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A new class of asymptotically flat axisymmetric solutions of the magnetostatic
Einstein-Maxwell equations is presented. A metric, which reduces to the Schwarzschild one
in the absence of the magnetic field, is obtained as a particular case. This solution can

be used to describe the external gravitational field of a massive magnetic dipole.

1. INTRODUCTION

The first exact solutions of the magnetostatic Einstein—
Maxwell equations were obtained in 1954 by Bonnor.!
Soon thereafter Tauber’ made use of the Curzon solution
to construct the metric for the gravitational field due to
point magnetized sources. In 1966 Bonnor? applied his the-
orem on the correspondence between the stationary vac-
uum solution and the static Einstein-Maxwell field to the
Kerr metric and constructed a metric with two
parameters—the mass parameter and the magnetic dipole
moment parameter. This metric becomes flat at infinity
and the magnetic field tends to the field of a magnetic
dipole. However the Bonnor solution does not become the
Schwarzschild solution when the magnetism parameter is
set equal to zero.

In the late seventies Herlt*® found a class of solutions
which included the Bonnor metric. He also developed a
procedure for the generalization of the Reissner—
Nordstrom solution. Regrettably, Herlt was unable to con-
struct a magnetostatic solution which could describe the
field of a magnetic dipole. Among additional papers de-
voted to the search for point magnetostatic solutions we
note Refs. 6-9. The asymptotically flat metrics constructed
therein are interesting in that they all reduce to the
Schwarzschild metric in the absence of magnetism.

In the present paper we obtain a new class of solutions
of the static Einstein-Maxwell equations and consider the
problem of the gravitational field of a magnetic dipole.

2. THE BASIC EQUATION

The Einstein—-Maxwell equation has the form
d .
3k ¢ V—8&F 1n8'g"™) =0,

Fi1+ Fipi+ F =0,

where R, is the Einstein—Ricci tensor and T'; is the
energy-momentum tensor of the electromagnetic field, con-
nected with the electromagnetic field intensity tensor F
by the relation

Riye=8Ty,
(1)

1 1
Tumgs (FiFi—g FinF s

It is also customary to introduce the 4-potential of the
electromagnetic field
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04, 04,
Fyp=Axi—Ay=371—5%-

The metric of the static axisymmetric gravitational
field can be written in the canonical Weyl coordinates in
the form

dS*= [ (dp*+dP) + p*de*] — fdP, (2)

where the functions f and y depend only on p and z.
We set 4,=[0,0,45(p,z),0] and rewrite Eq. (1) explic-
itly as

2 oo off
SAS=(Vf V4= (VA% 9| 3V43)=0, (3)

o p |G -G ) (3
dy pafdf  fod3d4,
3 fapaz  pop oz

2 (4)

Here

A_a2 19 & vep 2., 8
=T oap a2 VPGt

(po and z, are unit vectors) and A3(p,z) is the magnetic
component of the electromagnetic-field 4-potential.

The second equation in (3) can be viewed as the con-
dition for the existence of a new potential 43, connected to
A, by the relations

34,  fod, oA}
9p poz’ oz

S04,
paop’
In that case Eqs. (3) and (4) can be rewritten as

FAf=(Vf)24+2 f(VA})% fAA;=VA4;-Vf, (6)

49y 1 [(af\* (df\* A5\ (343\*
55‘?[(55)‘(5) az) \ap) |
20y 13faf 434394} ;
pdz flapaz fap oz (7

(3)

+F

If we introduce further the functions
ei=u+A4;, e=u—A;, u=f, (8)

we obtain the symmetric magnetostatic equations
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(61+6) A6, =2(Ve1)?,  (£1+6)Ae,=2(Vey)%,  (9)

(e1+&2)* dy 3,05, 3k, 06
4p dp dpadp oz 0z’

(£1+£2) a‘y 88, a€2 881 682
4p 0z 6p 9z ' dz c')p'

We note certain general properties of Eqs. (9) and

(10). Let (Z,,,) denote some solution of Eqgs. (9). Then
the functions

(10)

—a+bé;
c— d£1

a+ b,
c+de;’

&= , &= (11)
where a, b, ¢, and d are arbitrary real constants, will also
satisfy Egs. (9).

