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The string mechanism of pairing in the tJmode1 is considered. It is shown that in the limit J / t  g 1 
and for low hole concentrations x S ( J / t )  ' I3 string pairing on a square lattice occurs for 
J / t  > 1.52 X 10 - ; otherwise the holes condense into a ferromagnetic drop (spin bag). For 
1.52 X 10 - < J / t g  1 a string pair has a binding energy A, = 2.52(tJ2) '13 and an effective mass 
m = ( t  0 / 2 )  - I .  Dispersion laws for a string pair and a single hole with a string are established. 

1. INTRODUCTION 

The discovery of high-T, superconductivity initiated a 
series of papers devoted to the study of the Hubbard model 
with strong intrasite repulsion. When a band is nearly half- 
filled, the system is described by an effective Hamiltonian 
acting in the subspace of states that have no doubly occupied 
sites. The Hamiltonian is familiar as that of the t-J model 
and has the form H = H, + H,, with 

Here 2,; = c,: (1 - n, -,), where c,: is the electron cre- 
ation operator; i and a are, respectively, the site index 

+ ( i  = 1,2 ,..., N) and the spin index ( a  = ?,1); n,, = c,, c,,; 
n, = Bun,,; and S, is the electron spin operator. The sum 
over (0) indicates summation over all the edges of a square 
lattice. 

By the very origin of the effective Hamiltonian specified 
by ( 1 ) and (2),  there are two necessary conditions that must 
be met if we wish to apply it to a Hubbard system: ( 1 ) the 
relative weakness of the exchange interaction, or J / t  4 1, and 
(2)  the smallness of the hole concentration x = N,/N, or 
x g  1. It is in this range of parameters that we must consider 
the t-J model if we wish to study pairing in a Hubbard sys- 
tem. 

The string mechanism of pairing was suggested by 
Hirsch, Mohan, and Kumar.'v2 The essence of this mecha- 
nism is as follows: two holes are coupled by an antiferromag- 
netic string, a line on which the initial Nkel order is replaced 
by an alternative order. The string's energy is proportional 
to the string's length, as a result of which the attractive force 
between the two holes coupled by the string is distance-inde- 
pendent (confinement). 

When a single hole moves against the NCel background, 
it leaves a string behind it that couples the hole with the 
initial site.3 Hence, for a single hole to become delocalized, 

I 

we must allow for processes more subtle than ordinary trans- 
, lation, namely, spin fluctuations and what is known as Trug- 

man  cycle^.^ Because of this, the effective mass of a single 
I hole increases considerably as the hole moves against the 

NCel background. On the other hand, a pair is translated in 
an obvious manner without disrupting the magnetic order. 
Thanks to the presence of a "direct" mechanism of pair delo- 
calization, the pair's effective mass must be considerably 
smaller than that of a single hole. This must lead to a certain 
gain in kinetic energy that stabilizes the hole-string-hole sys- 
tem as a whole. 

The first attempts to apply these heuristic ideas to the 
building of a bound state of two holes were unsuccessful, 
however. Schraiman and Siggias studied string pairing in the 
t-J, model and found no pairing for J,/t < 1. Somewhat later 
Eder6 arrived at a similar result for the t-J model. Examin- 
ing the possibility of string pairing, Eder, Schraiman, and 
Siggia596 studied the region J /t - 1 and found bound states in 
it. Nevertheless, this left the question of the possibility of 
pairing in a Hubbard system unresolved because for J / t -  1 
the t-J model does not describe such a system. 

In another well-known paper4 Trugman considered 
pair states on a truncated Hilbert space that allowed for the 
existence of a string no longer than three lattice constants. 
Numerical diagonalization of the Hamiltonian yielded a pair 
state with an infinite effective mass, which, naturally, was 
unfavorable energywise. Trugman argued that in the com- 
plete Hilbert space the paired hole-string-hole state has an 
infinite effective mass. 

The general flaw in Refs. 4-6 is the unfortunate choice 
of the ansatz for the string pair, which ignores the possibility 
of the pair being translated as a whole without disrupting the 
magnetic order. A clear indication of this is the overestimat- 
ed value of the pair's effective mass,4 which contradicts the 
simple heuristic reasoning of Kumar and M ~ h a n . ~  

In recent papers,',' I suggested an ansatz free of the 
above drawback and resolved the contradiction between the 
qualitative picture of a string pair and a t-J model calcula- 
tion. The ansatz allows explicitly for translational freedom 
of a string pair and provides for a fairly broad stability region 
in the Hubbard case J / t 4  1. In this paper I consider this 
ansatz in the continuum approximation, whose meaningful- 
ness is illustrated a posteriori. The main result is that in the 
interval 1.52 X < J< 1 there is string pairing when 
x 5 ( J / t )  'I3 holds. The effective mass of the pair is 
( t  0 / 2 )  - I ,  which is not very large, in contrast to Trug- 
man's prediction4 but in full agreement with Kumar and 
Mohan's heuristic reasoning.' 

