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A new class of asymptotically flat axisymmetric solutions of the magnetostatic 
Einstein-Maxwell equations is presented. A metric, which reduces to the Schwarzschild one 
in the absence of the magnetic field, is obtained as a particular case. This solution can 
be used to describe the external gravitational field of a massive magnetic dipole. 

1. INTRODUCTION 

The first exact solutions of the magnetostatic Einstein- 
Maxwell equations were obtained in 1954 by   on nor.' 
Soon thereafter ~ a u b e r ~  made use of the Curzon solution 
to construct the metric for the gravitational field due to 
point magnetized sources. In 1966  onn nor^ applied his the- 
orem on the correspondence between the stationary vac- 
uum solution and the static Einstein-Maxwell field to the 
Kerr metric and constructed a metric with two 
parameters-the mass parameter and the magnetic dipole 
moment parameter. This metric becomes flat at infinity 
and the magnetic field tends to the field of a magnetic 
dipole. However the Bonnor solution does not become the 
Schwarzschild solution when the magnetism parameter is 
set equal to zero. 

In the late seventies ~ e r l t ~ ' ~  found a class of solutions 
which included the Bonnor metric. He also developed a 
procedure for the generalization of the Reissner- 
Nordstrom solution. Regrettably, Herlt was unable to con- 
struct a magnetostatic solution which could describe the 
field of a magnetic dipole. Among additional papers de- 
voted to the search for point magnetostatic solutions we 
note Refs. 6-9. The asymptotically flat metrics constructed 
therein are interesting in that they all reduce to the 
Schwarzschild metric in the absence of magnetism. 

In the present paper we obtain a new class of solutions 
of the static Einstein-Maxwell equations and consider the 
problem of the gravitational field of a magnetic dipole. 

2. THE BASIC EQUATION 

The Einstein-Maxwell equation has the form 

where Rik is the Einstein-Ricci tensor and Tik is the 
energy-momentum tensor of the electromagnetic field, con- 
nected with the electromagnetic field intensity tensor Fik 
by the relation 

It is also customary to introduce the Cpotential of the 
electromagnetic field 

The metric of the static axisymmetric gravitational 
field can be written in the canonical Weyl coordinates in 
the form 

where the functions f and y depend only on p and z. 
We set Ai= [0,0,A3(pj),0] and rewrite Eq. ( 1 ) explic- 

itly as 

Here 

(po and zo are unit vectors) and A,(p,z) is the magnetic 
component of the electromagnetic-field Cpotential. 

The second equation in (3) can be viewed as the con- 
dition for the existence of a new potential A;, connected to 
A3 by the relations 

In that case Eqs. (3) and (4) can be rewritten as 

If we introduce further the functions 

E~=u+A; ,  E~=II-A;, U =  JS, (8) 

we obtain the symmetric magnetostatic equations 
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We note certain general properties of Eqs. (9) and 
( 10). Let (F1 ,F2) denote some solution of Eqs. (9). Then 
the functions 

-a+b& a+bG 
E l  = , E2=- C-d& c+dG ' (11) 

where a, b, c, and d are arbitrary real constants, will also 
satisfy Eqs. (9). 

In the particular case when we set in (1 1) c=O, 
a =  -2dco, and b= -d we obtain 

The analog of transformations (12) for the vacuum 
stationary gravitational field is given by the inversion 
transformations [see, e.g., Ref. 10, Eq. 30.27 for @=0]. 
The resultant abbreviated transformation is the Ehlers 
transformation. 

In this way, given a certain solution (73;) of Eq. (6), 
a new solution can be constructed 

Further, it follows from (10) and (12) that y=T. 

3. A NEW CLASS OF SOLUTIONS 

We rewrite Eqs. 6 in the form 

and introduce into consideration the functions Jt and 
satisfying the equations 

and also connected to each other by the relations 

It-is _not hard to show that we can take as the solutions 
(A;, f ) of Eqs. ( 14) the following functions - 

A;=x, 7 = p 2 ~ ( + ) ,  (17) 

where F(Jt) satisfies the ordinary differential equation 

The solution of this equation has the form 

For bo= 1, i.e., ~ = c o s h ~  Jt, the solution of Eqs. (14) 
in accordance with ( 13) can be written in the form 

On the other hand Eqs. (7) reduce in that case to the form 

[ ( I  ax)'- =-2 -- 
p a p  p a ~ '  

With the help of (20) we can also rewrite Eqs. (5) 

It is readily seen that the integrability condition for both 
(21) and (22) is ensured by the second of Eqs. (15). 
Formulas (20), (21 ), and (22) define a new class of solu- 
tions of the magnetostatic Einstein-Maxwell equations. 

