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We analyze theoretically the velocity selection of multilevel atoms in coherent scattering by 
traveling light waves. Selection of two-, three-, and four-level atoms is studied in detail. We show 
that in a certain quantum atomic state narrow velocity structures of atomic density ("atomic 
jets") may form, and find the conditions for their formation. We estimate the widths of such 
atomic jets and demonstrate that they can be much smaller than the atomic recoil velocity. 

1. INTRODUCTION 

Recent years have seen an upsurge of interest in the 
dynamics of coherent scattering of atomic beams by light 
waves.I4 This is largely due to the possibility of obtaining 
ultranarrow atomic-density structures with a width much 
smaller than the atomic recoil velocity v, = fik / M  (the typi- 
cal values of recoil velocity for optical transitions in alkali- 
metal atoms range from VR =: 1 to 3 cm s-'). Hence, in a 
number of cases such a coherent mechanism of forming nar- 
row velocity distributions can be considered as an alterna- 
tive for various mechanisms of laser cooling of metals, in 
which incoherent processes caused by spontaneous relaxa- 
tion play a decisive role.596 

Coherent scattering by a resonant electromagnetic field 
always results in the splitting of the atomic wave packet, 
which is due to the fractional velocity shift of the amplitudes 
of the probability of an atom existing in different quantum 
states by fik, the resonant-photon momentum. The interfer- 
ence of such probability amplitudes creates an atomic wave 
packet with several atomic-density maxima. 

Two physically different types of coherent atomic scat- 
tering can be distinguished: scattering by traveling waves'-3 
and scattering by standing waves.4 A distinctive feature of 
scattering of atoms by a standing light wave is the presence 
of a spatial structure in the light wave, which leads to diffrac- 
tion of the atomic wave packet with a characteristic size Az 
( AzzA zfi/mAv, ) on the spatial grating generated by the 
standing wave (the optical analog of the Kapitza-Dirac ef- 
fect). As a result, narrow ( =: uR ) structures form in the ve- 
locity distribution, and the parameters of these structures 
are determined chiefly by the time of flight of the atoms 
through the interaction region and the initial spread of the 
transverse atomic velocities in the beam, Av, . 

The scattering of atoms by traveling light waves leads to 
velocity structures of an entirely different type: narrow 
peaks in the velocity distribution of the population of differ- 
ent quantum states, ni (v,t) (what is known as "atomic jets"; 
see Ref. 2). Formation of such jets in the process of coherent 
interaction with traveling electromagnetic waves is due to 
the velocity selectivity of atom excitation caused by the 
Doppler effect. There is always a value of the atomic velocity 
at which the excitation is most effective. For one thing, only 
at such "resonant" values of the velocity can there be total 
population inversion in an atom (a a pulse). In other words, 
at fixed frequency detuning and exciting-field intensity there 

are certain moments in time when all atoms with a certain 
velocity value find themselves in one of the quantum states. 

Thus, in real ensembles of quantum particle a a pulse is 
always selective in velocity, and the extent of this selectivity 
depends only on the intensities of the applied fields and the 
interaction time. For certain values of the parameters of the 
exciting waves, the widths Sv of the velocity peaks forming 
can be much smaller than the recoil velocity, Sv(v, (see 
Refs. 1-3). Hence, selection of atoms that are in one of the 
quantum states and have a narrow velocity distribution can 
be considered an extremely effective mechanism for the for- 
mation of atomic beams of a high degree of monochromati- 
city. For instance, in experiments in Raman scattering of a 
beam of sodium atoms by traveling light waves, Kasevich et 
al.' obtained the widths Sv of the velocity distribution of the 
atoms selected and found that these were smaller by a factor 
of 100 than the recoil velocity, Sv=: 10W2vR =:3 x 10W2 cm 
s-', which corresponds to an effective temperature T,, 
z lo-" K. 