The plan of the paper is as follows. Section 2 is devoted 
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to string states in the t-J, model consisting of a single hole 
and a pair. Section 3 examines string states in the tdmodel  
and clarifies the role of spin fluctuations. Section 4 analyzes 
ferromagnetic states in the t J  model and their competition 
with string states, which determines the lower limit on the 
existence of string states in parameter J/t .  Section 5 com- 
pares the results with recent cluster ca l c~ la t i ons~-~~  and dis- 
cusses the string interaction, which determines the upper 
limit on the existence of string states in the hole concentra- 
tion x. 

2. STRING STATES IN THE tJ, MODEL 

The most convenient way to analyze string states is to 
begin with the t J ,  model. The model Hamiltonian has the 
form H, = H, + HI,,, , with 

It differs from the Hamiltonian ( 1 ), (2)  of the t J  model 
only in the absence of the term 

which describes spin fluctuations. Below we account for this 
term perturbatively. 

In the absence of holes the ground state of the t-J, mod- 
el is the NCel state IN ). The corresponding energy value is 
E, = - NJ. Introducing one or two holes changes the struc- 
ture and energy of the ground state. These changes are con- 
sidered here using the concept of string states. 

2.1. A single hole (string polaron) 

As a hole moves against the NCel background, it leaves a 
string behind it that couples the hole with the initial site. Let 
I be an arbitrary configuration of the string with the fixed 
initial site i, I1 I being the length of the string, and I l,l,i) the 
corresponding state (Fig. 1) .  To build the ground state of 
the string polaron we select the following basis: 

These are symmetric normalized linear combinations of all 
possible states with a string of length p, with N(1,p) the 
number of such states. 

In describing string states we use what is known as the 
Cayley tree approximation, or simply the tree approxima- 
tion. It is based on two assumptions: 

FIG. 1. The state of a string polaron (the denote spins whose orienta- 
tion corresponds to the initial Ntel state, the X denote spins with the 
opposite orientation, and 0 denotes the position of the hole). 

(a)  three new string states can be obtained from each 
string state by translating the hole by the lattice constant, 
and 

(b) when the length of the string increases by unity, two 
bonds are frustrated, that is, the exchange energy (HI,,,, ) 
increases by (J /2)2 = J .  An exception is the initial state of 
the hole, from which four new string states can be obtained, 
with three bonds frustrated. 

The tree approximation ignores the shape of the trajec- 
tory; for one thing, it does not allow for self-osculations and 
self-intersections. Substantiating it is a fairly complex topo- 
logical problem. At the same time, intuitively it is clear that 
the relative number of trajectories with a large fraction of 
self-osculations and self-intersections is small. 

In the tree approximation, the number of trajectories of 
lengthp is N( l g )  = 4 X 3, - and the H, ,  translational part 
of the Hamiltonian, acts on the base vectors I 1,) as follows: 

Moreover, the states I 1, ) are eigenstates for the Ising part of 
the Hamiltonian: 

The string polaron ground state is sought in the form of 
the linear combination 

Ifwe apply the Hamiltonian H, to this state and allow for the 
properties ( 6 )  and (7 ) ,  we arrive at the discrete representa- 
tion of the Schrijdinger equation H0l 1s) = E I 1s) (see Ref. 
5): 

where E,, = E + ( N  - 2 ) J  is the string polaron energy 
measured from the Ising energy of the initial state (1,). 

In the continuum limit 

the recurrence relations (9)  yield the Schrijdinger equation 
Z,,a = E,,a with the effective Hamiltonian 

Jfls = f l [ - 2  + + Jp .  (10) 

From the first recurrence relation in (9)  follows the bound- 
ary condition on the "continuum" wave function a(p) ,  that 
is, a ( 0 )  = 0. The boundary condition at infinity corre- 
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sponds to a variational problem with a free end: a'( UJ ) = 0. 
The ground state of the Hamiltonian ( 10) satisfying these 
boundary conditions has the form 

where Ai(s) is the Airy function, - so = - 2.338 is the first 
zero of this function [Ai( - so) = 01, and R, is the charac- 
teristic length of the string in the string bipolaron. This state 
has the energy 

El, = - 2 f i +  S ~ ( U ~ ~ ~ ) ' / ~ ,  (12) 

which can be interpreted as the ground-state energy of the 
spin polaron. For further estimates it proves expedient to 
calculate the average length of the string in the string po- 
laron: 

Since we are interested in the case J / t  ( 1, we getp, % 1. This 
proves the self-consistency of the continuum approximation. 

