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A system of non-truncated Maxwell-Bloch equations is used to analyze coherent-resonance 
interactions of light in a two-level system of atoms. The integral ofmotion of the non-truncated 
equations is determined and used to demonstrate the evolution of the phase difference between 
the light wave and the polarization wave in generation and absorption of a .rr pulse and in 
propagation of a 2n- pulse. 

1. INTRODUCTION 1 a 2 ~ "  &p---- 4~ 4. 

2 at2 - - T I - ,  In connection with the progress in the method of gener- 
ating ultrashort laser pulses consisting of only a few optical- - - 
oscillation periods, solutions of non-truncated  axw well- a]* - - iwg(d(2 

+ "wd* = ' - 
Bloch equations are attracting ever increasing attention.'-5 at Ac A*P, 
The change from equations for slowly varying amplitudes to 
non-truncated equations is due to refutation of a number of 
traditional approximations, such as narrowness of the pulse 
spectrum compared with its carrier frequency, or weakness 
of the nonlinearity of the medium, as well as to promulgation 
of theories of new physical phenomena. Noteworthy among 
the latter is the unipolar soliton, the feasibility of which is 
demonstrated in Ref. 6, and results3 of numerical simulation 
and analysis of the stability of such excitations. Under dis- 
cussion are the possibility of amplifying pulses by nonreso- 
nant and a "blue" shift of the frequency of propa- 
gating  pulse^.'.^ The features of diffractive spreading of 
ultrashort pulses are under investigation.' 

The study of the properties of non-truncated Maxwell- 
Bloch equations is also of purely theoretical interest, since 
such an analysis can lead both to new laws governing the 
course of the processes, and provide a better understanding 
of well-known phenomena. Thus, for example, the existing 
theories of coherent interaction of radiation with resonant 
medias-" not only lead to a qualitative description of the 
phenomena but permit also a calculation of the field- 
strength profile in a medium. Since, however, these theories 
are based as a rule on equations for slowly-varying ampli- 
tudes, they cannot claim to yield a consistent description of 
the coherence dynamics, i.e., of the establishment of phase 
relations between the field and the medium. Even though the 
threshold processes evolve only during the very start of the 
interaction, they can influence also all the succeeding stages. 
Study of the dynamics of coherence dynamics is also of gen- 
eral theoretical interest. In the present paper, using a system 
of non-truncated equations, we investigate the dynamics of 
the phase difference in the generation of T-pulses and propa- 
gation of 2~-pulses in a resonant medium. 

The system ( 1 ) pertains to a transition between the ground 
level 11) = Il,m) and an excited one 12) = 11 + 1, m + I) ,  
where I and m are the quantum numbers ofthe angular mo- 
mentum and of its projection. Here d = (2 ld+ I 1) is the ma- 
trix element of the transition, 

A(r, t )  = e(+)~+(r ,  t )  + e(-)A-(r, t ) ,  

e(') = (el + ie,)lfl 

where u+ and u3 are Pauli spin matrices. 
The system ( 1) has an integral of motion in the form 

where m = hod .  Therefore, putting 

we obtain for j +  (r,t) 

Iml  
j2(r, t) = -p0(r)sin 0(r, t)exp(r ip(r, t)). 2 (4) 

The system of equations for the interaction of an ensem- 
ble of two-level atoms with radiation can be written in the From (1)  we obtain for the variables B(r,r) and p(r , t )  the 
form equations 
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ae Iml 1 - = i - - A - a ) ,  (5a) A(r, t) = 3 (A+ + A-) = B(r, ~)COS q(r, t), 
at ~c 

Iml 1 (z - ao) sin e = (A+r*  + A-*)~S 8. (5b) A I ( ~ ,  o = (A+ - A-) = ~ ( r ,  tlsin p(r, t), 

1 
j(r, t) = 7 + I-) = ~ ( r ,  t)cos p(r. t), Putting 

A2(r, t) = B(r, t)exp(+ w(r, t ) ) ,  (6) 

we can represent Eqs. (5a) and (5b) in the form 

2lml 
sin e = B cm(p - q)cas 0. (7b) 

The equations for the variables B(r,t) and $(r,t) follow 
from the first two equations of the system ( 1 ) : 