In the particular case when we set in (11) ¢=0,

a=—2dc,, and b= —d we obtain

2(.'0 1 2(.'0 1 12
61——8-;-*-, 82__63_' (12)

The analog of transformations (12) for the vacuum
stationary gravitational field is given by the inversion
transformations [see, e.g., Ref. 10, Eq. 30.27 for ®=0].
The resultant abbreviated transformation is the Ehlers
transformation. .

In this way, given a certain solution (f,43) of Eq. (6),
a new solution can be constructed

f=4fAP—F)7 Mi=1-2eA5(47~F)7".
(13)

Further, it follows from (10) and (12) that y=7%.

3. A NEW CLASS OF SOLUTIONS

We rewrite Eqgs. 6 in the form

193 ( af\ é&f
A

af 94; ad})\*
(&) () A (3]
19 ( 045\ J4;] afaA4; af a4,
Uryr P%)Jﬁf ~apop Tz oz’
and introduce into consideration the functions ¢ and y

satisfying the equations

azzp 13y &Y Py

(14)

139y 62)(

ap? pap+¥_0’ 3p® pap +32=0 (15)
and also connected to each other by the relations
a l a a 10
W 1k H__1oa (16)
ap p 3z’ 0z pop

It is not hard to show that we can take as the solutions
(43,f ) of Egs. (14) the following functions

A=y, F=pFW), (17)
where F () satisfies the ordinary differential equation
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e d*F (dF oF 8
P («w) * (e
The solution of this equation has the form
e’+b
F(y)= (—20e_) , by=const. (19)

For by=1, i.e., F=cosh? ¢, the solution of Egs. (14)
in accordance with (13) can be written in the form

4ckp? cosh? ¢ A1 2cox
N — — 2 z 2 .
f= (x> — p* cosh? ¢)* 3 x“— p° cosh® ¢

(20)

On the other hand Egs. (7) reduce in that case to the form
2

L9 (27— 21n cosh? y—1 p)
- _— n COS. —In
pap(y i

--(:-63)

pz) 4 dy dx

10
- — 2 -
3z (27 2 1n cosh” ¢y—In Po -—zp 3p oz (21)

With the help of (20) we can also rewrite Eqgs. (5)

d 5 2tanh 0) = dy
5,;( COA3+X tan 'l’)—P az’

d ) oy
% (2¢pd3+x“tanh ) =—p $+2)(. (22)
It is readily seen that the integrability condition for both
(21) and (22) is ensured by the second of Egs. (15).
Formulas (20), (21), and (22) define a new class of solu-
tions of the magnetostatic Einstein-Maxwell equations.
We show now how the Schwarzschild solution can be
obtained from (20). To this end it is convenient to go over
to prolate ellipsoidal coordinates (x,y), which are con-
nected to the Weyl coordinates by the relations

p=ko\/(_xz—_T(17—9 z=k0xy

(kg—a real constant).
The operators d/dp and 3/3z are then given by the
expressions

6

(24)

(23)

3
ko5, =(x"—y")~ ‘(x—l)y Fradt y2)x

In terms of the coordinates (x,y) the metric (2) is
rewritten in the form

5?2 f ! dx? dy? )

er(x*—y) (;{‘_—1+T_—yz

+(x2—1)(1—y2)d¢2}—fdt2, (25)

and the solution (20) and the Eqgs. (15) and (16) take on
the form
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4cgy(x*—1) (1—p*)cosh’ §
f= [x*— K5 (x*—1) (1—y?)cosh? ¥]?’

A=l 20 5 (26)
X —ko(x —1)(1—)'2)cosh ¥

% (x? 1)_ ay[(l yz)

(2—1) %Hl—y’) a—yzx=o, 27)

To obtain the Schwarzschild solution it is sufficient to
set in (27) and (28)

1+y
x=Kko(x+1), 1/1— ln—y
In that case, setting c,=kg, we obtain from formula (26)
x—1 41=0
F=rq A5=0

In terms of the curvature coordinates r and ¥
[x=(r—my)/ky, y=cosd, k, and my—constants], and
further setting ky=m,, we obtain

2m°

f=1-—,

P—2my
= Y=
4;=0, ¢ P—2mor+mjsin® 3’

i.e., the Schwarzschild solution.

