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A broad class of infinite-dimensional systems which conserve phase volume have integrals of 
motion with structure such that it is possible to give a complete analysis of the corresponding 
Gibbs distribution. In that case the ultraviolet catastrophe plays an important role. Free 
turbulence in such systems decays into a coherent state (a  statistical attractor) and Gaussian 
noise. The Gaussian noise is determined by a universal singular correlator. We give examples of 
physically interesting systems. The statistical attractor of two-dimensional MHD contains 
current layers. 

1. It is well known that free turbulence in some infinite- 
dimensional systems is s ~ l i t o n i c . ' ~  The turbulent state de- 
cays into solitons and weakly nonlinear waves.' We obtain 
this result by a direct analysis of the Gibbs distribution. It 
turns out that these weakly nonlinear waves are Gaussian 
noise with a universal singular correlator. The coherent state 
which together with the Gaussian noise forms the free turbu- 
lence cannot always be called solitonic. We prefer the term 
Gaussian turbulence. The statistics of our nonlinear systems 
can be completely analyzed because of the ultraviolet catas- 
trophe. We describe our procedure in detail using the exam- 
ple of one-dimensional weakly dispersive waves moving in 
one direction. After that we give results for one-dimensional 
weakly dispersive waves moving in both directions, for the 
degenerate Hasegawa-Mima equation (two-dimensional 
electron MHD) and for two-dimensional MHD. The latter 
two examples are interesting because the statistical attractor 
may be singular-it contains tangential discontinuities and 
current layers. Finally we formulate the conditions for the 
applicability of our approach in a general form and give ex- 
amples of systems to which it cannot be applied. 

Section 2 can be taken as yet another confirmation of 
the concept of solitonic turbulence. Sections 3, 4, and 5 
(two-dimensional models and general statement) must be 
taken as purely conjectural. The fact is that the statistical 
theory of such infinite-dimensional systems contains many 
open problems, even in the case of one-dimensional evolu- 
tionary equations, not to mention multidimensional general- 
i za t ion~.~  

2. To stress the direct connection of our approach with 
papers on solitonic turbulence14 we start with an example 
close to Ref. 1. One-dimensional weakly dispersive waves 
moving in one direction are described by the Hamilton equa- 
tion 

If the waves are weakly nonlinear one can restrict the expan- 
sion off in powers of u to three terms. We arrive at the KdV 
equation. The KdV equation is completely integrable and 
has an infinite set of integrals of motion. We have for the 

function f in its general form two important integrals of mo- 
tion-the energy Hand  the momentum 

We are interested in free turbulence in the system ( 1 ) in a 
periodic cell. More precisely, let us take initially some state 
u,(x) and let the system be left to itself. We must find the 
probability distribution u (x)  at large times. According to 
the statistical theory we can solve this problem as follows. 
Take the statistical sum in the form 

and choose the reciprocal temperatures a and B such that 
the average energy and momentum are equal to the energy 
and the momentum at the initial time: 

(P[u])=P[uO]'P0, ( H [ U ] ) = H [ U ~ ] = H ~  (5 

We write conditions ( 5 ) in the form 

Z(a, B) = Y(P0, Ho). (6)  

We first find the most probable state. This state minimizes 
the functional in the exponent in (4)  and, hence, satisfies the 
equation 

a6P/6u + p H / &  = 0. (7)  

Putting y = a/B we rewrite (7)  in the form 

uu-yu-f '(u)=O. (8 

The solution of (8)  are solitons which we denote by s(x) .  
The phase of a soliton is arbitrary-together with s (x) ,  the 
solutions of (8)  are s (x  + 6), 6 = const. We choose y such 
that P[s] =Po. 

We write an arbitrary state u (x)  in the form u = s + v 
and we expand H + yPin powers of v up to the second order: 
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where we have written H, =H[s]. We discuss the accuracy 
of the expansion (9)  below. We now expand v in the eigen- 
modes of the equation With probability unity the state u is the same as s (x  + 8) for 

some 8. The soliton is found to be a statistical attractor.' The 
phase volume is dumped into Gaussian noise together with 
the excess energy. On the other hand, u, is only distributed 
around s, and u, and the leading derivatives are infinite in 
each point x.  