2.2. A pair of holes (string bipolaron) 

A string pair, in contrast to a single hole, is translated in 
a natural way over the NCel background without disrupting 
the magnetic order. Hence, it is convenient to take for the 
basis states the following symmetric linear combinations of 
all possible states 12,l) (a  hole plus a string plus a hole with a 
string of length 11 I = p; Fig. 2) : 

In contrast to the basis ansatz ( S ) ,  the initial position ofboth 
holes is not fixed now, and because of this the state ( 14) is 
initially delocalized. We denote the total number of states 
12,l) (a hole plus a string plus a hole with a string of length 
I I I = p )  by N(2,p). In the tree approximation this number is 
equal to 4 X 3P - ' X +N.  The additional factor N appears be- 
cause of the N possible positions of the second hole, and the 
+ reflects the fact that the holes are identical. In the tree 
approximation, the translational part of the Hamiltonian, 
H,, acts on the base vectors 12,) in the following simple 
manner: 

I FIG. 2. The state of a string bipolaron. 

Moreover, these vectors are the eigenvectors of the Ising part 
of the Hamiltonian: 

The string bipolaron ground state is sought in the form 
of the linear combination 

m 

12s) = zB@)12p). (17) 
p= 1 

If we apply the Hamiltonian Ho to this state, we arrive at the 
discrete representation of the Schrodinger equation 
H012s) = E 12s): 

Here E,, = E + ( N  - 4 ) J  is the string bipolaron energy 
measured from the background (Ising) energy of the NCel 
state containing two isolated holes. 

In the continuum limit these recurrence relations yield 
the Schrijdinger equation X2,P = E,,P with the effective 
Hamiltonian 

and a wave function P(jS) specified on the semiaxis 
0 <jS < UJ. The first recurrence relation in (18) yields the 
boundary condition P(O) = 0. The boundary condition at 
infinity corresponds to a variational problem with a free end: 
P 1 ( a , )  =o. 

Thus, the effective Hamiltonian of a string bipolaron, 
X,,, differs from the effective Hamiltonian of a string po- 
laron, p , , ,  only in that 2t has replaced t. This makes it 
possible to use Eqs. ( 12) and ( 13) directly to obtain the 
ground-state energy E,, and the average string lengthp, for 
a string bipolaron: 

The expression for the binding energy of the two holes in a 
string bipolaron follows directly from Eqs. ( 12) and (20) 
for El, and E,, : 

It is quite obvious that the ansatz ( 14) and ( 17) de- 
scribes a string bipolaron with zero total momentum. Build- 
ing the states of a string bipolaron with an arbitrary momen- 
tum k#  0 requires generalizing the basis ( 14). We introduce 
the base vectors 1 2pi ) in which not only the string lengthp is 
fixed but so is the position i of the pair's center of mass: 
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Here i = (i, ,i, ) is a vector index specifying the position of 
the center of mass (the components i, and i, are half-inte- 
gers, generally speaking), I is the configuration of the string 
and (2,l,i) is the respective state, and N(2,p,i) is the number 
of such states with fixed values of i and 11 I = p. 

The momentum state of a string bipolaron is given by 
the linear combination 

where the coefficients /?, (p) are found from a variational 
principle. These coefficients can be shown to satisfy the same 
recurrence relations (18) as the&) do but with t replaced 
by f t(cos +k,  + cos + k , ) .  Doing the same in the expres- 
sion (20) for the ground-state energy E,, and ignoring terms 
of the order of J2'3 in the limit of J / t &  1, we obtain the 
dispersion law (see Appendix A)  

and the effective string-bipolaron mass 

3. STRING STATES IN THE tJMODEL 

Going from the t J ,  model to the t-J model requires 
allowing for spin fluctuations, whose source is the transverse 
part of the spin Hamiltonian, 

First, we note that the recurrence relations (9) and 
( 18) can be considered the result of minimizing the average 
energy (H,) over the states (8) and ( 17). What happens if 
the Hamiltonian H, of the t-J, model is replaced by the 
Hamiltonian H = Ho + H, of the t-J model, or the total 
energy ( H )  = (H,) + (H,) is minimized? In this section 
we see that allowing for spin fluctuations has two effects, the 
renormalization of the string's tension (the same for the 
string polaron and the string bipolaron), and string-polaron 
delocalization. Let us briefly consider both. 