4. THE GRAVITATIONAL FIELD OF THE MAGNETIC DIPOLE

The class of solutions (26) obtained by us permits a
generalization of the Schwarzschild solution to the case
when the gravitating center has magnetic properties. In-
deed, if we choose as the solution of the equation for y in
(27) the function

x=ko(x+po+4qay), gqo=const, pp=const,  (29)
we obtain for ¢ in (28) the expression
1 [14y /x+1\%
2" l—y( 1) ] (30)
In such a case
M2
COSh2 ¢=—)7 ,
1—
31)

14y (x+1\%? l—y 1\ %2

) =)

and the functions £, and ¢,, determined by formulas (8)
2(.'0 2C0

u+x+l’ R

g=— -1, (32)
become for co=m,
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2m0 1 +1
Ei=———
T ko M X =1+ (x+potqw)
(33)
2m0 1
E=——7— -
P ko MX—1—(x+po+qw)
Therefore we obtain for the potentials
2m0u 2 r—1 ZM()X
f= (,7_7) S
the expressions
4md(x*— 1) M?
T kgl (x+pot+gu)— (F—1)M?]*’
2mo(x+po+4o y)
A= o(*+Po+qoy (34)

kol (x+po+qa)*—~ (=M

We find the metric coefficient y from Egs. (21), which
have in terms of the coordinates (x,y) the form

ar  (3x\* x(1—)?) (dx)\?
- Ze=r() = ()
_, dx 9
Y 3x 3y ay’
(35)
ar y(x*—1) (dy x\?
R =11 (ay) (3
9 %
ox dy’
where
T'=2Incosh ¢+iIn[(x*—1)(1—)?)] —y.
The calculations give
(x+y)“+q°)2(x—y)“"qO)ZeZY:M“(xZ—1)1+qg. (36)

It is not hard to also rewrite in terms of the new co-
ordinates Egs. (22), serving to determine the magnetic
potential 4

2y 0110
"0 g% = ko Ox

(x* tanh ¥) +2py
0
) (—,f,
o, (37)

14
2my = k3 (x? tanh ) +2xy

ko 9y
24
—(x2—-1) -2
(x*—1) i
In our case y=~Ko(x+po+qo), tanh¢=2{1+[(1—y)
X (1 + »I(x — 1)(x + 1)]%}~! — 1 and integration of
Eqgs. (37) gives
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2m0 2 2
A3=—(x+po+qey)” tanh P+ p(x°+1)
0

+gox (2 +1) +2poxy+ D, (38)

where D is an integration constant.

The coordinate transformation x=(r—my)/ky,
y=cos 3, as well as the following choice and renaming of
the constants:

Do=29w0, Pe+ae=1, ko=mo(1—g})~'",
oo=qomo(1—q3) ~"?
bring the metric (1), f and A4; to their final form

dS*= f~'M*N(dr*+ Kd3*) + f~'Ksin? § dp? — fd?,
(39)

f=4mKM?*[ (r+agcos 8)%— (P+2mgr—o2) M*] 72,
(40)

moA3=(cos & —tanh ¥) (r+ ggcos 9)2+ao(r+ 0y
X cos &+ myg)sin® 9, (41)
where we have set:
K=r—2myr—qomi(1-q3) ™",

3 \ll—ao(r—mo)—morolz

M=sin®—
2 | J1—gg(r—mg) +my

3 [ ,/1_320(r_m0)+m0r°’2

+cos? =
2 | J1—g5(r—mg) —my

(1-@)K ]“5

’

(1—q2) + K+m2 sin2 &

,/1 —?O(r— mg) — mgcos 8] 240

\/1 —qf,(r—mo) + mgcos ¥

s
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We note that for g;=0 the metric (9) reduces to the
Schwarzschild metric in standard notation. Moreover, it is
clear from the asymptotic behavior fT'M*'N
—=[14+2my/r)], f~ IKM*N - 7 of the various metric co-
efficients that our metric approaches the Schwarzschild
metric as 7— o

2m,
ds?~ ( 1 +——-r-9)d12+ Pd¥? + 7 sin? ddg?

— (1—2—'"3)dr2.
r

Whence we conclude that the metric (9) is asymptotically
flat, and the parameter my is to be identified with the mass
of the gravitational center. It follows from the asymptotic
behavior of the function 4;[4;— — (2/3)mgo,(1/2)sin® 3],
which determines the magnetic properties of the gravita-
tional center, that og = gomy/ 41 —?0 should be identified
with the specific magnetic dipole moment (i.e., the mo-
ment of a unit mass).

In this manner the metric (39) obtained in this work
can be used to describe the gravitational field of a star
endowed with a magnetic dipole moment.
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