B [ (vqy - -L 2 ( a t ) 2 ]  2 - ( m - $ 4  
b l m l  =- 

C 
posh 8 cos(p - q). (8b) 

where 

According to (7a) and (7b), the angle p(r,t)  can be 
written in the form 

~ ( r ,  t )  = mot + tl(r, t), (14) 

where 

t 

v~~(t ')cos(au~t '  - +)mi B(tr)dt' + sin Oo sin po 

vJ~(t')sin(au,t' - +)cos 8(t1)dt' + sin Bocos p0 
0 

Here 
Equation (8a) can be transformed into 

which is the law of variation of the field current density. In From the definition of the angles B(r,t) and p(r,t)  it 

fact, from the first two equations of the system ( 1 ) we have follows that B(r,t) determines the change of the atomic-sub- 
system energy, and p(r , t )  determines the polarization 
phase, i.e., the dispersive properties of the medium. It is seen 

f i  a A+ --A- --[  c at ( ) - (+&A+)A-] from Eqs. (7a) and (7b) that the field-polarization field dif- 
ference p - $ determines the relation between the rates of 

2 i t i a  + ihV[At(-fiVA-) - (-ihVAt)A-1 = -2rch (y zp) .  change of the angles 0 and p .  At p = $ the rate of the radia- 
tive transitions is zero, dB/dt = 0, and the frequency disper- 

( sion is a maximum: 

It is evident from ( 10) that the components of the field cur- 2 l m l 
rent-density 4-vector are *=ao+-  at hc B ctg go. 

2h 9 
It follows from Eq. (9) that at dB /at = 0 the field amplitude 

Jo = A+ (F $ A-1 - ($ $A+) A- = - ~2 
c dt' at the point r is altered only as a result of radiation transport. 

At p - $ = 7r/2 the maximum rate of the radiative transi- 
J = A+(-ZVA-) - (-~VA+)A- = -2FiB2vq. ( 1 1 ) tions is 

The relations ( 11 ) cast light on the physical meaning of - ae = - 2lml 
at hc 

B, and = uo. 
the new field variables B(r,t) and $(r,t) used in the exposi- 
tion that follows and replacing the vector-potential co&o- Note that if 8, = 0 and $(r,t) = mot + A$(r) it follows 
nents A *  (r,t) contained in (1 ). from ( 15 ) that 

3. PARTICULAR SOLUTIONS 
tg 9(r, t) = ctg Aq(r), 

The variable $(r,t) determines the values of the quad- 
rature components of the field, and p(r , t )  the polarization i.e., 
current density. This is made particularly clear by the use of 
the following transformations tl(r, t) = n/2 + A*('). 
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Let $(r,t) = mot - kx and q, - $ = ~ / 2 ,  then the sys- 
tem of equations (7a), (7b), (8a), and (8b) takes the form 

we can transform the equations in (23) into 

au 3 -  x = ( a t  00) Y* 

The last equation is a consequence of the first two, since the 
system has an obvious integral of the motion 

u2 + u2 + H2 = 1. (26) 

Let dlL/dt be defined as 

where x = w,/c. From the first and last equations of ( 17) we 
obtain 

so that the solution of Eqs. (25) can be represented as where n = k / x .  The solution of this equation has the well- 
known form 

8 = 4 arctg exp - t - - [ l o  ( : ) ) I 3  w(r, t) = - ~ ~ t h  @(r, t). (28) 

The variables @(r,t) and y(r,t) satisfy the equations where the relation between the pulse duration T, and its ve- 
locity v is 

It follows from the last equation that dy/dt = 0 for 
sinh y = A. In this case 

Here 

N/Vis the density of the resonant atoms, R, = 1 for an ini- 
tially exdited medium, and R, = - 1 for an unexcited one. 
The pulse amplitude B is given by 

By analogy with the last equation of the system (17), we 
introduce an angle if(r,t) in the form 

Expression (22), however, must satisfy simultaneously also 
the second equation of (17). This is possible only if k = x 
and v = c. It follows from (20) that in this case T, = 0, so 
that a soliton described by (22) cannot propagate in a non- 
dispersive medium. 

then 

4. PHASE-MODULATED PULSE 

The system (7a)-(7b) can be transformed into 

a - (sin 8 cos(p)) - (z - coo) sin 8 sin@ - q) = 0, at 

(23) 
a - (sin 0 sin@ -*)) + sin 8 cos(p - I)) = vB cos 0. at 

from which it follows that 

Introducing the notation 

u = Rosin 0 cos(cp - q), u = Rosin 8 sin@ - V), 

w = ~ ~ c o s  0, (24) We introduce the angle 8, (r,t) : 
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For example, if 8, = lop3 and A = 1, we have at 0 = lo-* 

and then Eqs. ( 2 8 )  take the form 

~ ( r ,  t) = -Ro 
A 

(1 + A2)1/2 Sin el' 