3.1. Renormalization of the string's tension 

We examine the action of the operator 

on string states. The operator forces the spins at two neigh- 
boring sites to change places. It may, for instance, cause two 
neighboring spins on a straight segment of the string proper 
to change places. Such a process, depicted in Fig. 3b, 
"snaps" the string, and the "two-string" state is orthogonal 
to any "single-string" state, with the result that such pro- 
cesses contribute nothing to the variational energy. The 
same is true of processes of creation of a new string not 
linked to the initial one (Fig. 3c). 

There is, however, a variant of such processes which 
does provide a contribution to the variational energy. In a 

process of this kind two spins in the immediate vicinity of the 
structure change places (Fig. 3d). The state remains "sin- 
gle-string" and the string's length increases by 2. In the re- 
verse process the length diminishes by 2 (Fig. 3e). Allowing 
for such processes results in the appearance of nonzero ma- 
trix elements of operator H, between the base vectors (5 )  
and also between the base vectors ( 14) (see Appendix B) : 

Going on to ansatz (8)  and ansatz ( 17), we notice that 
in the limit of J / t  4 1, where the coefficients a ( p )  and P(p)  
are fairly smooth functions ( a ( p  + 2) - a (p )  and 
P (p  + 2) d ( p )  ), we can replace Eqs. (27) with the diag- 
onal relations: 

Thus, we arrive at a renormalization of the Ising energy 
of the string, 

by Jp/3, that is, a renormalization of the exchange constant: 
J+ J,, = BJ, with B = 4/3. Performing this substitution in 
Eqs. (12), (20), and (22) belonging to the t-J, model, we 
find, respectively, the ground-state energies of a string po- 
laron and a string bipolaron and the binding energy of a 
string bipolaron in the t J  model: 

Equation (21) yields the average string length for the string 
bipolaron in the t-J model: 

The results obtained in this manner exhaust the effect of spin 
fluctuations on a pair state within the "single-string" ansatz 
(17). 

There is a reason for analyzing the possibility of allow- 
ing for "multistring" states similar to the one depicted in 
Fig. 3c. Apparently, this is equivalent to allowing for spin 
fluctuations over the Ntel background. Since a new string 
can originate at any point of the lattice, the energy acquires 
an additional term proportional to N, the total number of 
sites. This renormalizes the energy of the antiferromagnetic 
background, the energy Eo of the ground state in the t J  
model in the absence of doping. For a Heisenberg antiferro- 
magnet such a renormalization, as is known, reduces to re- 
placiy the ychange co~stant  J i n  the energy of a Ntel state 
with J,, = BJ, where B z  1.332 (zee Ref. 13). In the t J  
model this yields E, = - NJ( 1 + B)/2 for the electromag- 
netic-background energy. 

An interesting fact is the extremely close values of the 
effective exchange constants in the string's tension 
(B = 4/31 and in the energy of the antiferromagnetic back- 
ground (Bzi .332) .  In what follows we assume these con- 
stants equal: B z  B. 
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FIG. 3. The result of H, acting on a string: (a)  the 
initial state of the string, (b)  breaking of the string, (c)  

x-x x-x-x I x-x-x I creation of a new string, (d )  the length of the string 
I I 
X - X .  decreases by a factor of 2, and (e) the length of the . . .  . 

i i 
string increases by a factor of 2. 

3.2. The momentum state of a string polaron 

In the case of a string polaron one of the string's ends 
does not contain a hole (Fig. 4). Applying the operator H, 
to the first two spins of that end of the string, we obtain a new 
"single-string" state in which the string has become short- 
ened by a factor of 2  (Figs. 4a and 4b) .  In a similar way the 
string can be made longer by a factor of 2  (Fig. 4c). To 
describe such processes we must provide the base vectors 
I I,) corresponding to the states of a string polaron with a 
given string length p, with an additional vector index 
i = (i, ,i, ) that specifies the position of the string's end. 
Clearly, the respective matrix elements of H, are (see Ap- 
pendix B) 

J / 8  if Ip1 = 2, li' - il = 2 
J / 4  if 1p'-pl=2, l i p - i l = f i .  

