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We have carried out a theoretical analysis of the conditions for the onset of lasing in a ring 
resonator and in a linear resonator with one photorefractive crystal and in a ring resonator with 
two crystals where the grating has been written using the mechanism of synchronous detection of 
a running interference pattern by an external variable field. 

1. INTRODUCTION 

Ring oscillators and linear oscillators based on photore- 
fractive crystals (PRC) with different mechanisms for re- 
cording the diffraction grating have been studied in great 
detail,'.2 especially those with a diffusion n~nlinearity,~-' 
and with a drift nonlinearity in and in vari- 
ablei0." external fields. Such oscillators are self-tuning, i.e., 
if the eigenfrequencies of the cavity do not coincide with the 
frequencies of the longitudinal modes of the pumping laser, a 
wave builds up in the cavity with a mixed frequency relative 
to the pumping frequency. Here two lasing conditions are 
fulfilled: an amplitude condition and a phase condition. En- 
ergy losses of the cavity wave occur as a result of diffraction 
of the pump wave by the grating. Phase detuning of the cav- 
ity is compensated by the nonlinear phase shift in two-wave 
mixing of the cavity wave with the pump wave in photore- 
fractive crystals. The grating on which the mixing takes 
place is recorded by beams with a frequency difference Sw 
smaller than or of order the inverse relaxation time of the 
grating, Sw =: T, '. In other words, the mixing is quasi-degen- 
erate in frequency. 

As has already been shown both theoretically and ex- 
perimentally,12-13 a quasistatic grating can be written by a 
fast-moving interference pattern formed by two beams hav- 
ing a frequency difference R + AR) T; I. Coupling of the 
waves on such a grating is highly nondegenerate. This mech- 
anism has come to be called synchronous detection (SDM). 
In a resonator with fixed mirrors the frequency difference 
between the beams incident on the crystal is insufficient for 
efficient recording of the grating by SDM. To construct an 
oscillator based on SDM, the required frequency shift R can 
be produced periodic motion of one of the mirrors, thereby 
providing feedback. In the present paper we examine some 
schemes for such oscillators based on one and two photore- 
fractive crystals. We study the stationary states of these 
schemes, their stability and lasing characteristics. To start 
with, in the case of a unidirectional ring oscillator with one 
crystal, we consider in detail the base model including a de- 
scription of the nondegenerate mixing on an SDM grating. 
Then on the basis of this model we consider various modifi- 
cations of linear and ring resonators. 

shifts the frequency of the reflected signal by + R with re- 
spect to that of incident signal. The sign of the frequency 
shift is determined by the direction of motion of the piezoe- 
lectric mirror. 

When a pump beam with amplitude P is incident on the 
crystal, a cavity wave is formed from the noise scattered by 
the inhomogeneities of the crystal. After the first reflection 
from the piezoelectric mirror, this wave acquires a frequency 
shift R, and, interacting with the pump wave, writes the qua- 
sistatic SDM grating. The frequency shift grows with each 
successive pass. The gratings written by waves with frequen- 
cies w + nR ( n  > 1 ) are small14 and the effect of these waves 
reduces to a simple decrease in the contrast of the main inter- 
ference pattern moving with velocity R/q. Here q is the spa- 
tial frequency of the gratings. In the cavity beam incident on 
the crystal there is no wave with unshifted frequency w, for 
which reason quasi-degenerate mixing is excluded in this 
scheme. 

Let us consider the mixing of waves on a dynamic grat- 
ing in the plane wave approximation. Two waves incident on 
the crystal (see Fig. 1 ) take part in the process of writing the 
grating: 

S(r ,  t )  =S exp {i  [k,r- (o+Q) t ]  ) 

Here P i s  the amplitude of the pump wave and S is the 
amplitude of the cavity wave having frequency shift 0. Dif- 
fraction by the recorded static grating leads to the formation 
of two new waves: 

St ( r ,  t )=Sc  exp {i ( k , r - a t ) ) .  
(2)  

Pi ( r ,  t )  = P ,  exp {i [k,r- (o+Q) t ] ) .  