In this paper we study the processes of atomic jet forma- 
tion in velocity distributions for different schemes of coher- 
ent interaction of atoms with the electromagnetic field and 
specify the conditions in which the widths of these structures 
are smaller than the recoil velocity. We start by examining 
the formation of narrow atomic-density structures in the 
case of a two-level scheme for the interaction of an atom with 
a traveling electromagnetic wave. This is followed by a de- 
tailed study of the Raman scattering of a beam of three-level 
A atoms.'-3 It appears that velocity selection of three-level 
atoms in Raman scattering is preferable, since it allows 
atomic jets to form on one of the lower (long-lived) states of 
a three-level atom. It should also be noted that there are 
many ways in which a three-level atom can interact with the 
field of traveling waves. In this connection we consider two 
cases important from the practical viewpoint: scattering by 
the field of two waves propagating in the same direction, and 
scattering by the field of waves of different frequencies trav- 
eling in opposite directions. We find that in both cases there 
are conditions that must be met for velocity jets to form in 
one of the lower states of a A atom. There are some differ- 
ences here, of course, caused by the way the atom-field inter- 
action depends on the direction of the wave vectors of the 
exciting waves. 

We then examine the velocity selection of atoms for the 
case of double radio-optical resonance, which makes it possi- 
ble to broaden the class of objects to which such a method of 
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forming narrow velocity distributions can be applied. 

I 
The possibility of carrying out this method of velocity 

selection for more complicated schemes of atom-field inter- 
I 

I action is demonstrated by the example of a four-level double 

I 
A-system, which is currently under intensive investigation.' 

I 
In such a system the total phase of the applied fields has a 

I crucial effect on the population dynamics. This also mani- 
fests itself in the formation of atomic jets in one of the lower 
states of a double A-system. 

We conclude the paper by discussing the possibility of 
carrying out two- and three-dimensional velocity selection, 
which makes it possible to obtain a considerable number of 
atoms with velocities v < v, in magnetic storage rings.' 

We also note that ensembles of atoms with energies con- 
siderably lower than the recoil energy R = fi2k 2/2M (the 
effective temperature of the ensemble, T,,, is roughly 10-l2 
K )  are, undoubtedly, of interest to various fields of atomic 
physics (e.g., atomic interferometry ). 

which implies that forgdo, the width Sv of such a structure 
is considerably smaller than the recoil velocity v,. For ex- 
ample, for optical transitions in metallic atoms the recoil 
frequency w, is roughly lo5 Hz, and at g = 0. lw, a narrow 
velocity distribution (an atomic jet) takes T = g-' = lov4 s 
to form in state )2),  with the width Sv of this distribution 
being approximately 0.1 v, z 0.1 - 0.3 cm SI- I .  Here, as we 
will shortly see, because of the fractional shift in the popula- 
tions of levels 11) and 12) by the resonant-photon momen- 
tumffk, thewavepacketoftheatom, w(v) = n,(v) + n,(v), 
splits, and at time T,, has the form depicted in Fig. lc. 

Since time intervals of roughly s are needed for the 
formation of distributions with Sv 4 v, by the velocity selec- 
tion method, the lifetime of an atom in the upper state must 
be of the same order of magnitude. Otherwise such a velocity 
structure cannot form on the second level. Hence, the veloc- 
ity selection method based on the scattering of a two-level 
atom by a traveling wave can be realized in practice in the IR 

2. SCATTERING OF TWO-LEVEL ATOM BY A TRAVELING 
WAVE 

We start with the simple case of scattering of a two-level 
atom by a traveling light wave. Ignoring spontaneous relaxa- 

a tion in the system and employing the results of Ref. 9, we 
write the population values of the atomic states 
Im) (m = 1,2) of a two-level atom as follows: 

FIG. 1.  The velocity selection patterns for the scattering of a two-level 
( 3 )  atom by a travelinglight wave. (a) the transitiondiagram, (b) and (c) the 

velocity selection patterns. 

