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The fundamental nonlinear nonlocal integrodifferential equation of Josephson electrodynamics 
is derived for a tunnel junction between two different superconductors. A general 
relation for the magnetic field is obtained to determine the magnetic field in superconductors 
from the Cooper-pair phase difference. The Lagrangian and Hamiltonian of the function 
are determined. A solution is obtained in the asymptotic nonlocal limit for a kink traveling with 
constant velocity and carrying, in contrast to the traveling kink of the local theory, two 
magnetic-flux quanta. 

1. INTRODUCTION 

A nonlocal nonlinear integrodifferential equation was 
obtained in Ref. 1 for the phase difference of superconduct- 
ing pairs on a Josephson junction between two like bulk 
superconductors. This equation was used there as a basis 
for nonlocal Josephson electrodynamics. Such an equation 
generalizes the usual sine-Gordon equation2 to include the 
case when the characteristic spatial change of the phase 
difference q, takes place at distances shorter than the Jo- 
sephson length. The integrodifferential equation obtained 
in Ref. 1 was used to investigate the influence of the spatial 
nonlocality on the propagation of Swihart waves3 and of 
weakly nonlinear perturbations. In the latter case it was 
shown that nonlocality influences the development of mod- 
ulation instability of weakly linear waves. 

An asymptotic solution of the equation proposed in 
Ref. 1 was obtained by Gurevich4 in a strongly nonlocal 
limit, when the Josephson length turns out to be much 
shorter than the London depth of magnetic-field penetra- 
tion. Just as in the local theory, such a solution corre- 
sponds to a 27r kink. It was shown also that in the limit 
considered the Josephson vortices correspond to Abrikosov 
vortices without singularities. Also discussed there was the 
usefulness of the nonlocal Josephson electrodynamics to a 
description of the phenomena in latent weak bonds of su- 
perconductors, and it was shown that the change of the 
vortex-core energy decreases the critical magnetic field H,,. 
The same change of the energy of the vortex core decreases 
its mass as well as the viscosity. The equation obtained in 
Ref. 1 was generalized by ~ u r e v i c h ~  to take into account 
resistive effects. In Ref. 5 we obtained the first nonstation- 
ary resistive solutions and showed how the stationary vor- 
tex described in Ref. 4 settles in time. The laws governing 
vortex decay were adduced. 

Even the first investigations 2oint to substantial conse- 
quences of nonlocal Josephson electrodynamics. This the- 
ory is nonetheless insufficiently complete, and naturally not 
fully developed. We therefore derive in the present com- 
munication the fundamental equation of nonlocal Joseph- 
son electrodynamics for a tunnel junction of two different 
superconductors. This equation goes over into an equation 
in Ref. 1 for a junction between like superconductors. Var- 

ious asymptotic forms of the equation are given. The nec- 
essary equations are obtained for the description of the 
magnetic field of the vortices, their energy, and also the 
Lagrangian and Hamiltonian of a nonstationary vortex 
(fluxon). We obtain ultimately for the fundamental equa- 
tion of nonlinear Josephson electrodynamics a first analytic 
solution describing a vortex traveling with constant veloc- 
ity. This solution turns out to be a 47r kink moving with a 
fully defined velocity. Since the magnetic field of such a 47r 
kink corresponds to an Abrikosov vortex without a singu- 
larity, we can state that we present here the first descrip- 
tion of a moving regular Abrikosov vortex. The magnetic 
field of such a vortex is formed here both by the Josephson 
current and by the displacement current. The latter distin- 
guishes qualitatively the nature of a moving kink from the 
nature of one at rest. 

The magnetic flux carried by a 4 3 ~  kink comprises two 
magnetic-flux quanta. This is one of the principal differ- 
ences between the obtained moving asymptotic kink and 
the Josephson local-electrodynamics kinks, including mov- 
ing ones. We emphasize that the stationary kink considered 
by Gurevich4 carries only one magnetic-flux quantum, just 
as the kinks of the local theory. 

