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The vibrational-orientational polarization, linear or cubic in the field, of a molecular gas in a 
bichromatic optical field is analyzed for the cases of collinear and orthogonal electric 
vector configurations. This polarization is also analyzed for a gas in the field of elliptically 
polarized light. Analytic expressions are derived for the vibrational-orientational 
polarizations of a molecular gas at the fundamental, multiple, and sum and difference 
frequencies, which depend on the parameters of the molecules, the field, and the medium. The 
nonlinear polarization at the frequency of one of the incident waves depends on both the 
intensity of this wave (the self-polarization) and the intensity of the other wave (the induced 
polarization). The self- and induced cubic orientational susceptibilities are on the same 
order of magnitude. There is no orientational cubic polarization at multiple frequencies or at 
sum and difference frequencies. The vibrational cubic self-susceptibilities at the 
fundamental frequencies are usually smaller than the induced susceptibilities. The latter 
increase rapidly with decreasing difference between the frequencies of the incident waves. This 
increase is also found for the cubic susceptibilities at certain sum and difference 
frequencies. 

Various factors can cause nonlinear polarization of a 
molecular gas in an optical field. One is a change in the 
number density of molecules caused by the optical field 
( ponderomotive and thermal effects). Another is the exci- 
tation of the molecules by the light and thus a change in 
their polarization characteristics. A third is an electronic 
nonlinearity-.due to an anharmonic response of the electron 
cloud of the molecule to the alternating field. Finally, there 
are stimulated vibrations of the constant and induced di- 
pole moments of the molecules with respect to their aver- 
age orientation and changes in the angular distribution of 
these average orientations in the field of the light wave. 

The mechanism of a vibrational-orientational optical 
polarization of a molecular gas was discussed in Refs. 1 
and 2. The orientational polarization arises from a devia- 
tion of the angular distribution of the average directions 
(the average is over the oscillations) of the axes of the 
molecules from isotropy. The linear and nonlinear vibra- 
tional polarizations in an optical field arise from a high- 
frequency stimulated oscillation of the axes of the mole- 
cules and occur even when the distribution of the average 
molecular orientations is isotropic. 

In Ref. 1 we studied the vibrational-orientational po- 
larization of a molecule gas in the case in which the exter- 
nal field is a linearly polarized monochromatic plane wave. 
The polarization of the medium during the simultaneous 
application of a monochromatic wave and a constant elec- 
tric field was studied in Ref. 2. 

In the present paper we wish to determine the 
vibrational-orientational polarization of a nonabsorbing 
molecular gas of diatomic or linear molecules in the vibra- 
tional ground state in the field of two monochromatic 
waves at frequencies wl ,a2 with wave vectors kl,k2, which 
are directed along the z axis. We consider the case in which 

the oscillation planes (an oscillation plane is defined by the 
vectors E and k) are parallel and also the case in which 
they are perpendicular. We derive the vibrational- 
orientational polarization of a gas in the field of an ellipti- 
cally polarized wave. 

1. Let us examine the polarization of the medium when 
the oscillation planes of two monochromatic waves with 
amplitudes El and E2 oriented along the x axis are coinci- 
dent: 

We will be discussing the polarization in a volume Av in 
which the number of molecules is large enough that we can 
take statistical averages, but is small in comparison with2 
A : , ~ ( A , , ~ = ~ T c ~ ; ~ ~ ~ ) .  We can ignore the changes in the spa- 
tial phases kl,, z within Av, and we can examine the behav- 
ior of the gas in a field 

E=ix(Elcos wlt+E2 cos w2t). (1) 

If the initial oscillation phases are not zero, as in Ref. 
1, they appear in time-dependent factors for their polariza- 
tion, in which w1,,t should be replaced by wl,2t+S,,2. 

In the coordinate system fixed in a diatomic or linear 
molecule (a rigid rotator) the molecule is characterized by 
the linear dynamic polarizability a:') = aL2) =a$; aL3) and 
the principal axes of (a)  the ellipsoids of revolution and 
(b) the moments of inertia Jl = J2 =J; J3 =O. The index 3 
corresponds to the direction parallel to the axis of the mol- 
ecule, along which the constant dipole moment p (if it 
exists) is also oriented. The "orienting"3 polarizabilities a, 
and a2 are all = aL:i-a:,,2. We wish to stress that 
nonlinear components of the electronic polarizability are 
not being discussed here. 
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The properties of the medium, i.e., of the molecular 
gas, are characterized by the temperature T (in kelvins) 
and the number density N (number per cubic centimeter). 

Using these characteristics of the field, the molecules, 
and the medium, we will determine the vibrational- 
orientational polarization of the gas to within terms cubic 
in the field. 