There can be several local minima [solutions of Eq. 
(8) ] .  Each of them corresponds to a stable rather than a 
metastable state since the temperature is equal to zero. The 
system falls into one of these states and remains in it. There 
can be no local minima at all iff changes too fast with in- 
creasing u. In the case of the nonlinear Schrodinger equation 
a collapse then appears and the problem of free turbulence 
does not arise.' We do not know what happens in such a 
situation in ( 1 ) . 

We can obtain free turbulence of weakly dispersive 
waves moving in both directions using a similar procedure. 
Such waves are described by the equations 

We know one of the eigenmodes: A, = 0, v, = s, . We assume 
that the soliton realizes a local minimum of the functional 
H + yP. The remaining eigenvalues A, are then positive. 
The zeroth mode corresponds to a phase shift 19 of the soliton 
and will be considered separately. We thus have 

and we can rewrite (4)  in the form 

We then have 

Apart from H the momentum, 

The sum ( 13) diverges (ultraviolet catastrophe). Tempo- 
rarily we restrict the number of modes: n<N. We choose P 
such that (H )equals H,, i.e., we put 

is conserved. A coherent state is described by the equations 

a,, = - W,, b, = - Wb, 

where we have put 

W(a, b) = -f(a, b) - yab. (26) We then have 

z(a, B) = Y(Po + dp, Ho), 

where we have put 

Choosing y so that the coherent state contains the whole 
momentum Po we get Gaussian noise containing the rest of 
the energy: 

As N- w we find that P- w and SP-0. Then, for N-, w 

and f l  defined by Eq. ( 15) we get the required probability 
distribution. We can estimate the error in the expansion (9)  
as N -''2;for large N theexpansion is exact. The temperature 
is equal to zero (P- w ), so that the noise level is equal to 
zero in any bounded spectral range. We discard the noise 
with n 1 and for the others we rewrite ( 10) in the form 

V, = -Av. (18) 

The Gaussian noise is here given by the correlator 

(vx(xl)vx(x2)) = 2(Ho - HsY*(xl - xi), (19) 

where we have put 

This is true if the coherent state realizes a local minimum of 
the functional H + yP. 

3. Large-scale motion in a rotating atmosphere or in a 
magnetized plasma and also fast large-scale oscillations of a 
two-dimensional plasma are described by the degenerate 
Hasegawa-Mima equation (equation for two-dimensional 
electron MHD) 

(a, + [VAY, v I)Y = 0. (28) 

Here [,I denotes the z component of the vector product and 
we have A = d + d :. Equation (28) conserves the phase 
volume: 

J h ~ ~ ( ~ ) / d u l ( r )  = 0. (29) We then have 
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The integrals of motion are the energy, 
1 

E = T l d 2 m 2  (30) 

and an infinite set of incompressibility integrals 

I,, = S d 2 r y n .  (31) 

The Gibbs distribution is 

p = exp(-aE - 2 (32) 

Introducing the temperature function 

B(z) = a-'Z B n 9 ,  (33) 

we can rewrite (32) in the form 

p = expj-o [E + J d 2 g w  I}. (34) 

The coherent state Y, is given by the equation 

= B'Cu,) 
and the conditions 

InllYsl = I,@ (36) 

If Y, realizes a local minimum of E + Sd ' rP(Y)  the free 
turbulent state Y decays into Ys and Gaussian noise 4. The 
Gaussian noise does not contain the In and contains the rest 
of the energy. It is determined by the pair correlator 

(v#V#) = 2(Eo - E,F. (37) 

This example is interesting in that the statistical attractor 
(35), (36) can contain tangential discontinuities (lines on 
which AY = co; see Appendix). 