where R = w - wo is the detuning of the light wave of fre- 
I (b) 

quency w from the atomic I 1 )-12) transition of frequency w, n,(v)+ 

(Fig. la),  g is the Rabi frequency, k = w/c, v is the projec- 
tion of the atomic velocity on the direction in which the light 0.75- 
wave propagates, and n,(v) is the initial population in the 
system: 0.50- 

nl(v, t = 0) = no(v), n2(v, t = 0) = 0. 
025 - 

Equations ( 1 ) show that the probability of discovering an 
atom in one of the states is a function of velocity v. Total 01 -4 -2 o 2 I 

population inversion in an atom (n, = 0 and n2 = no) is pos- 
v/vR 

sible only at the resonant velocity v,,, = O / k  after a time 
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interval "20"' 

7 , , = m / g ,  n = l , 2 , 3  ,..., (2) 0,75- 

which determines the length of the n- pulse, has elapsed. For 
all other velocities the population probability for the second 0.50- 
level, n,, decrease in proportion to vd2.  Thus, on level 12) in 
the course of T, a velocity distribution may form (Fig. lb,c) 0.25- 
peaked at v, = O/k  + v, /2 and with a width Sv determined 

- (c) 

I 

solely by the Rabi frequency: a -4 -2 
I 



region of the spectrum for which the excited state has a life- - E~ a2 A 

H. = - - - + V ,  time t * of approximately lov3 s and in optical intercombina- inf 2M az2 (6)  

tion transitions in Ca, Mg, and Zn atoms, where the lifetime 
h 

of the upper excited state, t *, is also roughly lop3 s. Note where V is the operator of the interaction of the atom with 
that in such a time a thermal beam of atoms covers a distance the field (4), and M is the atomic mass. 
of only roughly 10 cm. This estimate determines the size of Substituting (5 )  into the time-dependent Schrodinger 
the region where an atom interacts with the field during the equation with the Hamiltonian (6)  and introducing new 
velocity selection of an atomic beam. functions a,, a,, and a, via the relations 

3. VELOCITY SELECTION IN COHERENT SCATTERING OF 
THREE-LEVEL ATOMS 

Let us now consider velocity selection in the coherent 
scattering of three-level A atoms (Fig. 2) by the field of two 
traveling waves propagating along the z axis, 

where the Em are the amplitudes, w, are the frequencies, k, 
= wm /C are the wave numbers and em are the unit polariza- 

tion vectors of the applied fields (m = 1,2), the upper sign 
corresponds to the case of waves propagating in the same 
direction, and the lower sign to oppositely directed waves. 

Here we are interested only in the coherent scattering of 
A atoms by field (4). Hence, the state of the system at every 
instant in time can be described by a wave function W, which 
we write as an expression i@e eigenfunctions X, (6) of the 
unperturbed Hamiltonian Ho: 

where z is the center-of-mass coordinate of an atom, {is the 
set of coordinates of internal movements, En are the energies 
of the unperturbed states of the A atom, and the X, functions 
are defined by the following relation: 

The dynamic% of coherent scattering is determined by a 
Hamiltonian Hi,, of the form 

FIG. 2. An atom with a A configuration of levels in the field of two travel- 
ing electromagnetic waves. The wave with frequency o, and wave vector 
k ,  interacts with the atom in the 11)-13) transition, and the wave with o, 
and k, interacts with the atom in the 12)-13) transitions. 

r/tl(z, t) = al(z, t)exp[iQlt - iklzl, 

v2(z, t) = %(z, t)exp [iQ2t F ik2z], 

v3(z, t )  = a3(z, 0,  

in the resonance approximation we arrive at a system of 
equations describing the coherent motion of the A atom: 

h 

where g,  = (2fi) -'(x, I V Ix,) is the Rabi frequency, Rm 
= wm - (E, - Em )/fi is the detuning from resonance for 
the wave with the frequency w, (m = 1,2), v,, = fik,/M 
is the recoil velocity, and wRm = fik ;/2M is the recoil fre- 
quency (m = 1,2). 