We show now how the Schwarzschild solution can be 
obtained from (20). To this end it is convenient to go over 
to prolate ellipsoidal coordinates (x,y), which are con- 
nected to the Weyl coordinates by the relations 

p=k0 J(x2- l ) ( l -3) ,  z=k#y (23) 

( kra real constant). 
The operators a/ap and a/& are then given by the 

expressions 

In terms of the coordinates (x,y) the metric (2) is 
rewritten in the form 

and the solution (20) and the Eqs. ( 15) and ( 16) take on 
the form 
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a Therefore we obtain for the potentials 

a'x a'x 
(x2- 1) g+ ( 1-91 *=O, (27) 

a$ 1 ax a+ 1 ax the expressions 
k o z = - 7 - ,  k -= 

x - l a y  OaY CJVG' (28) 
4mi(x2- 1)M2 " 

To obtain the Schwarzschild solution it is sufficient to f=k2,[(x+po+qg)2-($-l)~2]2 ' 
set in (27) and (28) 

In that case, setting co=ko, we obtain from formula (26) We find the metric coefficient y from Eqs. (21), which 

x- 1 have in terms of the coordinates (xg)  the form 
- -  - 

f =-, A;=O. 
x + l  a r  a x 2  ~(1-3) a x 2  

k2,(x2-3) -=x - - 
In terms of the curvature coordinates r and 6 ax (ax) x2- 1 (5) 
[x= ( r-mo)/ko, y=cos 6, ko and mo-constants], and 
further setting ko= mo, we obtain -2y--, ax ax 

ax ay 
2mo IL-2mg f=l-- A;=O, e2Y= (35) 

r '  2 - 2mg+ mt sin2 6 ' 2 

i.e., the Schwarzschild solution. 

4. THE GRAVITATIONAL FIELD OF THE MAGNETIC DIPOLE 
where 

The class of solutions (26) obtained by us permits a 
generalization of the Schwarzschild solution to the case 
when the gravitating center has magnetic properties. In- 
deed, if we choose as the solution of the equation for x in 
(27) the function 

we obtain for $ in (28) the expression 

In such a case 

and the functions E ,  and e2, determined by formulas (8) 

r = 2  ln cosh $+f ln[(x2- 1) (1 -911 -y .  

The calculations give 

It is not hard to also rewrite in terms of the new co- 
ordinates Eqs. (22), serving to determine the magnetic 
potential A, 

dA3 1 a 
2m -= -- - (X2 tanh $) + 2yx 

O ax koax 

2co 2co --+ 1, E ~ =  1, (32) In our casex=ko(x+po+qg), tanh+=2{1+[(1-y) 
"+X u-x X ( 1 + y)][(x - 1 ) (x + 1 )Iq0)-' - 1 and integration of 

become for co = mo Eqs. (37) gives 
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2mo 
x A 3 =  - (x+po+qg12 tanh $+y(x2+ 1) 

where Do is an integration constant. 
The coordinate transformation x = ( r - mo) /ko, 

y=cos 6 ,  as well as the following choice and renaming of 
the constants: 

bring the metric ( 1 ) , f and A3 to their final form 

moA3= (cos 6- tanh q)  (r+aocos 6)2+uo(r+uo 

where we have set: 

We note that for qo=O the metric (9) reduces to the 
Schwarzschild metric in standard notation. Moreover, it is 
clear from the asymptotic behavior f - ' & ~  
-* [1+ (2mdr)], f - ' K & N - * ~  of the various metric co- 
efficients that our metric approaches the Schwarzschild 
metric as r+ oo : 

Whence we conclude that the metric (9) is asymptotically 
flat, and the parameter mo is to be identified with the mass 
of the gravitational center. It follows from the asymptotic 
behavior of the function A3[A3+ - (2/3)moao( 1/2)sin2 a], 
which determines the magnetic properties of the gravita- 
tional center, that a. = q0md should be identified 
with the specific magnetic dipole moment (i.e., the mo- 
ment of a unit mass). 

In this manner the metric (39) obtained in this work 
can be used to describe the gravitational field of a star 
endowed with a magnetic dipole moment. 
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