Since the gas is isotropic, the polarization vector is 
directed along the field E. It is thus sufficient to consider 
only that component of the dipole moment which is along 
the polar (x) axis: 

pE=p cos 8+ ( a r + a l  cos2 8)  El cos wlt 

Here 8 is the angle between the field and the dipole mo- 
ment p. The polarization vector pE is 

where dw(8) characterizes the distribution of the axes of 
the molecules with respect to the angle 8 in the external 
field. Assuming that the gas is in thermodynamic equilib- 
rium, we use a Gibbs canonical distribution4 to determine 
dw(8): 

Here H is a Hamiltonian, i.e., the total energy of a mole- 
cule in the field E. The Hamiltonian H contains the kinetic 
energy of rotation, Tr(pi,qi) (qi=8,g7 are the polar and 
azimuthal angles; pi= Me ,M, are the corresponding angu- 
lar momenta), and U(qi,t), the potential energy of the 
dipole in the field E: 

cosZ 8 -- 
4 

( a l ~ :  cos 2 w l t + a 2 ~ i  cos 2w2t) 

Since H depends on the time, the question of the qua- 
siequilibrium distribution of axes of molecules with respect 
to the angle 8 in the alternating external field is decided by 
the period of the driving force, T = ~ ? T O - ~ .  If r)rp holds, 
where the right side is the time scale of the relaxation of the 
system to an equilibrium distribution, then at any instant 
the distribution is approximately the equilibrium distribu- 
tion corresponding to the energy at the same instant. If 

r(rp holds, which is the condition that usually prevails 
during polarization in an optical field, the total energy 
should be averaged over the period of the high-frequency 
forced oscillations, and the average value a should be used 
in the distribution function3 with respect to average angles. 

The time dependence of the function H, which is re- 
lated to the quantity F(8,t), stems from not only the fac- 
tors a cos wit in the terms of Eq. (5) but also the ampli- 
'tudes of these terms, which depend on the time through the 
time dependence of the angle 8(t) .  The motion of the axis 
of a molecule is characterized by oscillations of two types. 
First, there are the forced high-frequency oscillations at the 
frequencies fl=wl,w2,2wl,2w2,w1+w2, Au=IuI-w21. 
Second, there are the low-frequency motions of the axis of 
the molecule at a frequency oo,  which are due to the time- 
independent part of the Hamiltonian, Ho. 

In this paper we assume wo(fl. In this situation we 
should use the approximate method5 with which the name 
of P. L. Kapitsa is linked. In this method one assumes 
8 = 80 + (, where 80 describes low-frequency motions with 
a frequency wo (i.e., €Jo is the value of the angle 8 averaged 
over the period of the high-frequency oscillations), and 
( 4  1 are forced high-frequency oscillations at frequencies 
fl. The exact solution of the equation of motion of the 
molecule in the bichromatic field is 

a1,2E:,2 f =-- 
2*1,2 4 sin 28, 

E ~ E ~  sin 28. f o i * w 2 =  -4 

In the method we are using, this equation splits in two. The 
first equation is for 5; its solution is 

1 
7 cos wit. 

The other equation is for 8,; its solution is 

a 
=-- 

ago 

(8)  

The bar over the summation means an average over the 
period of the high-frequency oscillations. The function 
@(@) is 

sin2 200 a:@ a2e 
@(@) =- 161 [-+a 

( 9 )  
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Since the analysis is being restricted to the nonlinearity 
which is cubic in the field, the quantity a+(p) /a80 drops 
out, and we have 

To analyze the polarization we do not need to look for 
solutions of Eqs. (8) or ( 10); it is sufficient to determine 
simply H(80), the Hamiltonian averaged over the high- 
frequency oscillations. 

Using H(o0) in a Gibbs distribution: and integrating 
it over the angular momenta and the coordinate 9, we find 
the distribution of the axes of the molecules with respect to 
the angle 80: 

dw (80) =Ae- "dkT sin Odeo. (11) 

Assuming I Ue$kT I (1, we find, to within terms cubic in 
the field, 

To average pE over the orientations of the molecular 
axes, we should determine the amplitudes of the high- 
frequency components of pE as a function of 80. Since we 
have 

we find the following result by differentiating pE in (2) and 
using Eq. (7) for {: 

9 PaiE: 
p?' = -- 7 sin2 B, cos 8, 

8 Jwl 

9 Pa2G 
piq= -- 7 sin2 oo cos , 

8 Jw, 

Taking an average of ( 14) in accordance with (3) over the 
equilibrium in ( 12), we find the average molecular polar- 
ization: 

For the amplitudes of the monochromatic components we 
find (here and below, we use either the first index or the 
second in the case of a double index) 

Here ?i1,2= ay2 + a1,2/3 is the average polarizability of a 
molecule in the case in which the axes have an isotropic 
distribution. 