Now we go on to the momentum representation of wave 
functions: 

Substituting into (8)  yields the following system of equa- 
tions for b, : 

wherey,=k,v-w,,,y,= fk,v-o,, ,andv=fix/Mis 
the atom's velocity. In Eqs. (7)-(9) the upper sign corre- 
sponds, as usual, to the case of light waves propagating in the 
same direction and the lower sign to oppositely directed 
waves. 

We write the general form of the solution to Eqs. (9)  as 
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where the A, ( I  = 1,2,3) are the roots of the characteristic 
equation 

Note that the probability amplitudes B, (v,t) of the 
quantum states of the atom in momentum space, which are 
the Fourier images of the $, (z,t), 

are shifted with respect to the amplitudes b, (v,t) by the 
resonant-photon momenta fik, ( m  = 1,2): 

which must be taken into account in establishing the evolu- 
tion of the wave packet of an atom as a whole. Below, how- 
ever, we are interested only in the probabilities of finding an 
atom in certain quantum states. Hence, in what follows we 
disregard the time-independent velocity shifts in the state 
amplitudes. 

Let us now study the solution ( 10) separately for light 
waves propagating in the same (k,  t tk,) and opposite 
(k, t Ik,) directions, and for the case of double radio-optical 
resonance ( k ,  4 k ,  ) . 

a) Light waves propagating in the same direction (k, r r k,) 

For waves propagating in the same direction the solu- 
tion ( 10) assumes the form 

where it is assumed that R, = fl, k ,  = k, gi = g: + g:, 
A = fl + w, - kv, A: = A2 + 4gi and that the entire popu- 
lation at t = 0 is concentrated in level I I ): 

This condition can be realized, for instance by the prelimi- 
nary optical pumping I 1 ) condition (as in experiment in Ref. 
1 1. From ( 13) it follows directly that the probability of find- 
ing an atom in one of its quantum states strongly depends on 
the translational velocity of the atom. Hence velocities can 
be specified at which the probability of discovering the atom, 
say, in state 12) is close to unity while particles with other 
velocities are practically absent from this state. In other 
words, in the field of two light waves propagating in the same 
direction, velocity selection of a beam of A atoms can be 
carried out, as shown in Sec. 2 for the case of coherent scat- 
tering of a beam of two-level atoms. However, when velocity 
selection involves three-level atoms, narrow velocity struc- 
tures may form [according to ( 13) ]  in one of the lower 
(long-lived) states of a A atom, which considerably simpli- 
fies the realization of the method in  practice.'^^ Characteris- 
tically, the excitation of a A atom via the stimulated Raman 
transitions 1 1)++13)++12) can be considered as that of an 
effectively two-level atom with states 11) and 12) (Ref. 10). 
The necessary condition for this in our case is the absence of 
particles from the upper level of the A atom, I b, (u,t) 1 = 0. 
According to ( 13), this is possible only at times T specified 
by the condition 

Actually, this condition determines the length of the n- pulse 
in the effectively two-level system with states 11) and 12) in 
the excitation of the system through the upper state 13). 

Assuming that condition ( 14) is met, we use ( 13) to 
establish the probability of finding the atom in the lower 
states 11) and 12) at g, = g2-g: 

We have assumed, as usual, that initially ( t  = 0 )  all the 
atoms were in state I I ) ,  or 
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Equation ( 15) can be used to determine the velocity of the 
atoms that are in state 12) after time T has elapsed. From the 
requirement 

it follows that the resonant velocity has two values: 

To each velocity defined by (17) corresponds a specific 
length of the a pulse ( 14) for which the probability of dis- 
covering an atom in state 12) with the given velocity is close 
to unity [Eq. (16)], and 

where At = 8g2 + (f l  + w, - kv,,, )'. Thus, when a beam 
of A atoms is scattered by the field of traveling waves that 
propagate in the same direction, the atoms in the beam are 
selected by velocity. As the interaction time grows, an in- 
creasing number of atoms with different velocities partici- 
pate in the scattering process, and as t +  + oc, atoms with 
any initial velocity find themselves on level 12) (Fig. 3 ) .  