0 otherwise 
( 3 3 )  

This enables finding the dispersion law for the delocalized 
state of a string polaron with a given momentum k. Such a 
state has the standard formI4 

in which the vector index i runs through N / 2  values corre- 
sponding to one of the two sublattices. What is needed is the 

average value of operator H, on this state, where in the limit 
J / t  g 1  we must put a, ( p )  # const. This yields a k-dependent 
term in the total energy: 

= J{(cos k,  + cos kJ2 - I), (35  

where the 6 are elementary translation vectors. Thus, the 
dispersion law for a string polaron in the t J  model is 

~ ~ , ( k )  = /[cos k, + cos ky12 + const. ( 3 6 )  

A similar dispersion law for a single hole (with the coeffi- 
cient J replaced by J / 2 )  has been cited many times in Refs. 
11 and 15 as a successful law for describing the results of 
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O FIG. 4. The result ofH, acting on the end of a string: 
I (a)  the length of the string decreases by a factor of 2 . . . . .  X . .  

>t I and the end shifts by a factor of 2, (b) the length of the 
string decreases by a factor of 2 and the end shifts by a . . . . .  

i factor of n, and (c)  the length of the string increases . . , x-x-x  . . by afactorof2. 
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. . . . . . . .  

numerical calculations on 4 x 4  and J18~m clusters. 
Kane, Lee, and Read'6 arrived at a similar result for the 
anisotropic t-J model, which is close to the Ising model. In 
order to obtain such a law, Richter, Appel, and Hertel" 
went beyond the scope of the standard t J  model and al- 
lowed for the so-called triple term in the Hamiltonian. I be- 
lieve the spectrum (36) has been obtained from the ordinary 
t-J model for the first time. 

4. FERROMAGNETIC STATES IN THE t-JMODEL 

In accordance with Nagaoka's theorem,I8 for J/t-+O 
the ground state of a doped Hubbard system is ferromag- 
netic. As Nagaev, Emery, Kivelson, and Lin'9,20 demon- 
strated, at a fixed value of parameter J / t  there is indeed a 
transition to a homogeneous ferromagnetic state as the aver- 
age hole concentration x = N , / N  grows. But before this 
happens, the system separates into two phases, the antiferro- 
magnetic (without holes) and the ferromagnetic (with 
holes). What actually happens is that holes condense into a 
ferromagnetic drop. 

Since for J / t -0  a ferromagnetic state is the ground 
state, the competition of ferromagnetic states with string 
states must determine the point of crossover from one type of 
state to the other in the parameter J / t .  In this section we 
consider ferromagnetic states in the t Jmode1  and the com- 
petition of these states with string states. 

4.1. A single hole (ferromagnetic polaron) 

A ferromagnetic polaron constitutes a spherical ferro- 
magnetically ordered region R of radius R S 1. A hole moves 
freely only inside this region (the band mass of a hole is of 
order t - I). Outside R, antiferromagnetic order blocks the 
free motion of the hole (the band mass is much larger than 
t - I )  and the wave function of the hole vanishes. Thus, cal- 
culating the energy of a ferromagnetic polaron reduces to 
solving the Schrodinger equation inside R with a zero 
boundary condition. The effective one-particle Hamiltonian 
has the form 

272 JETP 76 (2), February 1993 Yu. A. Dimashko 272 



The last term on the right-hand side allows for an increase in 
the energy of the exchange coupling of spins when the anti- 
ferromagnetic state ( - BJ/4 per bond) transforms into the 
ferromagnetic state ( + J / 4  per bond). The ground state en- 
ergy of this Hamiltonian is known: 

wherez, =: 2.405 is the first zero of the zeroth Bessel function 
J,(z). Minimization of the function E (R  ) yields the equilib- 
rium radius R = R l  and the ground-state energy 
Elf = E(R, ) of a ferromagnetic polaron: 

Comparison of this energy with the energy El, of the string- 
polaron ground state (29) shows that a ferromagnetic po- 
laron is realized for J / t  < 4.70 X 10 p and a string polaron 
for J / t > 4 . 7 0 ~  10W3. 

4.2. A pair of holes (ferromagnetic bipolaron) 

In the case of a ferromagnetic bipolaron the problem 
does not change drastically and remains one-particle in es- 
sence. It amounts to calculating the energy of two noninter- 
acting fermions inside a sphere of radius R. After minimiza- 
tion in R, the energy of the ground state of a ferromagnetic 
bipolaron becomes 

where z, z 3.832 is the first zero of the first Bessel function 
J, (2). This energy is lower than the energy of two noninter- 
acting ferromagnetic polarons by the quantity 

A, = [zzO - (z; + zf)lI21 [zx(i + B ) U I I / ~  = 1 ,09 (u ) l~~ .  
(42) 

which has the meaning of the binding energy of two holes in a 
ferromagnetic bipolaron. 