The "even" frequencies 20, ,2w2,wl *a2 are thus miss- 
ing from the polarization of the gas. The reason is the axial 
symmetry of the problem. We are left with simply the 
"odd" frequencies in the set f12. 

Here and below, unless we stipulate otherwise, we as- 
sume the following values in the estimates: 

a1,2= cm3; p =  10-l8 cgs; J= g . cm2 
(A\ 
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The quantity J corresponds to diatomic molecules which 
contain hydrogen. With the parameter values in (A),  the 
condition ( UedkT ( ( 1, which leads to Eq. ( 12), holds for 
~ ( 1 0 '  V/cm. 

We would like to know whether the conditions for the 
applicability of our method hold for E(10' V/cm. These 
conditions are f ( l  and n>wo, where wo characterizes the 
low-frequency motions of the axis of a molecule. Since ol 
and w2 can take on nearly equal values, the most stringent 
requirement associated with the condition ( 4  1 stems from 
the driving-force term in (7), which oscillates at a fre- 
quency Aw. We should estimate the minimum permissible 
values of Aw according to our method. 

Since low-frequency motions of rotating molecules oc- 
cur at frequencies or - WJ - 1013 s-I, while for nonro- 
tating molecules the oscillations in the field Ue8 occur at 

frequencies wo - \I*E (for ~ ( 1 0 '  V/cm and 
~ ~ ( 1 0 ~ ~  S- I), the requirements on are fk>or- 1013 s-'. 
In the estimates below we assume that the lowest frequen- 
cies for which our method is valid are ol ,w2,Ao- 1014 s-I. 
We believe that a deviation from this condition in the low- 
frequency direction (to -3w,) is completely permissible. 
We recommend experimental measurements of the polar- 
ization of a molecular gas at frequencies up to -a,. In 
particular, such measurements would be of assistance in 
determining the behavior of the vibrational nonlinearity 
and in distinguishing it from an electronic nonlinearity. 

The contribution of the dipole moment p2/~w:,2 to the 
effective nonlinear polarizability ale,2, [see ( lo)] is compa- 
rable to the contribution of the linear polarizability al,2 at 

1014 S-I. - 
We consider the polarization amplitude p:. Introduc- 

ing the susceptibility X, we write this amplitude as follows: 

The linear dynamic susceptibility is seen to consist of 
an average electronic component - l d 4  cm3 and a nega- 
tive vibrational component -2p2/3~wt. We see that the 
linear dynamic susceptibility consists of an average elec- 
tronic component - cm3 and a negative vibrational 
component - 2p2/3Jw:. For the parameter values in (A) 
the latter is - cm3, but in the far-IR region, wl - 1014 
s-I, it is - cm3, and it is comparable in magnitude to 
the electronic component. Consequently, the linear suscep- 
tibility may be affected not only through the frequency 
dependence of iil but also through the vibrational compo- 
nent. 

The nonlinear polarization has a component a E;. 
This is a self-polarization, and its corresponding suscepti- 
bility is Xi:). The other component of the polarization, 
CXE;, is induced by the wave at the frequency w2. The 
corresponding susceptibility is Xi;). The refractive index of 
the gas at the frequency wl, i.e., n(wl,E1 ,E2), has a vib- 
rational-orientational component An = 2nN[n (ol ,O,O)]-I 
x (XI:)~;L+XI:)~;). 

On the other hand, the nonlinear susceptibilities can be 
classified on the basis of their physical origin. 

First, there is the orientational inertial polarization - T-I. It is very small while the light is acting on the gas, 
t ( ~ ~ .  The orientational susceptibilities are positive at 
t R T ~ ,  equal to and The self-polarizations and 
the induced orientational polarizations are comparable in 
magnitude at al$fzd2$;. This result was to be expected, 
since the particular factor responsible for the correspond- 
ing orientational asymmetry is irrelevant to the polariza- 
tion at any frequency. For the parameter values in (A), the 
dynamic orientational susceptibility is -5 . cgs/ 
molecule. 

Second, there is the instantaneous vibrational polariza- 
tion, independent of the temperature and unrelated to the 
asymmetry of the distribution of molecular axes. For this 
polarization, the susceptibilities Xi:)U and Xi;)U are nega- 
tive. If we have Am-wI,w2, the self-susceptibility is an 
order of magnitude smaller than the induced susceptibility, 
i.e., we have X\~)u-~,lXi;)U. For the parameter values in 
(A) we have x\;)u- cgs/molecule. With decreasing 
Ao, the induced susceptibility increases a ( A U ) - ~ .  If 
A"-- 1014 s-I holds, we have Xi:)V- cgs/molecule, 
and the induced vibrational susceptibility moves closer to 
the orientational susceptibility. 

