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We have studied the self-interaction that takes place in an ultrashort pulse of electromagnetic 
radiation as it generates plasma waves, resulting from competition between ponderomotive and 
relativistic nonlinearities. We have found self-consistent self-similar solutions that describe the 
dynamics of a square-wave pulse when these nonlinearities are weak, along with the 
(exponential) amplification of the plasma wave amplitude in the nonlinear regime associated 
with increased fields in the "trailing-edge" portion of the pulse. In cases of practical interest (e.g., 
for particle acceleration, frequency conversion, etc. ), in which the fields are relativistically 
strong, we have integrated these equations numerically both in "exact" form and in the 
approximation of paraxial optics (i.e., for beams of quasi-Gaussian shape). We find that although 
the leading-edge portion of the pulse propagates as in the linear case and undergoes diffractive 
spreading, its central region can be trapped in a waveguiding regime. We show that there is a 
considerable increase (compared with the linear case) in the intensity of the plasma waves and an 
increase of the longitudinal size of the region in which this effect is observed. 

A promising way to generate strong electromagnetic 
fields in a plasma and thereby accelerate high-energy parti- 
cles is to use the plasma waves created by ultrashort laser 
pulses. 

This idea was formulated for the first time in Ref. 1 with 
regard to accelerator applications; however, the correspond- 
ing nonlinear processes in the plasma were investigated in 
detail only within the last when the possibility of 
doing the appropriate experiments became realistic. The 
plasma waves are excited by short (in comparison with the 
plasma wavelength laser pulses through the actionafthe 
ponderomotive force; from a physical point of view, this ex- 
citation is analogous to the radiation of plasma waves by a 
moving charge. For fixed laser pulse energy, the amplitude 
of the resulting plasma waves increases as their wavelength 
decreases, and is in order of magnitude equal to the pondero- 
motive p~ten t ia l .~  From this it follows that in order to obtain 
strong electric fields in a plasma it is necessary to use short 
laser pulses that are relativistically strong, in which case the 
propagation characteristics of the pulse through the plasma 
are determined by the competition between electrostrictive 
and relativistic nonlinearities. Under these conditions, rela- 
tivistic self-focusing effects and optical waveguiding of the 
laser beam can occur, which in turn lead to cumulative gen- 
eration of a plasma wake and a considerable increase in the 
longitudinal size of the latter. 

The effect of steady-state self-focusing of beams of elec- 
tromagnetic waves in a plasma associated with the relativis- 
tic dependence of the electron mass on its oscillatory energy 
was studied for the first time in Ref. 7, and later discussed in 
Refs. 8 and 9. In these and in subsequent and often-cited 
articles (see, e.g., Refs. 10-1 3 ) ,  it was shown that if the pow- 
er of the wave beam P exceeds the so-called critical self- 
focusing power PC,, which for the case of a relativistic non- 
linearity is given by the expression PC, = 15 (02/oi ) GW, 
then focusing of the beam occurs down to dimensions deter- 
mined by nonlinearity saturation effects, and as a result pow- 
er on the order of the critical power is trapped in nonlinear 
optical waveguiding. However, as was shown in Ref. 4, this 
picture is valid only for relatively long pulses ( L s l ,  ), 

whereas for ultrashort pulses the primary role is played by 
competition between the electrostrictive and relativistic 
nonlinearities. In this case, excitation of plasma oscillations 
at the front of the pulse leads to weakening of the overall 
nonlinearity of the plasma. The qualitative nature of the self- 
focusing for this case was discussed in Ref. 4, where it was 
shown that the leading edge of a packet should propagate as 
in the linear case, undergoing diffractive spreading, while 
the main portion should be trapped in the optical waveguid- 
ing regime. However, a quantitative theory of this process 
has yet to be developed. In this paper we investigate in detail 
the process of dynamic self-focusing of an ultrashort laser 
pulse as it propagates through a low-density plasma 