Comparison of the energy of a ferromagnetic bipolaron 
with that of a string bipolaron shows that the ferromagnetic 
bipolaron is realized when J / t  < 4 . 7 4 ~  10V3 and a string 
bipolaron when J / t  > 4.74 X 10 3. In both cases pairing is 
favorable energywise, although the pairing mechanisms dif- 
fer considerably. The difference becomes apparent as the 
number of interacting holes grows. 

4.3. A macroscopic number of holes (ferromagnetic drop) 

If a system contains Nh $ 1 holes, it may separate into 
two phases, the antiferromagnetic (without holes) and the 
ferromagnetic (with holes). Let Nf be the number of sites in 
the ferromagnetic phase. Then the energy of the system mea- 
sured from the energy of the antiferromagnetic background, 
E,= - NJ(1 + B)/2, is 

where x = Nh /nf is the hole concentration in the ferromag- 
netic phase. The first and second terms (of order t)  represent 
the kinetic energy of the holes, ( H , ) ,  and the third term (of 
the order of J) the exchange spin-coupling energy, ( H , ) .  

Minimization in x yields the following expression for the 
equilibrium hole concentration in the ferromagnetic phase: 

This is a constant quantity independent of Nh .The volume of 
the ferromagnetic phase increases linearly with the number 
of holes: Nf = Nh /x,. Each new hole increases the volume of 
the ferromagnetic phase by the same quantity x, '. This 
means that holes condense into a homogeneous fer- 
romagnetic drop. When the number of holes N, = xJ be- 
comes very great, the ferromagnetic drop fills the entire vol- 
ume and hence degenerates into a homogeneous 
ferromagnetic phase. 

The energy per hole in a ferromagnetic drop is 

Any fission of the drop into smaller ones is disadvantageous 
because the surface energy would grow.2' For instance, fis- 
sion into ferromagnetic polarons or bipolarons is disadvan- 
tageous because of the inequality E < EZf/2 <Elf.  Among 
ferromagnetic states the ferromagnetic drop has the smallest 
energy. 

At the same time, comparison of the energy of a ferro- 
magnetic drop with that of Nh/2 noninteracting string pairs 
shows that for 

we have E,, < 2 ~ .  This means that for 1.52 x 1 0 '  < J / t <  1, 
string pairs are the leading candidate for the ground state of 
the doped t-J model. For J /t < 1.52 x 10 - , the variational 
"leader" is replaced by the ferromagnetic drop. As the J / t  
parameter further decreases ( J / t +  0),  the ferromagnetic 
drop fills the entire volume and, in full agreement with Na- 
gaoka's theorem, the ground state becomes homogeneous 
and ferromagnetic. 

Here it is proper to compare the string and ferromag- 
netic mechanisms of hole interaction. The first clearly exhib- 
its a saturation property and yields only pairing. The inter- 
action energy of two string pairs is on the order of 
Jp,- ( t J2 )  and for t /J< 1 is insufficient for pair coupling 
because of the small effective mass of a string pair ( - t - l ). 
The ferromagnetic mechanism, on the other hand, does not 
exhibit saturation and leads to the condensation of all the 
holes into a single drop. 

5. CONCLUSIONS 

Below we list the main results that follow from a com- 
bined analysis of the string ansatz ( 17) and ferromagnetic 
states in the t J  model. 

( 1 ) Two separate holes form a bound state. This is a 
string pair with a binding energy A,z2.52(tJ2) 'I3 for 
J / t  > 4 . 7 4 ~  10 - and a ferromagnetic bipolaron with a 
binding energy Af z 11.09(tJ) for J / t  < 4.74X 10 - 3. 

(2)  A string pair has an effective mass ( t 0 / 2 )  I. 
( 3 )  A system consisting of Nh $1 holes separates into 

Nh /2 string pairs when J / t  > 1.52 X 10- ', but for 
J / t  < 1.52 X 10 - the holes condense into a ferromagnetic 
drop. 

273 JETP 76 ( Z ) ,  February 1993 Yu. A. Dimashko 273 



TABLE I. The radius R ,  of a ferromagnetic 
polar and the average string length of a 
string polaron, p, ,  and of a string bipo- 
laron, o,, as functions of Darameter J / t .  