For comparison, we can derive a crude estimate of the 
nonlinear electronic susceptibility: X(3)e-d/~i -  
cgs/molecule (E,- lo9 V/cm is the strength of the atomic 
field). The estimates thus lead to the relations 
X(3)0 > X'3)e > X ( 3 ) ~  This is of course a crude estimate, and 
the particular features of the individual molecules will play 
an important role. 

- Everything that we - have said about the polarization 
p: can be extended top:, with the corresponding changes 
in indices from 1,2 to 2,l. 

The polarization in ( 17) at the frequencies 3wl, 3w2, 
2w2 * w1 , and 2wl =k w2 is due exclusively to the vibrational 
mechanism; there is no orientational effect. At 
Aw - wl - w2, the cubic vibrational susceptibility is small 
at all frequencies: - ( 10-~-10-' )a2/Jw2 - cgs/ 
molecule. 

A case of particular interest is the vibrational polariza- 
tion for approximately equal frequencies wl and o2 
(Aw(wl ,a2). In this case the polarization spectrum con- 
sists of two quartets, one near ol and the other near 3wl. 
Within a quartet, the polarization frequencies are spaced at 
a uniform distance Aw. 

The first quartet consists of two doublets with frequen- 
cies wl , wl +2Aw and w2, w2-2Aw. The negative vibra- 
tional susceptibilities of all four lines are approximately 
equal at z ~ , l a : / J ( ~ w ) ~ .  For the parameter values in (A) 
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and for Aw = 1014 s-', these susceptibilities are - 
cgs/molecule. The polarization intensity of the first dou- 
blet is -El . E:, and that of the second - E: . E2. 

The second spectral quartet of polarizations, with fre- 
quencies 3wl + j Aw ( j  =0,1,2,3) has vibrational suscepti- 
bilities smaller by a factor - o : / ( ~ w ) ~  than those in the 
first quartet. For the outer frequencies, j = O  and 3, the 
susceptibility is smaller by a factor of 3 than that for the 
inner frequencies, j = 1 and 2. 

2. Let us examine the polarization of a molecular gas in 
the field of two monochromatic waves whose oscillation 
planes are perpendicular: 

E =ig1 cos wlt +i,,E2 cos 02t, (18) 

where i, and i, are unit vectors along the x and y axes. 
The cosines of the angles made by the constant dipole 

moment of the molecule with the x and y axes are cos 8 
and sin Bcos (p. The x and y projections of the total dipole 
moment of the molecule are 

px=p cos 8+ (af +al cos2 8)El cos w ~ t  

+a2E2 sin 8 cos 8 cos g, cos w2t, 

p, =p cos 8 cos g, + alEl sin 8 cos 8 cos g, cos ol t  

+ (a f+a2  sin2 8 cos2 q)E2 cos w2t. (19) 

In the case of collinear fields, the polarization of the 
gas is parallel to the field because of the cylindrical sym- 
metry of the system; this symmetry makes the problem 
one-dimensional. When the fields are perpendicular, the 
system loses its cylindrical symmetry, and the problem be- 
comes two-dimensional. This circumstance complicates the 
necessary calculations, of course. There is no point in re- 
producing them here in detail. We will simply draw a sche- 
matic picture of them and present the final result. 

In the method used above, we set 8=80+5e and 
g, = qo + gq , where ce ,gq# 1 are small high-frequency 
shifts. Let us find the functions (e,q(80,g,o,t). Taking an 
average of the Hamiltonian over the high-frequency oscil- 
lations, we find the following expression, accurate to within 
terms cubic in the field, for the effective potential energy of 
the "slow" motion, as in Ref. 10: 

The function Vefl. determines the thermodynamic- 
equilibrium distribution of the axes of the molecules with 
respect to the angles 00, 90, as in ( 11) for collinear fields. 

Using the values Se and gq in ( 19), we find the x and 
y projections of the dipole moment of the molecule: p, 
= z,~,~:':, cos wit. Averaging p, over the equilibrium dis- 
tribution, we find 

We find the y projections of the polarization by changing 
the indices in Eqs. (21 ) : x +y, 1 + 2, 2 - 1. 

