boundary conditions for the field ampli- 
tudes at points 0 and L: 

where El, ET ,  and ER are, respectively, the amplitudes of 
the field incident on the entrance mirror, of the field exiting 
from the cavity, and of the reflected field, and R is the 
reflection coefficient of the mirrors (Fig. 1 ). 

In a cavity with a high Q-factor the atoms instantly 
"tune in" to the field. In this case we can adiabatically 
exclude the atomic variables by putting the time deriva- 
tives in (7 )  to zero. At exact resonance we have 

where 

The equation for the field in the cavity that allows for ( 10) 
and ( 12) has the form 

where a is the linear absorption coefficient specified by the 
formula 

From ( 14) in the mean-field approximation and with al- 
lowance for the boundary conditions ( l l ) we can easily 
arrive at the equation for the evolution of the field ampli- 
tude: 

where X and Yare the normalized entrance and exit field 
amplitudes, T is the dimensionless time, and C is a constant 
in the optical-bistability theory; these are determined by 
the following expressions: 

In the stationary case Eq. ( 16) yields the equation of state 
familiar from the theory of optical bistability for two-level 
media in the mean-field approximation, derived by Boni- 
facio and ~ u ~ i a t o : "  
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FIG. 2. Amplitude of the radiation leaving the cavity as a function of the 
amplitude of the incident radiation for different values of the optical- 
bistability constant: (a)  C=2, (b)  C=4, and (c )  C=10. 

For C <  4 the field amplitude Y is a monotone function of 
the variable X and bistability does not occur. For C >  4 the 
curve representing the X vs Y dependence undergoes 
marked changes: there appears a region where one value of 
Y has three values of X corresponding to it (Fig. 2).  Anal- 
ysis shows that on the section of the curve with a negative 
slope the solution is unstable. Thus, in the deterministic 
case optical bistability manifests itself in the dependence of 
the transmitted light intensity on the incident light inten- 
sity. 

In real conditions, however, the problem considered 
here has different sources of noise, both additive noise and 
multiplicative. As we will shortly show, allowing for the 
latter type of noise leads to the induction of optical phase 
transitions. 



3. NOISE-INDUCED NONEQUlLlBRlUM PHASE TRANSITIONS 

One source of external noise with given characteristics, 
which can be controlled fairly well in experiments, is the 
fluctuations of the number density of atoms in the cavity. 
This leads to fluctuations of the constant C in the theory of 
optical bistability. 

In our further study of the system we assume that the 
total external noise is a result of adding an infinitely large 
number of independent infinitely small perturbations, 
which cause high-frequency random oscillations of the co- 
operative parameter C with a negligible correlation time, 
~,,,+0. We describe the fluctuations of the parameter C by 
Gaussian white noise of intensity a :  

where Ct is the random value of the cooperative parameter 
at time t, Cis the average value of C,, c=Ec,, and g, is the 
Gaussian generalized delta-correlated random process with 
zero average, &,=0, with E({,,tp) =6(t-p). 

The process 6, is the generalized derivative of the 
Wiener process W,, that is, a stochastic process originating 
at zero, characterized by stationary independent incre- 
ments whose distribution is Gaussian, 

and most probably having continuous trajectories. 
Allowing for the fact that (,= W,, replacing {#t with 

the differential dW, of the Wiener process W,, and employ- 
ing ( 19), from Eq. ( 16) we get the stochastic differential 
equation 

where for the sake of convenience we have introduced the 
notation a instead of 2u and W, instead of - W,. The 
integral form of the stochastic differential equation (21) is 

The first integral on the right-hand side of (22) is an 
ordinary Riemann integral, and the second is a stochastic 
integral in the sense of 1to" or ~tratonovich.'~ Equation 
(2 1 ) satisfies the condition of existence and uniqueness of 
a strong solution. Indeed, the coefficients 

have bounded derivatives, 

Also, 

where K = 3 ~ r n a x ( l , ( ~ I ~ + 4 ~ ~ ) .  
Thus, the stochastic differential equation (2 1 ) has a 

unique strong solution in the sense of 1to.13,14 Using the 
link between the stochastic differential equation in Ito's 
interpretation and that in Stratonovich's, we can easily 
show that in the latter the conditions for existence and 
uniqueness of a strong solution are also met. 

The solution X, for t<O of Eq. (21) is a homogeneous 
Markov process. Let us assume that X, possesses a transi- 
tion probability density p(t,x,y) with the continuous par- 
tial derivatives p: ( t,x,y), pl(t,x,y), and pk(t,x,y). Then the 
probability density satisfies the Fokker-Planck equation 

In the stationary case Eq. (27) yields 

where 

To determine the constant Jo, we examine the behavior 
of the random process X,, t>O, at the boundary of the 
variation region. Note that the points r, =O and r2= co are 
the inner boundaries of the process X,, since 
u(x)  =ox/( l  +x2) > 0 on the set (0, cu ), and at the 
boundary of the region (0, CQ ) we have 

In this case the solution X,, 00, of Eq. (21) satisfies, for 
any initial value XE (0, oo ), the inequalities 0 < X, < + 03 
for almost for every positive value of t (see Ref. 13). 

Let p > rl  . According to Ref. 13, we introduce the con- 
stant 

and satisfy the Lipschitz condition 
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FIG. 3. Plots of p(z ,k)  vs. z for different values of k: (a )  k <  kc,, ( b )  
k=k,,, and ( c )  k >  kc,. 