Since all these results have been obtained by the vari- 
ational approach, it is proper to compare them with those 
obtained by numerical analysis of the t-J model on finite 
clusters. Much work has been done in this area and several 
interesting results have been achieved (see Refs. 9-12). 
Practically all, however, belong to small clusters with di- 
mensions ranging from 4 x 4  to W X ~ .  But are such 
sizes sufficient for a correct estimate of the effects of hole 
pairing and condensing? The answer is provided by Table I, 
which lists the radius R ,  of a ferromagnetic polaron and the 
average string length in the cases of a single hole (p,) and a 
string pair (p2) calculated for different values of parameter 
J / t  = 0.01-0.5. We see that the finite size of a cluster ( -4) 
begins to have an effect on ferromagnetic states for 
J / t  5; 0.01, on the string state of a single hole for J / t  5; 0.1, 
and on a string pair for J / t  5 0.5. 

Thus, numerical analysis of small clusters cannot serve 
as a meaningful description of pair states in the physical re- 
gion J / t  < 1. At the same time we note the presence of bound 
states of two holes in the region J/t>0.2, a fact discovered by 
several  researcher^.^*".'^ The binding energies of these 
states monotonically increase with J. The absence of a bound 
states for J / t  < 0.2 on a 4 X 4 cluster is natural since when the 
volume is limited "ionization by pressure" occurs. 

Barnes, Dagotto, Moreo, and Swansonlo studied the 
state of a single hole in the t-J, model using a 8 X 8 cluster. 
As Table I shows, their study may be considered meaningful 
for J/t)0.01. The dependence of the ground-state energy on 
parameter J / t  obtained by these researchers, 

agrees well with the theoretical formula that follows from 
the string ansatz (5 ), 

q y / t  = -3,46 + 2 , 8 1 ( ~ / t ) ~ / ~ .  (48) 

More than that, for J/t-0.01 the beginning of a crossover 
from a string polaron to a ferromagnetic is observed. Thus, 
the string ansatz for a single hole has received unambiguous 
justification in a numerical experiment. 

Table I implies that for a verification of the string-pair 
ansatz in the physical region J / t 4  1 that is as reliable as the 
above, we must consider 6 x 6 clusters, and that obtaining 
the correct value of the crossover point, J /t = 1.52 X 10 - , 
requires considering 10X 10 clusters. No data on the nu- 
merical analysis of pair states in the t-Jmodel on clusters of 
such dimensions have been cited in the literature. 

In conclusion we note that the string pairing of holes 
has been considered here in the low-concentration limit, 
x< 1. A simple mechanism that limits the effectiveness of 

string pairing precisely to low concentrations is worth men- 
tioning. Namely for (x/2)p2 > 1/2 strings involve more than 
half of the lattice sites. This leads to a reversal of the sign of 
the string tension: in this situation it is more advantageous 
for a string to stretch than to shrink. Since we have 
p2 - ( t /J)  , this happens at x - ( J  / t )  . Hence, string 
pairing takes place only for x 5 ( J / t )  

I would like to express my gratitude to A. Alistratov 
and V. Podol'skii for fruitful discussions of the results of the 
present work. 

APPENDIX A. THE MOMENTUM STATE OF A STRING 
BIPOLARON 

Let us study in greater detail the base vector of the state 
of a string bipolaron with a fixed position i of the center of 
mass and a string length p: 

Here i = (i, ,i, ) is the radius vector of the center of mass, 
with components that can be both integers and half-integers. 
It is easy to see that for p even the norm i = li, + i, 1 is an 
integer and for p odd it is a half-integer. In the continuum 
limit p % 1 and the tree approximation, the number of trajec- 
tories of a given length is N(2,p,i) =: 3P - I .  

The action of the translational part H, of the Hamilto- 
nian changes the string length by 1 and shifts the center of 
mass by 1/2. Hence, the matrix elements of H, in this basis 
are 

The origin of the factor 0 / 2  can be explained in the 
following way. When acting on the state with the center of 
mass at point i, the Hamiltonian H, must move the center of 
mass to point i' = i + S/2, with 6 a fixed elementary transla- 
tion vector, and, in the process, change in a specified manner 
the string length p (for the sake of definiteness, to increase 
the length by 1 ) . This can be achieved by shifting the first or 
second hole by vector 6. Here only 75% of all the 2~ 3P- 
possibilities leads to an increase in string length (the remain- 
ing 25% decrease it). As a result we get (3/2) 3P - ' matrix 
elements ( - t )  whose sum should be multiplied by the nor- 
malization factors of the initial (3  - 'p- and final 
(3  -p/2) states. The result is - t 0 / 2 .  

If in the limit J / t <  1 we ignore the contribution to the 
energy of the momentum state (24) from the tension of the 
string [it is of the order of ( t J2 )  and the weak p-depen- 
dence of the coefficients 8, (i.e., by assuming that fl, 
rconst) ,  we arrive at the following dispersion law for a 
string bipolaron: 
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FIG. 5. Possible configurations of the neighborhood of a segment of the 
string. 