Of the 13 frequencies ill at which the dipole moment 
of an individual molecule oscillates, only four are associ- 
ated with a polarization after an average is taken over the 
equilibrium thermodynamic distribution in the molecular 
gas. This comment applies to both the polarization of the 
gas along the x axis and that along the y axis. This large 
difference in the numbers of frequencies characteristic of 
the oscillations of the dipole moment of an individual mol- 
ecule and of the polarization of the gas (the dipole moment 
per unit volume) stems from the high symmetry of Vefl, for 
which all the coordinate planes are mirror-symmetry 
planes. 

The vibrational nonlinear polarization at the frequency 
w, [under the condition a 2 ( a l  + a2)  > 0] increases in the 
presence of a second wave of frequency w2 (and vice 
versa), as in the case of collinear fields. 

In contrast with the case of identically polarized 
waves, the two terms which determine the orientational - - 
cubic nonlinearity in pz' and p: and which are propor- 
tional to E: and E: differ in sign and thus weaken the 
orientational effect. If 2 * 'al$: = a2$i holds, - then 
there is no orientational polarizability in p:' in the 
case of the plus sign, while in the case of the minus sign - 
there is no orientational polarizability in By varying 
the field amplitudes El and E2 we can thus suppress the 
orientational nonlinear polarization along either the x axis 
or the y axis. For the vibrational polarization at the fre- 
quencies 2w2kol,  2wl f w2 the situation is similar. Ac- 
cording to (2 1 ), any of them can be suppressed through an 
appropriate choice of the frequencies wl and w2. 

The results for approximately equal frequencies 
(Aw#w1,w2) are reminiscent of those derived above for 
collinear fields. The differences are as follows: In the first 
quartet, the polarizations with frequencies w2 and 
02-2Aw are oriented along they axis, rather than along 
the x axis; in the second quartet, the susceptibilities 
za:/60h2 are identical at all frequencies, and the polar- 
ization at the frequencies 3w2 and 3w2-2Aw is oriented 
along the y axis. 

3. Let us examine the polarization of a gas in an ellip- 
tically polarized wave. The method which was used in Ref. 
5 is based on a separation of high- and low-frequency os- 
cillations. The polarization of the gas in an elliptical wave 
thus cannot be found from the results for waves of different 
frequencies with mutually perpendicular polarizations by 
taking the limit Aw -0 and by changing the initial phase. 
Formally, this procedure leads to a divergence of the vi- 
brational polarization in (21). We should bear in mind 
that in the limit Ao-0 the corresponding oscillation 
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changes from high-frequency to low-frequency; this point 
requires a separate study. 

Using a method similar to that outlined above for ex- 
amining the polarization of a thermodynamic-equilibrium 
molecular gas in the field of an elliptically polarized wave 

E = i Z l  cos wlt+i,E2 sin colt, (22) 

we find the following expressions for the linear and cubic 
vibrational-orientational polarizations: 

XE2 sin wit+ 
a: ( G  + +@/4 

E2 sin 3wlt. 
60~wT 

For the elliptically polarized wave (22), the electric 
vector E rotates in a definite direction. We would naturally 
expect that the tips of all the polarization vectors (linear 
and nonlinear) in a macroscopically isotropic gas would, in 
tracing out the ellipse, rotate in the same direction. How- 
ever, this is not the case. 

According to (23), the vectors of the linear, vibra- 
tional cubic, and orientational (for 0.5 < @/G < 2) polar- 
izations rotate in the same direction as the E vector of the 
light field. 

The vectors of the cubic orientational polarization (for 
~ / E ;  < 0.5 and E:/E; > 2) and the vibrational polariza- 
tion at the tripled frequency, on the other hand, rotate 
opposite the rotation of the light field, in contrast with our 

expectations. According to (23), with E?/E:=~*' the ori- 
entational cubic polarization degenerates from elliptical to 
linear, directed along either the x axis (in the case of the 
plus sign) or the y axis (the minus sign). 

In summary, this paper has continued the theoretical 
study, begun in Ref. 1, of how certain factors which have 
previously been ignored in the theory affect the optical 
polarization of molecular gases. These factors are the ori- 
entational effect which stems from the constant dipole mo- 
ments of the molecule in the alternating field and the 
forced high-frequency vibrations of the axes of these mol- 
ecules. We have derived analytic expressions for the 
vibrational-orientational polarization for the case in which 
two monochromatic waves differing in frequency are ap- 
plied to a molecular gas. We have studied the polarization 
effect of these waves on each other; this effect is particu- 
larly large when the incident waves are approximately 
equal in frequency. The nonlinear polarization at one fre- 
quency depends most strongly on the strength of the field 
at the other frequency. 

We are indebted to V. E. Mikryukov for participating 
in an analysis of the problem for the case of identically 
polarized waves. 
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