2. BASIC EQUATIONS 

We obtain in this section the basic equations of Joseph- 
son electrodynamics for a tunnel junction between different 
superconductors. We consider a homogeneous tunnel layer 
of thickness 2d and bounded along the x axis by infinite 
different superconductors parallel to the yz plane. The 
magnetic field obeys in the superconductors the equations3 

where A-  and A+ are the London magnetic-field penetra- 
tion depths. We have accordingly for the electric field 

A'_ aH A: a~ 
E=- rot - , x(-d, E=- rot - , x>d. (2.2) 

c a t  c a t  

Inside the tunnel layer (-d < x  < d )  we use for a plane 
geometry with E = (Ex ,O,E,) and H = (O,H, ,0) the corol- 
laries of the Maxwell equations 
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Here DX=&Ex is the electric induction and E the dielectric 
constant of the layer. For the current density across the 
tunnel layer we use the standard expression2 

jx= j, sin p+oEX,  (2.5) 

where j, is the critical density of the current through the 
junction, o is the conductivity of the tunnel layer, and p is 
the phase difference of the Cooper pairs in the supercon- 
ductors separated by the Josephson junction. Assuming the 
tunnel-layer thickness to be thin compared with the pene- 
tration depth, we regard not only p but also Ex as inde- 
pendent of the coordinate x inside the layer. We have then 
for the potential difference V between the junction bound- 
aries 

The nonstationary Josephson relation can accordingly be 
written in the form 

where e= - 1 e 1 .  Equations (2.5) and (2.6) allow us to 
rewrite (2.3) in the form 

In standard local hydrodynamics of Josephson junctions, 
the right-hand side of Eq. (2.8) reduces to the second 
spatial derivative of the phase difference p. In Ref. 1 it was 
shown, for the particular case of a junction between like 
bulky superconductors, how nonlocality arises in Joseph- 
son electrodynamics. We derive below a nonlocal integro- 
differential equation for the general case of a tunnel junc- 
tion between two different superconductors. 

We note first that the z-component of the electric field 
inside a tunnel layer can be approximately expressed in the 
form 

This enables us to rewrite Eq. (2.4) for the region inside 
the junction in the form 

It follows hence, in particular, that in a thin layer the 
magnetic field does not vary with the coordinate x. If we 
use now the corollaries of Eqs. (2.2) for x = & d 

and substitute them in Eq. (2.10), we get 

A: ~ H ~ ( x , z , ~ )  fic a m t )  
.=d-A: a H y 2 t )  I ~ = - ~ + -  - ax 2e az 

Here Hy(z,t) is the magnetic field inside the tunnel layer. It 
can be regarded as the limit for magnetic fields inside a 
superconductor. These fields must be determined, in par- 
ticular, to be able to express the right-hand side of (2.8) in 
terms of the phase difference q. It is convenient then to 
write the corresponding solution in the form 

where the =k signs correspond to the space regions x>d  
and x<  -d, respectively. Substitution of (2.12) in (2.11 ) 
yields 

This integral equation determines the connection between 
Hy(z,t) and p(z,t), which is obtained by solving this equa- 
tion and which is given by 

where 

dk exp (ikz) 

Qcz)= l:w % ~ ~ ( k 2 + l ; ~ ) ' ~ + A ~ ( ~ + A ~ ~ ) ' " + 2 d '  
(2.15) 

Equation (2.14) determines the right-hand side of (2.8), 
which can now be rewritten as 

P aq 1 $4, 
sin q + 7 - + 7  w ~ a t  @,Z 

16pleldjc -- 21eljc  TO 1 
wj= - , p=-=- 

tiE fits E RC,' 
(2.17) 

fic2 
~3-- 
0- 8 r l e l i c 9  

where R = (2d/u), and Cs= (8?rd/~) -' are the resistance 
and capacitance per unit are of the tunnel junction. 
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In the local limit, when we can neglect in the denom- 
inator of (2.15) the dependence on k ,  we have 

Using then the equation 

to determine the Josephson length / I J ,  we obtain the usual 
sine-Gordon equation with 

P aq, 1 a2q, 2 a2q, 
sin q7+7-+7- -A  --0. 

W J a t  ",at2 Ja2- 

The local limit is realized here when the characteristic spa- 
tial scale of variation of q, is large compared with /I+ and 
A- - 

Another simple limit is realized in the case 
A+=A-=A)2d, when 

where K o ( z )  is a Macdonald function. Equation (2.16) 
takes then the form',4 

P aq, 1 a2q, 
sin q , + ~ - - + 7 -  

W j a t  wJat2 

Here A:= ( ~ 2 2 ~ )  in accord with Eq. (2.19). Equation 
(2.22) is realized also in the case A+=A)A- and 
A + =A ) 2d, the only difference being that A:=A2A+ , 
which again corresponds to Eq. (2.19). 