If L1 = w , the process X, reaches point fl with a probability 
equal to unity earlier than it does point r, for any initial 
condition x~ ( r ,  ,B). In this case the probability that X p r ,  
as t+  w is zero. Thus, the boundary rl is inaccessible. 

The point rl =O is the natural boundary of process X,, 
t>O. Indeed, 

where 

Then for L1 we obtain 

L, = Jop exp{ - @ (x)  )dx 

Since the polynomial Q(x) is bounded in the neighbor- 
hood of zero, we can easily see that L,  = 03.  Thus, the 
boundary r, =O is the natural boundary of the process X, 
(see Ref. 13 ) . 

Reasoning along the same lines, we can prove that the 
boundary point r2= w is natural, too. Since the boundaries 
r1 = O  and r2= w are natural, the process X ,  does not reach 
the boundaries. In this case the stationary probability flux 
defined in (29) is zero at the boundaries: J ( 0 )  =J( w ) =O. 
Thus, we arrive at the following equation for the stationary 
probability density p (x )  : 

whose solution has the form 

where N is the normalization constant determined for the 
relation 

The solution to (27) can be written as 

where V(x) is a stochastic potential determined by the 
following expression: 

In contrast to the deterministic case, in which the sta- 
tionary states were found from the condition that X=O, 
stationary states in the stochastic case must be interpreted 
as the points 2 of the system's state space at which the 
stationary probability density p (x )  takes on extremal val- 
ues. The maximum points of the function p (x )  correspond 
to the most probable states of the system, and the mini- 
mum points to the least probable. Equation (36) shows 
that the extrema ofp(x)  coincide with the extrema of the 
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potential V(x), while the maximum points of p (x )  corre- 
spond to the minimum points of V(x), and vice versa. 

To determine the stationary states of the system we put 
V1(x) to zero, as a result of which we get 

where 

To find the solutions to Eq. (37) we examine the func- 
tion f (x,d,C).  Clearly, 

where 

Also, 

The polynomial z3- (6k+ 1 ) 2 +  (30k-5)z- (12k+3) 
has one positive root for k < k,,=2.596, one simple and one 
double positive root for k= kc,, and three different positive 
roots for k >  kc, (Fig. 3). Since \Y:(O,k) = 12k + 3 
> O,q(O,k)=-(k+1) <O,andY(z,k)>Oholdforfairly 
large values of z, and V/(z,k) -0 as z- co, the function 
q(z,k)  has either one maximum or two maxima and one 
minimum. In Fig. 4 the function Y(z,k) is depicted for 

FIG. 4. Plots of Y ( z , k )  vs. z for different values of k: 
(a )  k < k , , ,  ( b )  k=k, , ,  and ( c )  k > k , , .  

different values of k. Thus, the equation f l ( x )  =0, equiv- 
alent to the equation q(x2,k) = 1/2C, can have no roots or 
one, two, or three roots depending on the values of the 
parameters k and C. Moreover, f '  (x) ( o , ~ , c )  > 0 and 
f ( x , ~ , c )  -X - 0 as x- a .  Hence, depending on the val- 
ues of the cooperative parameter C and the intensity of 
external noise, f (x,d,C) is either a strictly increasing 
function or has one maximum and one minimum or two 
maxima and two minima. 

To determine the diagrams of C vs a describing the 
behavior of the function f (x,d,C) and, hence, the behav- 
ior of the stationary states of the system, we find the crit- 
ical values of C and a from the conditions f: - f: = 0, 
equivalent to the following system of equations: 

This readily yields the following expressions for the param- 
eters C and a :  

Since both C and 2 are nonnegative, the set 
z~[z , ,3]U (z2,w ) serves as the domain of z, where zl 
= (5 - f i ) / 2  and z2 is the only positive root of the 
polynomial 3z5- 13z4- 18z3 + 62-2-9, or z2= 5.39. 

Formulas (42) specify the parametric equation of the 
separatrix in the (C,u) plane (Fig. 5),  which divides the 
range of variation of the parameters into three subsets A, B, 
and C, in which the behavior of the function f (x,d,C) 
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FIG. 5. The phase state diagram describing the behavior o f f  ( x , d , ~ ) .  
The function is depicted (a)  in the regions A and B and at the boundary 
separating the two regions, and (b)  in the regions B and C and at the 
boundary separating the two regions. 

and, hence, the dependence of the stationary states of the 
system on the intensity Y of the incident field are markedly 
different. When the point (C,a) crosses the boundaries of 
the subsets A, B, and C, a phase transition occurs. For 

(c,u) EA the stationary probability density p (x )  is unimo- 
dal and the system possesses a single stable stationary state. 
When the point crosses the boundary separating A and B, 
bifurcation takes place. Depending on the intensity Y of 
the incident field, the stationary probability density p (x )  is 
either unimodal or bimodal, that is, the system has either 
one stable stationary state or three stationary states, of 
which two are stable and one unstable. This is the case 
where noise-induced optical bistability sets in. When the 
point crosses the boundary separating B and C, a new 
phase transition occurs. In this case, depending on the in- 
tensity of the field, the stationary probability density p (x )  
is unimodal or bimodal or trimodal, that is, the system has 
one (stable) state or two states (two stable and one unsta- 
ble) or five states (three stable and two unstable) (Fig. 5) .  

Thus, external noise can induce in a system not only 
optical bistability but also optical tristability. 
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