Figure 4 depicts the formation of a narrow velocity 
structure (an atomic jet) in the scattering process. It shows 
the probability of state 12) becoming populated after the first 
.rr pulse, that is, after the time interval T = a/(fig) has 
elapsed. According to Eqs. ( 15 ) , the velocity width of such 
an atomic jet is determined solely by the Rabi frequency, 

and for ggw, the width Sv is much smaller than the recoil 
velocity, v, (Su gu, ). 

FIG. 3. The temporal evolution of the velocity distribution of the popula- 
tion of level 12) in the case of light waves propagating in the same direc- 
tion. Initially the entire population is on level I 1 )  with a Gaussian velocity 
distribution centered at u, = u, and having a width Au(t = 0 )  = 3 u R ,  
g , = g 2 = 0 . 1 w , , a n d R , = R , = 0 .  

FIG. 4. Velocity selection of A atoms in waves propagating in the same 
direction. The interaction parameters correspond to the first 7 pulse: 
t =  22.20L1,g ,  =g ,  =O.lw,, and R ,  =a2 = O .  

b) Light waves propagating in opposite directions (k, t ~k,) 

The picture of resonant scattering of the wave packet of 
a three-level atom by (two) oppositely directed waves and 
the way in which state 12) is populated differ considerably 
from the case of waves propagating in the same direction. 
The reason lies primarily in the special status of the point v,, 
= (fl ,  - R2)/2k of two-photon resonance on the velocity 

scale. We demonstrate this status by an example that is im- 
portant for practical purposes: R,  = R, = fl, g, = g, -g ,  
( R  + w, )'$g2, and (f l  + w, )'$ (kv)'. Thentheprobabil- 
ity of discovering the atom in state (2) is given by Eqs. ( lo) ,  
specifically 

+ 2Zsin(M) sin [ (a  + a , ) t  1 
(Q + a R ) ( h )  

where we have put k, z k, = k. 
We see that level 12) becomes populated most effective- 

ly at v,, = 0 and that for other velocities the probability 
(b, (v,t) 1 decreases, according to Eq. (20), in proportion to 
v-', as it does for the scattering of a two-level atom. Hence, 
at every instant in time on level 12) there exists a velocity 
peak centered at v,, . This fact is well illustrated by Fig. 5, 
where we have displayed the temporal evolution of the popu- 
lation of level 12) at f l ,  = fl, = 0. The width of the atomic 
jet formed in this case, 
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the above estimate, this allows us, on the one hand, to obtain 
narrow (Sv < v, ) velocity distributions of the selected atoms 
forgsw, and, on the other, to ensure that the velocity selec- 
tion method is applicable. 

We note also that Refs. 2 and 3 analyze some aspects of 
the scattering of a three-level atom by the field of oppositely 
propagating waves. 

In addition to the central peak at v,, , the velocity distri- 
bution of atoms in state 12) contains side peaks (Fig. 5) 
whose parameters are determined chiefly by the size of the 
"generalized detuning" ( 0  + w, ) . Equation (20) also im- 
plies that the side peaks emerge at times 

at the following points on the velocity scale: 

FIG. 5. The temporal evolution of the velocity distribution of the popula- 
2m + 1 

vmn = - 2n la + wR1 = 0, 1, 2, . (25) 
tion of level (2)  in the case of oppositely propagating light waves. The 
other parameters are the same as in Fig. 3. 

The height of these peaks is 

and the width is 

is primarily determined by the interaction time and depends Last, we consider one more case of scattering of a A 

only weakly on Rabi frequencies and the detunings of the atom by the field of oppositely propagating waves when a IT 

applied fields. Note that for t )  w; ', where w, = kv, /2 is pulse selective in velocity can be realized. This corresponds 

the recoil frequency, with o, =. lo4-lo5 Hz for metal atoms to equal Rabi frequencies, g, = g2=g, and "mirror" detun- 
ing R ,  + w, = - (R, + w, ). With such parameters the in optical transitions, we have Sv 4 v, . 
population dynamics in the A-system drastically simplifies. 