To conclude this section we consider the asymptotic 
limit of (2.16), which corresponds to a case when q, 
changes abruptly over a length shorter than A+ and A _ .  
We can use then the approximate expression 

where 

and C=0.577 is Euler's constant. Accordingly, Eq. (2.16) 
takes the form 

P aq 1 a2q, A 1 dz' aq ( z1 , t )  
sin p+--7-+7-= -- 

o J a t  oJat2 + A  f - azl - 
(2.25) 

The integral in the right-hand side of the last equation is 
taken in the sense of the Cauchy principal value and cor- 
responds to the usual Hilbert transformation. 
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3. MAGNETIC FIELD, TUNNEL-JUNCTION ENERGY, 
LAGRANGIAN, HAMILTONIAN 

If Eq. (2.14) describes the magnetic field inside the 
tunnel layer, the expression for the field in the supercon- 
ductors can be obtained with the aid of Eq. (2.12),  which 
yields 

where 

Here Q ,  (z,x=O) = Q ( z )  The plus and minus signs in 
(3.1 ) correspond respectively to the pace regions x > d and 
x <  -d. 

In the usual local limit, when q, varies smoothly over 
space scale of the order of A+ and A- we have 

The force lines of the local Josephson-vortex magnetic field 
are therefore stretched along the z axis and crowded to- 
ward the boundaries of the superconductors. In the case of 
two identical superconductors, when A + =A - =A % 2d, Eq. 
(3.2) takes the form 

The expression for the magnetic field agrees here with that 
of Ref. 4. 

If, however, the superconductors on the opposite sides 
of the junction differ greatly, such that A+ is much larger 
than A- and 2d, one can use the approximate expressions 

Finally, in the asymptotic limit when q, as a function of z 
changes drastically over a length shorter than A+ and A _ ,  
one must use the asymptotic form 

where f (A+ ,A_)  is given by Eq. (2.24).  The asymptote 
(3.7) holds for x and z much smaller than A+ and A- 
when the latter are large compared with 2d. 

Let us use Eq. (2.14) to calculate the magnetic-energy 
density in a tunnel layer w = ( 1 / 8 ? r ) ~ ~ ,  and Eq. (3.1 ) to 
determine the densities of the magnetic-energy and of the 
superconducting currents in the superconductors: 
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The sum (per unit length of they axis) of the energy of the 
superconducting currents of the superconductors and of 
the magnetic energy of the entire junction can then be 
written in the form 

The energy (per unit length of they axis) of the Josephson 
current through the junction is given by2 

Thus, the total (per unit length of they axis) energy of the 
Josephson junction, which is determined by the phase dif- 
ference q,  is the sum Wm+ Wj= W and takes the form 

If dissipation is neglected (P=O) it is natural to use in 
view of Eq. (2.16) the concept of a Lagrangian 

The corresponding Hamiltonian is 

The equations for the energy and for the Hamiltonian can 
be used to obtain approximate solutions. 

The preceding equation can be represented as 

where W is the energy (3.1 1 ) of the interacting Josephson 
vortices, and the second term, which we can call the kinetic 
energy, is 

Allowance for the finite conductivity of the tunnel junction 
leads to Joule dissipation. The specific losses correspond to 
UE:, so that by using (2.7) we can write 

In the last two equations, the considered nonlocality of 
Josephson electrodynamics can become manifested only on 
account of new dependences of the phase difference q on 
the coordinates and on the time. The ratio of d X / d t  
( 3.16) and T (3.15 ) does not depend on the form of q and 
is equal to -2P, as in the usual local electrodynamics. It 
reflects the ratio of the second and third terms of the left- 
hand side of Eq. (2.16). 

4. TRAVELING VORTEX 

In the usual local electrodynamics of Josephson junc- 
tions, with dissipation neglected, Eq. (2.20) has a known 
solution corresponding to a traveling vortex (fluxon) of 
the 277-kink type:2 

where 1 u 1 < 1. The =t signs correspond to the kink (soli- 
ton) and antikink (antisoliton), respectively. The velocity 
of such a vortex is determined in local electrodynamics by 
the sign and magnitude of the parameter u: 

We consider in this section, neglecting dissipation, the 
solution of Eq. (2.25) corresponding to a traveling vortex 
(fluxon) of the 477-kink type: 

The function C satisfies here the equation 

where 

and the integral in the right-hand side of (4.4) is taken in 
the Cauchy sense of principal value. 

It is easily seen that a solution of (4.4) is'' 

The velocity of such a nonlocal kink (antikink) is deter- 
mined then by the relation 
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The two signs of the solution of the last equation corre- 
spond to the two possible directions of vortex motion. 