By interfering, the wave pairs ( 1) and (2)  produce travel- 
ling interference patterns and write the grating, thanks to 

2. RING OSCILLATOR WITH ONE CRYSTAL 

Let us consider the standard ring oscillator consisting 
of a piezoelectric mirror and two plane mirrors (Fig. 1 ) . A 
sawtooth voltage with frequency R equal to the frequency of 
the variable voltage applied to the crystal, and an amplitude 
which shifts the phase of the reflected signal by 2r,  is applied 
to the piezoelectric mirror. This kind of phase modulation 

FIG. 1 .  Ring oscillator with periodic sawtooth modulation of the resona- 
tor length. 
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SDM. The amplitude of the grating is described by the relax- 
ation equation 

Here I, is the total intensity of the waves illuminating 
the crystal, including all the frequency components of the 
cavity wave and g is the nondegenerate coupling constant, 
determined by the amplitude of the space charge field E,, 
(Ref. 12),  normalized to the contrast of the interference pat- 
tern: g = - ( w / c )  (n3r/2)Es, ,  where n is the unperturbed 
index of refraction, r  is the electrooptic coefficient, and c  is 
the speed of light. The quantity T,, is chosen in Eq. ( 3 )  as the 
unit of time. The quantity Q characterizes the amplitude of 
the permittivity grating: 

Dynamic diffraction of waves ( 1 ) and ( 2 )  on grating 
( 4 )  is described by the system of simplified equations 

The system of equations ( 3 ) ,  ( 5  ) is closed. In the deri- 
vation of Eq. (3)  we have neglected the recording of the 
gratings by the static interference patterns P * S, and P TS, 
assuming the efficiency of degnerate mixing to be small. 
Such a situation can always be achieved in a crystal which 
does not have a photovoltaic effect at low spatial frequency. 
The efficiency of recording of the grating by a static interfer- 
ence pattern in an external variable field or as a result of 
diffusion in this case is small since its dependence on the 
spatial frequency is l i r~ea r .~ , ' ~  On the contrary, the efficiency 
of SDM in this case is maximal. 

One can easily convince oneself by direct substitution 
that the solution of Eqs. ( 3 ) ,  ( 5 )  has the form 

S=S (0, t )cos  I Q ) z ,  P=P, cos 1 Q 12, 

where Po is the input amplitude of the pump wave and S(0 , t )  
is the amplitude of the component of the cavity wave as it 
enters the crystal. Because the mixing on an SDM grating is 
steady, the spatial and temporal dependences of all the quan- 
tities separate. 

The resulting relations ( 6 )  are completely equivalent to 
the case of diffraction of a wave pair S  and P on a grating 
whose hologram amplitude is uniform with depthI6," and 
which is determined by the slowly varying contrast of the 
interference pattern upon entrance to the crystal, in accor- 
dance with Eqs. ( 7 ) .  

Let R be the complex amplitude transmission coeffi- 
cient of the resonator for one pass. The amplitude-phase 
condition for lasing, taking Eqs. (6) into account, gives 

Physically, this condition means that the wave S(0 , t )  is 
built up at the entrance to the crystal as a result of diffraction 
of the pump wave by the grating with a subsequent round- 
trip through the resonator and reflection by the piezoelectric 
mirror. The value of the phase of the complex coefficient R 
deserves individual attention. In a static resonator this phase 
is determined by the detuning from a whole number of wave- 
lengths. In the case of the sawtooth motion of one of the 
mirrors considered here this detuning varies linearly in time 
within the limits 0 - 2 ~ .  To determine the phase of R, it is 
necessary to take the value of the detuning (the length of the 
resonator) when the applied field is at its maximum. It is 
precisely this phase that the grating is in antiphase with the 
instantaneous position of the running interference pat- 

as was assumed in the choice of the phase on the 
right-hand side of Eq. ( 3 ) .  

Substituting Eq. ( 8 )  in Eq. ( 7 ) ,  we obtain an equation 
describing the grating dynamics. 

The amplitude of the frequency components of the cav- 
ity wave at the entrance to the crystal are related by the 
recurrence relation 

Here E, is the amplitude of the component with fre- 
quency shift n f i  ( n  > 0 )  relative to the pump. The amplitude 
of the first principal component is related to the pump ampli- 
tude. 