4. Two-dimensional MHD is given by the equations 

Here Y is the stream function and x is the magnetic current 
function so that we have for the velocity v = ( - Yy ,Y, 
and for the field B = ( - xY ,x, ). The integrals of motion 
are the energy 

E = J d 2 r { O 2  + ( v x ) ~ } ,  (40) 

the freezing-in integrals 

I,, = Jd2rXn  

and the cross helicity 

H = J d 2 r m .  (42) 

The statistical attractor is given by the equations 

Ax, + YAY, = Bt(X,), (43) 

vAx, + AY, = 0 (44) 

and the conditions 

I,,ksl = I,,(,. (45) 

The Gaussian noise is given by the correlators 

{VVV'JJ) = ad*, (VYVx) = SS*, (VxVx) = ad*. (46) 

The constants a, b and yare determined by the initial energy, 
helicity, and magnetic energy of the attractor (which is de- 
termined by the initial values of the I integrals). We have 

o = Eo - (1 + y2) w,, b = H, + 2y W,, (47) 

Ws denotes the magnetic energy of the attractor, 

W, = $ Jd2r(vxsl2. (48) 

It is independent of y and given by the In, integrals. The 
ratio y of the temperatures is found from the equation 

As in Sec. 3, the nontrivial topology of the initial configura- 
tion causes singularities in the statistical attractor. The at- 
tractor contains current layers which are simultaneously 
tangential discontinuities. 

5. The conditions for the applicability of our scheme 
can in general form be formulated as follows. Let the system 
conserve the phase volume. Let its integrals have the form 

The local minimum of E for fixed I ,  will be a statistical 
attractor. The excess energy E,, - E, is contained in the 
Gaussian noise; this noise does not contribute to the I,. The 
Gaussian noise is given by the correlator 

In conclusion we give two physically interesting exam- 
ples where our approach does not work. The first example is 
trivial. A two-dimensional incompressible fluid is described 
by the Euler equation 

with the integrals 

One sees that the integrals (53) do not have the form (49), 
(50). 

The second example is the Euler equation in Clebsch 
variables 

The Hamiltonian is equal to 
1 H = 3 l d 3 r  9, (55) 

where the velocity v is determined by the conditions 

v = dVp - V#, div v = 0. (56) 

The integrals of (54) to (56) are H and 

The leading derivative occurring in the set of integrals is VA 
and Vp and the energy is quadratic in the leading derivative. 
Our procedure is inapplicable for another reason. It is not 
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known whether there exist flows /Z,,,u, which are a local 
minimum (maximum) of E for fixed I,,, . 

It is a pleasure for me to thank V. V. Yan'kov for discus- 
sions of this work and D. Ivanov for discussing the Appen- 
dix. 

APPENDIX 

We show that the solutions \V, of (35) and (36) can 
contain tangential discontinuities. This problem has been 

discussed in detail in the theory of magnetic reconnections 
and current layers (Ref. 6 and the literature cited there). We 
give some nonrigorous considerations explaining the cause 
for the occurrence of a discontinuity. 

According to (36) q, is obtained from the initial state 
\V, by a incompressible transformation [strictly speaking, 
this does not follow from (36) but is implied in (36) 1. The 
energy (30) is then minimized. We are interested in the 
properties of such a mapping O:q, + \V, . 

First let the topology of the lines of \I, levels be trivial-a 
single maximum. The mapping then transforms all level 
lines into circles as shown in Fig. la. We now take an initial 
field \V, with two maxima (and a hyperbolic point; Fig. 1 b). 
We assume that the energy in the exterior part of the separa- 
trix is negligibly small. The mapping is then known from 
Fig. la; it is shown in Fig. lc. We have not drawn the level 
lines in the external part of the separatrix bearing in mind 
that in that region we have V\V -0. We can similarly consid- 
er another limiting case (Fig. Id).  The case of a general 
situation is somewhat intermediate between Fig. l c  and Fig. 
Id (Fig. le). The common part of the separatrix is a tangen- 
tial discontinuity-V\V changes its direction into the oppo- 
site one when it passes through it. 
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FIG. 1 .  The incompressible mapping M minimizes the energy. Translated by D. ter Haar 
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