The intensity of the velocity peak centered at v,,, = 0 
For instance, if initially all atoms are in state 1 I ) ,  the proba- 

oscillates in time like bility of discovering an atom in state 12) that is moving with 

~ b 2 ( v = 0 , t ) ~ 2 = ~ b l ( v = ~ , t = 0 ) ~ 2 [ 1 - c ~ s ( ~ t ) ]  (22) velocityis 

and assumes its maximum value at moments 4 
1b2(v9 t)I2= Ibl(v, 0 )125  [ I  - cos(~t)]~, (27) 

~ , = n n l a + w , I / ( 2 ~ ) ,  n = l , 2  ,..., (23) 

which correspond to the n- pulses that link levels 1 1 ) and 12). with c2 = 2 2  + (Q1 + U R  1'- Hence, the velocity distribu- 
Thus, the highest velocity peak with a width Sv<v, is ob- tion of the atoms in state 12), at times 
tained by choosing interaction parameters that satisfy the t= (2n+ l )n l ( f i g )  (n=O, 1 ,2  ,... ), 
condition (28) 

For Q 5  o, this condition reduces to the requirement 
that the Rabi frequency be small, g<w,, as it does in the case 
of waves propagating in the same direction. On the other 
hand, for large detuning values, R>w,, the condition for 
the existence of a narrow (Sv <v, ) and high velocity peak in 
state 12) assumes the form $/(Qw, ) 4 1, with the result 
that such a structure can also be observed for Rabi frequen- 
cies considerably higher than w, . It was precisely this that 
made possible successful velocity selection involving a beam 
of sodium atoms and oppositely propagating light waves.' 
Here the appreciable detuning of the laser beams 
[R %aR ,g, (kv) ] is extremely important since, according to 

corresponding to the ?r pulse, will acquire peaks with a width 

du = figk-l, (29) 

and centered at v,,, = (a, + w, ) k - '. Formation of an 
atomic jet in the case of "mirror" detuning in oppositely 
directed waves is shown in Fig. 6. 

c) Double radio-optical resonance (k24k,) 

Now we consider the velocity selection of atoms in the 
case of double radio-optical resonance (DROR). It is as- 
sumed that (1)-13) is an optical transition and 12)-13) is a 
radio-frequency transition. Atoms that have the required 
level configuration are, for instance, Zn, Ca, Mg, Cd, and 
Hg, with the frequency of the optical intercombination tran- 
sition belonging to the blue band of the visual spectrum and 
the frequency of the radio-frequency transition amounting 
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level 12). The width of the atomic jet formed at these times is 
determined by the Rabi frequency: 

FIG. 6. Velocity selection of A atoms in oppositely propagating waves in 
the case of "mirror" detuning: R, = o, and R, = - 3o,. The other pa- 
rameters are the same as in Fig. 3. 

to several terahertz. Here k, 4 k,, whence the condition for a 
two-photon resonance is met at v,, = (f l ,  - fl, 
+ o,, )/k,. Note that as with oppositely directed light 

waves, the state 12) becomes populated here most effectively 
only at a single value of the resonant velocity v,,,. At 
g, = g2=g and fl ,  = fl, = 0 Eqs. (10) yield the following 
expression for the population of state 12): 

X {[cos(V%*t cos p) - cos(3A,t sin p) l2 

+ [fi sin(&A,t cos p)tg p - sin(3A,t sin p) 12}, (30) 

where 

At v = v, , /2 Eq. (30) yields 

and at time 

T = (2n + l)lt/(flg) (n = 0, I, ...) (31) 

all atoms with a velocity vres = v,, /2 find themselves on 

Here for atoms with velocities vf  vre, the population proba- 
bility of level 12) decreases in proportion to u-' [see Eq. 
(30) 1. The temporal evolution of the velocity distribution 
Ib,(v,t) l 2  for the case of double radio-optical resonance is 
depicted in Fig. 7. 

Note that a special feature of velocity selection in the 
event of double radio-optical resonances is the use of only 
one laser field for forming atomic jets. 