Here 7 = sin2 1 Q I I is the instantaneous diffraction efficiency 
of the grating. Taking these relationships into account and 
carrying out an elementary summation, we obtain for the 
total intensity of the waves irradiating the crystal 

Near the threshold for the onset of lasing, the ampli- 
tudes of the cavity waves and of the grating can be taken to be 
small for lR I < 1 ,  whence Eq. ( 12) into account we have 

In this approximation we obtain a linearized equation 
describing the behavior of the grating: 

From Eq. ( 14) it follows that the grating and the cavity 
wave due to it result when the coupling constant glexceeds a 
threshold value: 

Similar calculations for the case of an ideal resonator 
(R I = 1 give the threshold g l>  2. 

As the value of gl passes through the threshold, the 
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FIG. 2. Phase portrait of the grating amplitude. 

phase portrait of the system in the (ReQ, ImQ) plane near 
the null equilibrium position transforms from a stable focus 
into an unstable one. The velocity with which the grating 
moves when lasing begins and the detuning A f l  of the cavity 
waves from exact synchronism with the external field are 
given in the first approximation by the imaginary part of the 
root of the characteristic equation ( 14) 

AQ=gl ReR. (16) 

In the steady lasing regime the grating moves with con- 
stant velocity and its amplitude is bounded. The correspond- 
ing limiting phase trajectory in the (ReQ, ImQ) plane is a 
limit cycle (Fig. 2). Finding the steady-state amplitude of 
the grating (the radius of the limit cycle) and the velocity 
with which it moves requires the solution of the nonlinear 
equation (9)  with intensity I, determined by relation (12). 
Searching for the steady-state solution in the form 
Q = Q, exp{ - i h f l t )  gives for the amplitude Q, and the fre- 
quency A n  

0.1 [ I - ~ R ~ ' + 2 ~ R ~ ' s i n 2 Q O l  sin Qol = - 
glImR 1-(R)2+)R)2sinZQ,l 

Here e, is the phase detuning of the resonator length 
from a whole number multiple of 2~ when the field in the 
crystal attains its maximum. Recall that as the unit of time 
we have chosen the relaxation time of the grating T,, deter- 
mined by the total intensity I,. The roots of the transcenden- 
tal equation ( 18) determine the steady-state values of the 
grating amplitude. The rational function of sin2 Q,l on the 
right-hand side of Eq. ( 18 ) increases monotonically in the 
interval (0, l )  from 1 to 1 + I R 1 2. For small values of I R I, 
which, as a rule, are encountered in practice, we will replace 
this function in the analysis of the solutions ( 18) everywhere 
by unity. As a result, for the steady-state values of the ampli- 
tude Q, we obtain 

sin Qol=Qoll ( g l  ImR). (19) 

The first nonzero root of Eq. (19) appears for gl> 1/ 
Im R > 0, which, as could be expected, coincides with the 
instability threshold ( 15). As the coupling constant gl in- 
creases further, additional roots of Eqs. ( 19) appear in pairs. 
In each pair one root corresponds to an unstable limit cycle, 
and the other to a stable one. 

In an oscillator with degenerate mixing and a medium 
capable of sufficient gain yl simultaneous generation of sev- 

eral modes is p o ~ s i b l e , ' ~ ' ~ ~ ~ ~  differing in the velocity with 
which the grating moves and, consequently, in the frequency 
shift relative to the pump. In contrast to this, in the oscillator 
under consideration one grating is always excited. Its veloc- 
ity does not depend on the coupling constant, but is deter- 
mined, as in the degenerate case, by the phase detuning of the 
resonator ( 17). For when the coupling constant is the ampli- 
tude of the grating can take on several values, determined by 
Eq. ( 18). Such an oscillator can be considered as a multista- 
ble system in which the number of stable states (limit cycles) 
is greater by one than the number of unstable ones. However, 
the transition of the oscillator to a state with number greater 
than unity is possible only in the case of drastic loss of stabil- 
ity, i.e., as a result of a large initial perturbation. 