Note that if in the energy we retain the contribution 
from the string tension (i.e., average H, = H, + HI,,, rath- 
er than H, ) and keep thep-dependence in the Pk coefficients, 
after minimizing the total energy we arrive at recurrence 
relations forp, (p) identical with the case k = 0 except that t 
is replaced by +t(cos +k,  + cos fk, ). Performing this ma- 
nipulation with the energy (20) of a bipolaron at rest, we 
arrive at the same dispersion law (A3) with corrections on 
the order of ( t J2 )  

APPENDIX B. MATRIX ELEMENTS OF OPERATOR H, 

The matrix element of H, = f J Z,,, ( S  T S  / 
+ Sipsj+ ) between "single-string" base vectors of string 

states is nonzero only if the initial and final lengths of the 
string differ by 2. Here either the shape of the string changes 
(see Figs. 3d and 3e) or, in the case of a string polaron, the 
end of the string is displaced (see Fig. 4).  

First we consider the matrix element (2, - , I H, 12, ) 
corresponding to shortening of the string in the string bipo- 
laron (see Fig. 3e). Acting on the base vector 12, ), the oper- 
ator H, may change the configuration of any of the p seg- 
ments of the string. Altogether the neighborhood of a 
segment has nine possible configurations (Fig. 5). Only two 
of these, ( e )  and ( i ) ,  allow for a decrease in string length. 

In the tree approximation all nine configurations of the 
neighborhood of a segment are equally probable. Hence, the 
action of the operator H, on the state 12,), a linear combina- 
tion of 2N X 3,- ' states of a string of length p, results in 
(2/9)p x 2N X 3,- ' states with a string length p - 2. If we 
allow for the presence in H, of the factor J / 2  and for the 
normalization factors (2N X 3P - I) - in state 12, ) and 
(2N X 3,- 3, - 'I2 in state 12, - , ), we obtain the desired ma- 
trix element ( J / 2 ) ( 2 / 9 ) p ~ 2 N  ~ 3 , - '  x (2N ~ 3 ~ - ' 2 N  
x ~ P - ~ ) - ~ / ~ =  ~ ~ / 3 :  

QP*2 I H A  I 2p ) = J P / ~ .  (B1) 

There is no need for a separate calculation of the matrix 
element (2, + , IH, 12, ) corresponding to a decrease in the 
string length by 2, since operator H, is Hermitian. 

Next we consider the matrix element ( 1, * ,,? IH, I lp,i ) 
corresponding to a variation in the string's length in a string 
polaron. If the end of the string does not change its position 
(i' = i) ,  the above reasoning remains valid and the value of 
the matrix element is the same: 

But if the end of the string does change its position (il#i;  
Fig. 4), two situations are possible: either li' - i /  = 2 (Fig. 
4a) or li' - il = 0 (Fig. 4b). 

The first corresponds to initial configurations of the 
string in which two initial segments have the same fixed di- 
rection i' - i = 28. The fraction of such configurations is 
( 4  X 3 ) - ' of all the 4 x 3, - ' states of the string, that is, 3P - 
configurations in all. Allowing for the presence of the nor- 
malization factor (4  x 3P - ' ) - '/, in the initial state and the 
normalization factor ( 4 ~  3,- 3, - in the final state, we 
get the value of the desired matrix element, 
( J / 2 ) 3 P - 2 ( 4 ~  3 P - ' x 4 ~ 3 ~ - ~ )  -I / '  = J /8 .  

The second case corresponds to initial configurations of 
the string in which the first two segments are at right angles. 
Here the position of the end of the second segment in relation 
to the beginning of the first is fixed by the vector 
i' - i = S + 8' (S#S1). The fraction of such configurations 
is (4X 3) - ' X 2. The additional factor 2 appears because of 
the two ways of passing from point i to point i' (see Fig. 4b). 
Repeating the previous reasoning, we arrive at J / 4  for the 
value of the matrix element. 

Thus, the matrix element of operator H, between the 
base states of a string polaron is ( i  + i' ) 

I J / 8  if l p ' - p l  = 2 ,  l i t - i l  = 2  
( 1  1 1  1 ) = 4 if Ip' - p  1 = 2, li' - i l  = 2lI2. 

0 otherwise 
(B3) 

There is no need for a separate calculation of the matrix 
element ( 1, + 2,i. IH, I I , ,  ) corresponding to an increase in 
string length (Fig. 4c), since operator H, is Hermitian. 
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