The magnetic field of the traveling kink (4.6) is given 
by2' 

(4.8) 
In accordance with (3.14), the Hamiltonian can be 

represented as a sum X= W+ T. We have then for the 
kink (4.6) 

-A+A- arctg - 
2A +A - 

The total energy carried by the 4a  kink is 

A+ x l n  --A+A- arctg- 
A- *'-"I), 2A +A - (4.11) 

where Qo= &/ 1 e 1 is the magnetic-flux quantum. 
Our solution (4.6) of Eq. (4.4) corresponds to the 

condition a2 = 1. Let us compare this solution with the 
known solution of Ref. 4, the form of which, for our case 
of two different superconductors, is in accordance with 
(4.3) 

where f=z(A?, +A?)A&~. Expression (4.12) is the solu- 
tion of Eq. (4.6) for a2=0. A 277 kink described by (4.12) 
corresponds to a magnetic field 

This expression differs from (4.8) first because it corre- 
sponds to the condition v=O, and second by a factor 2, as 
is evident from a comparison of (4.6) and (4.12). Equa- 
tion (4.13) makes it possible to calculate to energy of a 2a 
kink at rest, which reduces only to the energy W of the 
interacting vortical field (3.1 1 ) . The absence of kinetic en- 
ergy notwithstanding (T=O), the energy of the kink at 
rest is equal to 

A+ 
A- "-*'I]. (4.14) 

x l n  - - L A +  arctg- 
2A+A- 

According to this equation, the energy of a kink at rest is 
exactly one-fourth the energy (4.11 ) of the traveling non- 
local 4 a  kink (4.3 ) . 

We consider now the value of the magnetic flux that 
carries the moving kink. According to (3.1 ), the magnetic 
flux of a kink is given by the relation 

Therefore both the 2a  kink of the local Josephson electro- 
dynamics (4.1) and the immobile asymptotic 2a  kink 
(4.12) of the non-local electrodynamics correspond to ver- 
tices with one magnetic-flux quantum. On the contrary, the 
moving 45- kink of nonlocal Josephson electrodynamics, 
obtained in the present paper on the basis of the asymptotic 
equation (2.25), describes a vortex with a magnetic flux 
equal to two quanta. 

Comparing solutions (4.3) and (4.12) for a traveling 
and immobile nonlocal kink, we verify that they cannot be 
obtained by using the simple transformation that makes it 
possible to obtain the 2a  kinks of the sine-Gordon equa- 
tion. The reason is that the sine-Gordon equations are not 
covariant with respect to a Lorentz transformation with a 
maximum velocity A 9  J. Incidentally, the velocity v given 
by Eq. (4.7) is low compared with Ap,, since Eq. (2.25) 
and its solution (4.3) hold under the condition 
A:(A: +A:. The kink mass m can be determined from 
the equation mv2/2=T (cf. Ref. 4). Using (4.9) and 
(4.7), we obtain 

Comparing this equation with that obtained in Ref. 4 for 
A +  =A- =A, we see that the mass obtained by us is four 
times larger. The same holds also for the estimate of the 
viscosity coefficient qo=m/RCS (Ref. 4). It must be em- 
phasized here once more that the 2a  kink in Ref. 4 is 
immobile and the estimates of the vortex mass and of the 
viscosity coefficients were made in that reference under the 
tacit assumption that a Lorentzian (or at least Galilean) 
covariance is possible, which is patently not the case for 
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Eq. (2.16). In contrast to the kink considered in Ref. 4, the 
47r kink (4.5) is a traveling one. In our case therefore the 
estimate of the mass of the moving vortex is more rightful, 
since the corresponding nonstationary solution of Eq. 
(4.4), as shown in the present paper, does exist.3) 

It should be noted in conclusion that the steps under- 
taken to find solutions of the integro-differential equation 
(2.16), and particularly its asymptotic form (2.25), show 
that these solution can as yet not be obtained by a regular 
approach, a development of which is exceedingly desirable 
(see Ref. 6) also, primarily, to establish the existence of the 
solutions. 

 he first results of a numerical investigation of the sine-Hilbert equation 
(2.25) give grounds for hoping that the 47r kink is stable (private com- 
munication from G. L. Alfimov, to whom we are most indebted). 

2' f (A,A) =In A in the limit of two identical superconductors. 
' ' ~ t  cannot be considered at present that the question of how to excite a 

477 kink has been answered. It would be possible to answer this question, 
in particular, by solving the Cauchy problem for the sine-Hilbert equa- 
tion (2.25). One might think that a 4.rr kink could be excited in a tunnel 
junction of finite length by a nonstationary surface current from one of 
the end faces of the junction. 
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