1. FUNDAMENTAL EQUATIONS 

Excitation of a plasma wake by a short laser pulse, in- 
cluding nonlinear distortion of its transverse and longitudi- 
nal spatial structure, can be investigated by using the follow- 
ing system of equations: 

which are elementary generalizations of the equations used 
in Refs. 4 and 5 for the one-dimensional case. In these equa- 
tions the following notation has been used: Q = eq, /m,c2 is 
the scalar potential of the plasma oscillations normalized by 
the relativistic quantity moc2/e, A is the slowly varying com- 
plex amplitude of the vector potential of a circularly polar- 
ized electromagnetic wave normalized by the same quantity, 
.r = t - Z/U, where u is the local group velocity of the packet, 
A, = a 2/ax2 + a 2/ay2 is the transverse Laplacian, 
w, = (4re2No/m,) ' I 2  is the Langmuir frequency, No is the 
electron density in the unperturbed plasma, and o and k are 
the frequency and wave number of the electromagnetic 
wave. 

In what follows we investigate propagation of a short 
laser pulse (short compared to the wavelengthl, = 2rc/wp 
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of the excited plasma waves) in an underdense (up < w )  
plasma. Propagation takes place over a finite distance 
zgcu4/wi, in which case we may neglect the effects of dis- 
persive spreading, i.e., omit the terms in Eq. 1 with d 2A /d2.  

2.THE CASE OF WEAK NONLINEARITY 

In the simplest case of a weak nonlinearity (@ g 1 ) , the 
amplitude ofthe plasma wave generated by this short pulse is 
determined by the expression - 

Then the self-consistent field distribution A is determined by 
the following system of equations: 

where we have introduced new dimensionless variables 

the label "n" will be omiteed in what follows. 
Equations (4)  and (5)  have the usual integral 

corresponding to conservation of the total energy flux in the 
beam: 

In order to analyze the characteristics of the solution we 
can make use of the procedures developed in Ref. 14 and 
elsewhere to investigate spatial wave collapse in media with 
time-dependent nonlinearity. For the case of a square-wave 
pulse ( W(r) = const where O<rgr0) the system (4), (5) 
has a set of self-similar solutions 

where a and y are positive constants. These solutions de- 
scribe a quasistationary pulse in the shape of a horn which 
flares in the direction of motion. The self-similar functions 
V ( ( )  and U(() correspond to a localized solution to the 
system of equations 

The structure of the fundamental self-similar mode, which is 
shown in Fig. 1, is characterized by an exponential decrease 
of the vector potential with respect to radius and a power- 
law decrease ( - ( -2)  of the plasma-wave potential. The 
self-similarity parameter a is completely determined by the 
power in the transverse cross section of the pulse 

where K = 2rs,"u2<d< = 79.9. The parameter y gives the 

FIG. 1 .  Field distribution ( a )  and plasma wave potential ( u )  in the self- 
similar mode. 

transverse scale of the distribution and can be found from the 
condition that the self-similar distribution be matched with 
the solution at the leading edge of the pulse, which is not 
subject to nonlinear distortion due to the smooth switching- 
on of the potential @ [see (5) ]. From dimensional consider- 
ations it follows that y = c/ai, where a, is the characteristic 
width of the profile at the leading edge, which changes its 
shape smoothly with z (on a scale much larger than the lon- 
gitudinal size of the pulse) along the path according to the 
laws of linear diffraction; cis a constant of order unity which 
depends on the form of the pulse. 

Using Eq. (3)  and the solution we have obtained for the 
transverse structure of the mode u, (f, y = 1 ), we derive an 
expression for the amplitude of the plasma oscillations in the 
Killwater wake: 

In the near-axis region we have in dimensional variables 

It follows from ( 11 ) that when (p/j) 'I2wp r,,4 1 we 
may neglect the effect of nonlinear pulse compression. This 
compression will play an important role only if the power 
exceeds the value j,, = 4 j ( ~ ~ r ~ ) - ~ ,  which is in fact the 
critical power for self-focusing in the nonstationary case (an 
analogous estimate was obtained in Ref. 4 based on the one- 
dimensional model). For p s j  the amplitude of the wake 
wave increases exponentially - exp [ (kp/j) '12wp r,] and is 
simultaneously accompanied by a decrease in the radius of 
the wake region. 