One of the important characteristics of any laser is the 
power of the generated radiation. In the given case this pow- 
er I is determined by the diffraction efficiency of the grating. 
Its limiting value for 77 = 1 is given by Eq. ( 12) : 
I=I,- IPI2= IR 12/P12.1nan idealresonator (lR I = 1) 
the lasing intensity reaches the level of the pumping power. 
Note that the power of the lasing wave consists of many 
components which have different frequency shifts 
nR + AR. As the coupling constant increases from the 
threshold value, the diffraction efficiency, and with it the 
power, vary nonmonotonically, reaching their maxima at 
gl  = 77/(2ImR) in agreement with the pendulum solution of 
Eqs. (6).  

Let us consider the limit cycles which are determined by 
the magnitude of R. For an imaginary transmission coeffi- 
cient (Re R = 0)  the generated grating has a steady charac- 
ter [see Eq. ( 16) 1, but the conditions of lasing for a given 
coupling constant gl are optimal, in agreement with inequal- 
ity ( 15). These facts have a simple physical interpretation. 
Indeed, let a noisy grating arise in the crystal. When the 
wave is diffracted by it, its phase changes by ~ / 2  [the factor 
of i in the simplified equations (5)  1. If after traversing the 
resonator the diffracted wave acquires an additional phase 
shift ~ / 2 ,  the interference entering the crystal is in anti- 
phase, but the grating recorded by it is in phase with the 
starting perturbation of the refractive index. When the 
threshold condition ( 15) is exceeded, the noisy grating 
grows without spatial displacement, but the steady-state, 
static position of the grating is determined by the position of 
the initial perturbation. In oscillators with degenerate mix- 
ing on a shifted grating caused by a diffusion nonlinearity,' 
the condition Im R = 0 is optimal. Such a difference is due 
to a shift of the grating by ?r/2 relative to the interference 
pattern in the case of diffusion mixing. A resonator with a 
piezoelectric mirror can be tuned to the optimal lasing con- 
dition Im R = 0 by regulating the phase difference between 
the variable field applied to the crystal and the sawtooth 
modulating signal. 

In the other limiting case, Im R = 0, lasing is impossi- 
ble. The picture of the grating dynamics in this case is the 
following. Upon diffraction from a random starting grating 
the wave acquires a phase shift of ~ / 2 ,  which is not compen- 
sated by the round-trip through the resonator. As a result, 
this wave, by interacting with the pump, writes the grating 
shifted by + ~ / 2  with respect to the starting grating. Thus, 
the noisy grating does not receive the in-phase input arising 
from diffraction of the pump. This situation is completely 
analogous to degenerate mixing on an unshifted grating, 
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which does not allow the pump to amplify the cavity beam 
and does not bring about the onset of lasing. 

3. A LINEAR OSCILLATOR WlTH ONE CRYSTAL 

Linear oscillators, which can be used for wavefront re- 
versal (WFR),6 can be built on the basis of an analogous 
principle (Fig. 3).  The principle of their operation can be 
easily understood from inspection of Fig. 3. In the steady- 
state regime the pump is diffracted by the grating with subse- 
quent reflection from the static mirror. Part of the reflected 
wave gives the reversed component after diffracting on the 
grating. The remaining part is reflected from the piezoelec- 
tric mirror after passing through the grating, thereby acquir- 
ing a frequency shift, and is reflected into the crystal, where, 
interacting with the pump, it writes the SDM grating. As 
with a ring oscillator, here components with higher frequen- 
cy shifts also occur here. 

In the given scheme, in the absence of degenerate mix- 
ing the grating is written by the component of the cavity 
wave with frequency w + R + AR, propagating in the same 
direction as the pump while interacting with the latter. The 
counterpropagating cavity wave does not write a grating 
with the pump, since the electric field in the direction of the 
wave vector of this grating is small and its spatial frequency 
is large.I2 Waves with frequency shifts w + nR + Afl 
( n  > 1) only decrease the contrast of the interference pattern 
being written, since the amplitudes of the gratings excited by 
them are small. l4 Thus, the grating dynamics, as before, are 
described by Eq. (7).  The amplitude of the component of the 
cavity wave taking part in the writing is related to the pump 
in the following way: 

where R is the complex transmission coefficient of the reso- 
nator after one pass and 77 = sin2/ Q 11, as before, is the dif- 
fraction efficiency of the grating. 