We have shown, therefore, that narrow velocity struc- 
tures form in the lower quantum states of a A atom for differ- 
ent configurations of the light field (waves propagating in 
the same direction and in opposite directions). Moreover, 
velocity selection of atoms can also occur in the case of dou- 
ble radio-optical resonance, which broadens the class of ob- 
jects for which this method of forming narrow velocity dis- 
tributions may be employed. We have established the width 
of the velocity structures and the time interval during which 
such structures form and found the conditions for obtaining 
narrow velocity distributions with widths Sv< v, . 

4. VELOCITY SELECTION OF ATOMS WITH A CLOSED 
EXCITATION CONTOUR 

Let us now consider the formation of narrow velocity 
distributions for systems of atomic levels in which a closed 
excitation contour can be specified.' By way of an example 
we study atomic jet formation in one of the lower states of 
what is known as a double A-system. The excitation pattern 
represents two A-systems whose lower levels are common 
and the transitions interacting with the field constitute a 
closed contour: 11)-13)-12)-14)-/ 1) (Fig. 8) .  

It is known7 that the population dynamics in systems 
with a closed interaction contour is solely determined by the 
value of the total phase of the atomic contour. Naturally, 
the value of must also affect the formation of atomic jets in 
a double A-system. Assuming that the system interacts with 
the field of four pairwise oppositely directed light waves, 

where em, is the unit polarization vector, Em, is the ampli- 
tude o,, is the frequency, 77,, is the phase of the wave that is 
in resonance with the Im)-11) transition with a frequency 
@Om, and the k,, are the lengths of the wave vectors of the 
fields ( m  = 1,2 and I = 3,4), we can write the following sys- 
tem of equations for the probability values in the momentum 
representation: 

ib, = (Q3, + W R  - h)bl + e3b3 + gf4b4exp(-i@), 

ib2 = ('32 + an + *v)b2 + g03b3 + $b4, 

ib3 = g03b2 + g3bl 9 

ib4 = (Qt2 - '42Ib4 + i$,b,exp(i@) + 46 , .  (33 
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Here the g;, = (2fi) -' VL, are the Rabi frequencies of the 
applied fields, and the amplitudes V;, of the matrix ele- 
ments of the operator. of the dipole interaction with the field 
are specified via the relation 

where am, = a,, - a;,, p,, = em, + x,, (Om, is the phase 
of the matrix element of the operator of the atomic dipole 
moment), and the total phase of the atomic contour is de- 
fined as @ = p,, - p2, + p2, - p,,. It is also assumed that 
the wave vectors of the exciting waves have the same length, 
k,, = k, and that the condition for multiphoton resonance is 
met: 

Note that the procedure that led to the system (33) is similar 
to that discussed in Sec. 3 in connection with a three-level A 
atom. 

Equations (33) clearly show that the population dy- 
namics in a double A system and hence the formation of 

FIG. 8. A double A-system. The closed contour is formed by the 11)-13), 
13)-12), 12)-/4), and 14)-11) transitions resonantly interacting with the 
fields. The fields interacting with the 11)-13) and 11)-14) transitions are 
propagating along the z axis in the positive direction, and the fields inter- 
acting with the (2)-(3) and 12)-14) transitions are propagating along the 
z axis but in the negative direction. 

FIG. 7. The temporal evolution of the velocity distribution of the 
population of level 12) in the case of double radio-optical reso- 
nance. The other parameters are the same as in Fig. 3. 

atomic jets in the lower quantum state caused by a P pulse 
selective in velocity depend essentially on the total phase @ 
of the atomic contour. Figure 9 depicts the population 
I b2(v,t) l 2  of level 12) as a function of atomic velocity at the 
time corresponding to the first P pulse. Here it is assumed 
that initially the population is concentrated entirely on level 
11) and has a Gaussian atomic-velocity distribution. The 
reader can see (Fig. 9a) that on level (2) at @ = 0 a narrow 