~ ( r ,  t) = Ro sine,, W ( ~ , ~ ) = R ~ O D O ~ .  ( 3 5 )  
(1 + A2)'/2 

Comparing ( 2 4 )  with ( 3 5 )  we get 

cos(9 - ly) = A sin@ - ly) = 1 
(1 + A2)'/2 ' (1 + A2)'l2 ' 

el@, t) = ~ ( r ,  t). ( 3 6 )  

Thus, in the stationary case, the difference between the 
phases of the field $(r , t )  and the polarization q ( r , t )  is deter- 
mined by the value of the dispersion parameter A. 

5. DYNAMICS OFTHE PHASE DIFFERENCE IN A DISPERSIVE 
MEDIUM 

Consider now a general case, when dy /d t  #O. The sys- 
tem ( 3 0 )  has the integral of motion 

I / (I+A~) 
exp [-A arctg(sh y)] ( chy 

I I 4 1  + A ~ )  
- - exp [-A arctg(sh yo)] 9 ( 3 7 )  

where 

Qo = @(', O), Yo = ~ ( t ,  0). 

Comparing Eqs. ( 2 4 )  and ( 2 8 )  and introducing the angle 

a = p -  v - n/2, ( 3 8 )  

we obtain 

sin B[lsin(a - 6) lexp(-Aa)] '/( '+A~) 

= sin eo[ 1 sin(ao - 6) 1 exp(-hao)] i / ( l + ~ ~ )  . ( 3 9 )  

where 

sin 6 = 
A 

(1 + A2)'I2' 

It follows from ( 3 9 )  that the phase difference tends with 
increase of 19 to the value 

and the phase spread A a  = A ( p  - $) is proportional to 

sin B0 1 + A ~  

A a = a - 6  - [=) 

Representing the Bloch angle 8 ( r , t )  in the form 

0 = 4 arctg(exp(@)), ( 4 2 )  

we obtain for the variables u, v, and w the expressions 

For dy /d t  = 0 the frequency modulation is given by 

Substituting ( 4 3 )  and ( 4 4 )  in ( 2 5 )  it is easy to obtain the 
following equations for the variables @ ( r , t )  and y ( r , t ) :  

( 4 5 )  

The system (45 ) has the following integral of motion: 

l/(l +A2) 

exp [-A arctg(sh yo)] 

Recognizing that now 

2 sh @ 
sin 0 = - - 

ch2@ ' 

and, as before, introducing the angle a = q, - $ - ~ / 2 ,  we 
get 

sin 8 [ I sin@ - 6) 1 exp(-Aa)] 11('+") 

= sin e0l sin(ao - 6) 1 exp(-hao)] 1 1(1 +a2). ( 4 8 )  

The substantial difference from the preceding case, however, 
is that now the angle 0 ranges from 0 to   IT, so that a becomes 
indeterminate when 8  = IT. The cause of this indeterminacy 
is that at 8  = P the quadrature components of the polariza- 
tion vanish: u = v = 0, so that the phase p ( r , t )  becomes in- 
determinate. This indeterminacy obtains only for exact 
equality of the field carrier frequency to the resonance-tran- 
sition frequency. At any finite detuning these indetermina- 
cies of the polarization phase vanish. Naturally, there is no 
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indeterminacy also in the case of inhomogeneous broaden- 
ing of the atomic-transition line. 

6. CONCLUSION 

The reported investigations show how the rate dB /dt  of 
energy emission by the atomic subsystem depends on the 
phase difference q, - $ between the light wave and the polar- 
ization wave. The decay rate dO/dt is a maximum at 
q, - IC, = ?r/2 and vanishes at q, - IC, = 0. This phase differ- 
ence q, - $ tends quite rapidly to a stationary value with 
increase of the angle O(r,t) .  The stationary value is deter- 
mined by the rate of frequency dispersion 

yo - = x/2 + arcsin[A/(l + A ~ ) ' / ~ ] .  

The relations derived are undoubtedly of interest for the de- 
velopment of methods of controlling generation-pulse pa- 
rameters in superradiance processes, and for the develop- 
ments of spectroscopy methods in which coherent processes 
are used. 
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