3. THE APPROXIMATION OFPARAXIAL OPTICS 

The self-similar relations we have obtained for the case 
of weak nonlinearity cannot do more than familiarize us 
somewhat with the problem, because they do not take into 
account effects that saturate the nonlinearity, which play an 
important role in cases of practical interest, e.g., accelera- 
tors, where relativistically strong fields A % 1 are involved. 
The question of whether the effect of nonlinear waveguiding 
of a beam can be used to increase the size of the plasma wake 
can be answered only by investigating more complex equa- 
tions that can be written in the form 
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Let us investigate this sytem in the approximation of parax- 
ial optics (the so-called aberrationless appro~imation), '~ in 
which we assume that the wave beam has a quasi-Gaussian 
shape 

with a relative width b that depends on z and r :  b = b(z,r). 
We will approximate the field distributions of the plasma 
index of refraction n ( r )  and potential @(r)  in the near-axis 
region as determined by Eq. ( 13) by the parabola 

where a, is the initial width of the Gaussian beam at the 
boundary of the plasma. 

As a result we obtain the standard equations for the 
beam width used in the theory of self-focusing within the 
paraxial appoximation: 

in which we have introduced the variable f = z/ai; the 
quantities a, and a, are in turn solutions to the following 
equations: 

The constant x entering into Eq. ( 14) is determined by the 
expression x = ( 1/2b)db /a(. 

The system of equation ( 16) and ( 17) is simpler than 
the original system because it has fewer independent vari- 
ables: in this system b = b(<,r), i.e., we have eliminated the 
dependence on the transverse coordinate r. 

To begin with, let us investigate the case of weak nonlin- 
earity for a short excitation pulse within the framework of 
the paraxial approximation. For this we neglect a, com- 
pared to 1 and the first term on the right side of Eq. ( 18) 
compared to the second. 

Then by comparing the diffractive and nonlinearity 
terms in ( 16) we obtain a condition for the time r, at which 
an originally rectangular pulse begins to self-focus on its 
trailing edge: 

Over distances z. <2aib :/row (if it is smaller than the 
diffraction length) we should expect a horn-shaped pulse 
with self-similar structure that is "corrugated" by wavelike 
fine-scale perturbations of its envelope traveling in the direc- 
tion of the leading edge of the pulse. The smooth structure of 
the horn is determined in the adiabatic approximation, 

FIG. 2.On-axis field distribution (u ,  = 0)  for a pulse of rectangular form 
whenz= 2. 

where we can neglect the second derivatives with respect to 
radius in ( 16) and use the local relation a, = - l/b 4. The 
expression obtained in this case: 

corresponds to Eq. (7),  which we derived in terms of self- 
similar variables. This type of behavior, i.e., oscillating per- 
turbations against a background, is characteristic of wave 
structures that are described by nonlinear equations of the 
type ( 16), and reflects a competition between diffractive and 
nonlinear effects as the system approaches the quasistation- 
ary distribution (20). Analogous oscillations also appear in 
the amplitude of the plasma waves generated. The structure 
shown in Fig. 2 is typical for such a corrugated horn. With 
increasing pulse length T, or power W, the potential a, must 
inevitably increase to relativistic values a, =: 1. In this case it 
is necessary to investigate the full system ( 16)-(18). 

4. NUMERICAL INVESTIGATION OF WAVEGUIDING OF THE 
PULSE UNDER CONDITIONS WHERE THE RELATIVISTIC 
NONLINEARITY ISSATURATED 

We integrated the "exact" equations ( 12) and ( 13) nu- 
merically for a converging Gaussian beam with width b, and 
convergence ab /a6 (6 = 0)  = b specified at the plasma 
boundary. In Fig. 3 we show the dynamics of the vector 
potential envelope A(z,r) in the plasma for an intensity pro- 
file that is close to rectangular: 

and the parameters a, = 10, b, = 2'12, b = - 1/2ll2, 
rO = 1, ? = 3, and p, = 100. The quantity b A = - 1/2'12 
corresponds to a beam whose linear focal distance from the 
plasma boundary is z = 1; in the linear approximation, the 
longitudinal size of the caustic for this beam corresponds to 
z = b i  =2. 