FIG. 9. The velocity distribution of the level 12) population of a double A- 
system. The interaction time t is 22.2~; ' and all detunings are the same: 
R, = R, = 0. The initial distribution is with u, = u, and 
Au(t = 0)  = 30,. (a)  g,, = O.lw, (m = 1,2 and I = 3,4); curve I corre- 
sponds to @ = 0, curve 2 to @ = a/2, and curve 3 to @ = a .  (b) g,, 
= O.lo,,g, = O . h R  (m = 1,2), and @ = a .  
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peak appears at @ = 0 with a width Sv that is much smaller 
than uR (as in a common A-system). At @ = a/2 level 12) 
has a smaller population and at @ = a level 12) has none at 
all ((b,(' = 0). This feature of excitation of a double A-sys- 
tem at @ = a is caused by the destructive interference of the 
11) - 13) - 12) and 11) - 14) - 12) excitationchannels. Since 
both channels have the same intensity (all Rabi frequencies 
are equal) and are antiphased (@ = a ) ,  population oscilla- 
tions between levels 11) and 12) are completely suppressed. 

If the excitation via the channels 1 1 ) - 13) + 12) and 
11) - 14) - 12) is made asymmetric (Fig. 9b), a narrow pop- 
ulation peak forms on level 12) at @ = a ,  too. In this case 
there is no suppression of population oscillations between 
levels 1 1 ) and 12). 

Note, finally, that the effect of the phase of the atomic 
contour on velocity selection suggests using atoms with a 
closed excitation contour for atomic interferometers, where 
the splitting of the wave packet of an atom caused by velocity 
selection" is controlled, say, by the phase of the optical 
fields. 

5. CONCLUSION 

We have thus discussed in detail the formation of nar- 
row velocity structures in one of the quantum states when 
atoms are scattered coherently by the field of traveling 
waves. We have demonstrated that such a method ofvelocity 
selection can work for both two-level atoms and three-level 
atoms excited by means of stimulated Raman transitions. 
Moreover, we have illustrated the possibility of velocity se- 
lection in a four-level double A-system, which further broad- 
ens the range of application of this method. 

Note that the width of the narrow structures formed is 
determined only by the Rabi frequencies of the applied fields 
and the interaction time, and does not depend on the width 
of the initial velocity distribution of the atoms [see Eqs. (3),  
( 19), (2 1 ) , and (29) 1. Approximating the initial and select- 
ed distributions by rectangular ones, we can estimate the 
number of atoms that form an atomic jet via the formula N, - No(Svs/Sv0), where No is the initial number density of the 
atoms, N, is the number density of the selected atoms, and 
Sv, and 6vs are the widths of the respective velocity distribu- 
tions. For instance, if atoms in state 12) with a distribution of 
width 60, =: 10-'v, are selected from an initial distribution 
of width Sue=: 102vR (this corresponds to an initially cooled 
atomic beam), the intensity of the beam of selected atoms is 
lower than that of the initial beam by a factor of 10000 (the 
same values were observed in the experiments of Kasevich et 
a l . ' )  Such a small number of atoms imposes stringent re- 
quirements on the experimental technique. The selected 
atoms can be accumulated in magnetic storage rings8 be- 
cause they are all in the same quantum state with a definite 
magnetic moment. 

The calculations conducted in this paper apply to a rec- 
tangular field envelope, which means that the edges of the a 
pulses are fairly sharp. For smooth envelopes the population 
dynamics in an atom is determined by the parameters 

where thepi are the dipole moments of the acting transitions 
in the atom, which expresses the well-known area theorem 
(see, e.g., Ref. 12). Needless to say, in this case in the atomic 
systems considered here there can be a a pulse selective in 
velocity. The width of the atomic jets formed is determined 
by the peak value of the amplitude of the applied field and is 
much smaller than the atomic recoil velocity for E, (t)pi/fi 
gw,, (for all t and i). 

Finally, we note that the method of velocity selection 
discussed here can be used not only to obtain ultranarrow 
velocity distributions but also as an extremely precise instru- 
ment in atomic optics and in atomic" and m~lecular '~  inter- 
ferometry. 
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