In contrast to a ring oscillator, in the calculation of the 
total intensity I, the intensity of the counterpropagating cav- 
ity wave must be taken into account. With this, we have for 
the linear oscillator 

Combining this equation with Eqs. (7) ,  ( 19') and (20), we 
obtain a nonlinear equation which describes the grating dy- 
namics: 

Linearizing Eq. (21) near the zero equilibrium posi- 

FIG. 3. Optical diagram of the linear oscillator based on the mechanism of 
synchronous detection. 

tion, we obtain its stability threshold, which coincides with 
the threshold of the ring oscillator: g l>  1/Im R. For an ideal 
resonator ( I R I = 1 ) this threshold becomes gl > 3/2. The 
phase portrait of the system in the (Re Q, Im Q) plane is also 
analogous to that for a ring oscillator. To find the circulation 
frequency around the limit cycles and their amplitudes, 
we replace the slowly varying factor in brackets in 
Eq. (21) everywhere by unity. We then seek the solution 
of the so-obtained nonlinear equation in the form Q 
= Q,exp( - ihflt). We easily find 

AQ=ReR/lmR=ctg cp, 

sin 2Qol=2Qol/glImR. 

Equation (22) relates the detuning Afl of the frequency 
of the generator wave from exact synchronism with the de- 
tuning of the resonator length from a whole number of wave- 
lengths p. The roots of Eq. (23) give the steady-state values 
of the grating amplitude Q,. Let us turn our attention now to 
the coefficient 2 in Eq. (23) in comparison with Eq. (19). 
The first nonzero solution of Eq. (23) appears, as could be 
expected, at gl> 1/Im R. Roots then appear in pairs as the 
coupling constant gl  increases continuously. In the limit 
gl- w the roots of Eq. (23) asymptotically approach 
(Q,l), = kn-/2, where k is an integer. The diffraction effi- 
ciency and the reversal coefficient of the WFR mirror in this 
case asymptotically approach unity, never reaching it. This 
result has a simple physical interpretation. In the case of unit 
diffraction efficiency the pump wave, by diffracting twice on 
the grating, would be completely reflected into the reversed 
wave. In this case there is no mixed component entering into 
the crystal and the grating is erased. 

The reversed wave in the present scheme contains all 
the frequency components, including the unmixed one. The 
latter can be eliminated if the mirrors in this scheme change 
places. 

4. RING OSCILLATOR WlTH TWO CRYSTALS 

It is also of interest to consider the scheme of a ring 
oscillator with two crystals, each of which is pumped by its 
own beam, and whose frequencies are shifted by the amount 
R, coinciding with the frequency of the applied field (Fig. 
4a). With increase of the threshold, which is given below, a 
wave arises in the resonator which has both a mixed and an 
unmixed component. Here the unmixed component writes 
the grating in the first crystal, and the mixed, in the second. 
Crystal 1 is illuminated by three waves: 

P(r, t )=P exp (i[k2r- (o+Q)t]) .  

A (r, t)=A exp (i[k,r--ot]), (24) 

B(r, t)=Bexp {i[k,r-(o+Q)t]). 

For crystal 2 these waves have the form 

P(r ,  t)=P exp {i(k2r-ot)), 

C(r, t) =C exp {i(k,r-ot)), 

D(r, t)=D exp {i[k,r- (o+S2)t]). 

For the dynamic variables of the grating Q, and Q, in crys- 
tals 1 and 2h respectively, we have the equations 
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FIG. 4. Diagram of the unidirectional ring oscillator with two crystals: a )  
fixed mirrors and frequency-shifted pumps, b)  movable mirrors and sin- 
gle-frequency pumps. 

In Eqs. (24) and (25) the amplitudes of the pumps 
have been taken to be equal. The amplitudes of the waves PI 
A, B, C, and D are connected by the laws of diffraction on the 
two gratings and the complex transmission coefficients: 

A =  (1-91)'" (I-qz)"'R,R2A+Rzqz"'P, 

B= (1-91)" (l-qz)'hRIRzB+RIRzqi'hP, 

C=(.l-qs)'" (1-qz)"RsRzC+RiRzqz'P, 
(27) 

D= (1 -q r ) ' " ( l~q2)  'hRlR2D+Rsql"P. 