The qualitative evolution of the pulse is in agreement 
with the scenario described in Sec. 3, i.e., formation of a 
horn-like structure, although the field amplitude at the trail- 
ing edge increases more slowly on the average. Because the 
power flux through an arbitrary cross section of the pulse is 
conserved, the oscillations of the vector potential corre- 
spond exactly to the modulation depth (corrugation) of the 
spatial structure of the field. As it propagates in the plasma, 
the pulse breaks up in the longitudinal direction into a larger 
and larger number of bunches, although the average distri- 
bution (with respect to length) adiabatically traces out the 
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FIG. 3.On-axis field distribution ( u ,  = 0) for a pulse with a shape close to 
rectangular when z=0.0, z=0.5, z =  1.0, z =  1.5, z =  1.8, z=3.0, 
z = 4.0, and z = 5.0. 

diffractive distribution of the leading edge. 
The effect of relativistic waveguiding of a short pulse is 

characterized by lengthening of the region of constriction 
compared to the linear (diffractive) propagation picture. 
Let us define the length scale of the region over which the 
field is amplified in terms of the coordinate z,, at which the 
trailing edge of the pulse, which is broadened overall as it 
leaves the waveguiding zone, reaches a size corresponding to 
the dimensions of the linear focal spot. At this point, the 
region of saturation obviously terminates, so that we can use 
the relations derived for the self-similar pulse structure in 
the weakly relativistic approximation as an estimate. For the 
radius of the trailing edge we have 

where QO(z) obeys the law of diffractive spreading 
cPo(z) z 4z/cPo,,,, . Thus, 

Z N L X ' I J , ( D ~ ~ , ~  exp =-zr  ex.i,(aso). 

consequently the nonlinear constriction region turns out to 
be longer than the linear constriction region by a factor equal 
to the amount by which the self-similar structure is com- 
pressed from its leading to its trailing edge, i.e., it is uniquely 
determined by the intensity and length of the pulse. For the 
case we are investigating we have a = 10, r0 = 1, and z,, / 
z, = exp ( 10); clearly the length of the strong-field region is 
increased by a large factor. 

Our numerical investigation showed that pulses with 
smoother (Gaussian) intensity profiles 

also evolve in a way that is close to that described above, 

FIG. 4. Dependence of the maximum on-axis plasma wave amplitude 
( u ,  = 0) on the location of the point where it is excited by a pulse of 
Gaussian shape. 

although in this case the self-focusing of the trailing edge of 
the pulse is found to be less sharp. As for the question of 
generation of wake waves, we note that due to the integration 
of the pulse over its length, the sharp space-time oscillations 
of the plasma waves excited by the source are smoothed out, 
and spatial modulation of the amplitude of the Langmuir 
wake is found to be insignificant. The region of strong wake 
waves obviously is clamped to the pulse axis, with an extent 
on the order of the nonlinear constriction lengthz,, . In Fig. 
4 we plot the on-axis Langmuir wave oscillation amplitude 
versus the position of its excitation point for pulses with 
Gaussian intensity profiles for the two values po = 10 and 
p, = 100. In this figure, we show for comparison analogous 
curves calculated using the aberrationless approximation, 
which also demonstrates the qualitative agreement with the 
"exact" theory. 

Thus, our investigations allow us to assert that ultra- 
short relativistically strong laser pulses undergo consider- 
able structural distortion as they propagate through the 
plasma, acquiring a hornlike shape with strong longitudinal 
intensity modulation. Due to the inertia of the nonlinear re- 
sponse, the leading edge of the pulse undergoes linear dif- 
fractive spreading; however, its primary portion is found to 
be trapped in the nonlinear waveguiding regime, causing the 
region left behind by the pulse, which takes the form of an 
intense Langmuir wake, to be significantly lengthened. The 
self-similar solutions we have found for the dynamic self- 
focusing of the pulse allow us to determine the wake wave 
amplitude and the size of the region over which these waves 
are effectively excited. 
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