Here q1 = sin2 I Q, 11, and q2 = sin2 1 Q2 11, are the grating 
diffraction efficiencies in the first and second crystals, re- 
spectively, R, and R2 are the complex transmission coeffi- 
cients of the left and right arms of the resonator (see Fig. 
4a). Taking both crystals to be identical and assuming that 

q ,  = q2 and R, = R2 = R, and taking into account relations 
(27) , Eqs. (26) transforms to one nonlinear equation for 
the dynamic variable Q = Q, = Q,: 

Q=-Q-~ QRgsin lQll 
I Q I  

where q = sin2 1 Q I I is the diffraction efficiency of the grat- 
ings. Near the lasing threshold we set q +0, sin1 Q I I=: 1 Q 11, 
and obtain the linearized equation 

from which follows the threshold condition for the onset of 
lasing 

Recall that here R = R ,R2 is the complex transmission 
coefficient for a complete round-trip of the resonator. As can 
be seen, the threshold condition (30) is different from that 
obtained for single-crystal generators. The behavior of the 
phase portrait of the system at large values of gl is similar to 
that described above. The rotation frequency around the 
limit cycles in this case is 

The amplitudes of the limit cycles is determined by the equa- 
tion 

sin )Qoll = IQolL 
glIm[R/(l - R ~ ) ] '  

The minimum threshold of onset of lasing (gl),, is at- 
tained for the following values of the phase q of the coeffi- 
cient R: 

1+IR12 
for sincp=l, O<IR)<2'"-1 

(gl) th= \4(:!/R12) I-IRIZ 

1+(RI2 
for sin cp=-, 2"-1<(R)<1 

21Rl 

Completely analogous results obtain from considering 
a generator containing two crystals pumped by beams of the 
same frequency (Fig. 4b). The frequency shift in such a gen- 
erator is produced by two piezoelectric mirrors moving in 
opposite directions. Pairs of waves with frequencies 
(W,W + f l )  or ( W  - f l , ~ )  propagate in the cavity, depend- 
ing on the cross section. The lengths of resonators with two 
crystals (Figs. 4a and b) do not vary in time and the phase 
tuning of R can be realized only by continuous, smooth mo- 
tion of one of the mirrors. 

5. CONCLUSION 

The main difference between the generators considered 
here and those based on degenerate mixing, in our view, is 
that lasing occurs in only one mode, whose frequency detun- 
ing Afl depends on the resonator length. In the schemes con- 
sidered, the magnitude of Afl can be easily regulated by the 
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FIG. 5. Dependence ofthe threshold coupling constant (g l )  ,, on the mag- 
nitude of the transmission coefficient I R I for optimal value of its phase: 1 ) 
single-crystal scheme, 2) two-crystal'scheme.- 

phase difference between the applied field and the sawtooth 
signal controlling the piezoelectric mirror. The single-mode 
regime means, apparently, more stable generation in the 
presence of fluctuations of the parameters of the pump laser 
in comparison with degenerate-mixing generators. The las- 
ing threshold of these schemes is relatively high and finite 
even for ideal resonators with I R I = 1 in contrast with quasi- 
degenerate lasers based on PRC gratings. Figure 5 shows the 
values of the threshold coupling constants (gl),, in the 
schemes considered for optimal phase of the transmission 
coefficient R. As can be seen, for values of R realizable in 
practice (R < 0.7) the single-crystal scheme is more advan- 
tageous. The value of the constant gl needed for the realiza- 

tion of the generators described here ( g l z  2) means a dif- 
fraction efficiency of sin (mg1/2) -sin 1 -- 84% for 
recording of SDM gratings by an interference pattern with 
unit contrast." In experiments being carried out at present 
on the recording of SDM gratings in crystals of 
Bi,,Ti(Si)O,, a diffraction of only 25% has been reached.I4 
In this connection, it is interesting to consider the recording 
of gratings in a variable field in segnetoelectric crystals with 
a higher electrooptical coefficient. 
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