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We study the mechanism of recording a static hologram by a moving interference pattern in a 
photorefractive crystal in an external ac field. The field's frequency is equal to, or is an integral 
multiple of, the modulation frequency of one of the interacting beams and considerably exceeds 
the inverse recording time. The cases of phase and amplitude modulation are studied. The 
theoretical analysis is based on material equations describing the spatial separation of charge in 
the photorefractive crystal. The crystal used in the experiment was Bi12Ti02,. 

INTRODUCTION 

The past decade has seen a keen interest in the nonlin- 
ear-optics photorefractive effect. The reason is the outstand- 
ing potential of photorefractive crystals (PRC) for optical 
processing and storage of data, transformation of wave 
fronts, and holographic interferometry, to name some fields 
of application.' The process of recording a holographic grat- 
ing in a PRC constitutes spatial separation of charge as a 
result of electron photoexcitation to the conduction band 
with subsequent formation of a space-charge field grating. 
The refractive-index grating results from the Pockels effect. 

The simplest mechanism of separating the space charge 
is the diffusion and drift of electrons in the internal photo- 
voltaic field.' In crystals with fairly low electrooptic coeffi- 
cients (selenites and semiconductors) the diffusion mecha- 
nism does not produce a strong refractive-index grating. By 
applying a constant external field the photorefractive re- 
sponse of the crystal can be am~lif ied.~ The drawback of this 
method is that it requires uniform illumination to exclude 
electrostatic screening of the field in the brightly illuminated 
regions. The method of recording in a rapidly varying field3 
(i.e., rapid in comparison to the time of dielectric relaxa- 
tion) is free from this drawback but can be used only if the 
electron drift length I ,  = E@T exceeds the period A/ 
2 a  = q- '  of the interference pattern being registered. Here 
Eo is the amplitude of the external field applied to the crystal, 
and ,LLT the product of electron mobility and the time the 
electron spends in the conduction band (the trap lifetime in 
the conduction band). 

A method for recording holograms in an external ac 
field applicable to crystals with an arbitrary drift length was 
suggested and verified experimentally in Refs. 4-8. It per- 
mits recording a static grating with two beams of different 
frequencies (a  moving interference pattern) if the frequency 
shift between the beams coincides with the frequency of the 
applied field and considerably exceeds the inverse recording 
time. The method became known as the mechanism of syn- 
chronous detection of a moving interference pattern by an 
external ac field. 

This paper studies the possibility of hologram recording 
when the modulation frequency of one of the interacting 
beams is equal to, or is an integral multiple of, the frequency 
R of the applied field. In this case the field of the periodically 
modulated wave can be represented by a Fourier series: 

EP ( t ) = E ,  exp ( - i d )  ) a,, exp(- inQt) ,  

where w is the frequency of the unmodulated wave, and the 
a, are the Fourier coefficients. In the case of sawtooth mod- 
ulation of the phase with an infinitely steep trailing edge and 
a 2 a  amplitude there is only one nonzero term in the sum on 
the right-hand side of ( 1 ) . We call this modulation mono- 
chromatic. But if there are several nonzero terms in ( 1 ), we 
call the modulation polychromatic. Below we discuss the 
recording of a grating in a PRC by a uniformly moving inter- 
ference pattern under monochromatic modulation, and sev- 
eral special cases of polychromatic modulation. 

MONOCHROMATIC MODULATION 

Let us consider the case of monochromatic modulation 
of the primary wave, where the difference in frequencies of 
the interacting waves, Sw = w, - w,, is an integral multiple 
of the frequency of the field applied to the crystal. Our theo- 
retical analysis is based on the equation for the amplitude of 
the space-charge field,9 

where 

I f  EDIEq-iEo cos M E ,  
r( t )= 

Tar ( l f E D / E , - i E o  cos W E , )  ' 

e-""(E, cos Q t f i E , )  
F ( t )  = 

r, ( l+E,/E,- iE,  cos Qt/E,)  ' 

The holographic grating is recorded by the moving interfer- 
ence pattern 

with a contrast m and an average light intensity I,. In Eqs. 
(3)  and (4),  E, cos at is the external field applied to the 
crystal; ED = qkB T / e  is the diffusion field, with k B  T the 
temperature in energy units and e the elementary charge; 
E, = eN, / E E , ~  the saturation field of traps with a number 
density NA ; E and E,  the dc dielectric constants of the PRC 
and vacuum, respectively; and E, = ( q p ~ )  - ' the drift field 
(by its physical meaning, the electron drift length exceeds 
A/277 when E, > E, ) . 
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If the difference in frequencies of the signal and primary 
beams, So, considerably exceeds the inverse hologram-re- 
cording time 7; ', which time is primarily determined by the 
Maxwellian relaxation time r, = EE~/U, with O. the photo- 
conductivity induced by the light, we can average over the 
field's period 277/R, ignoring the rapidly oscillating part of 
E, which is of the order of (Rr,, ) - I .  As a result Eq. (2)  
assumes the form 

where E is the slowly varying amplitude of the space-charge 
field grating, and ( r) and ( F )  are the averages of the ( t )  
and F( t )  functions. 

Thus, for the static amplitude E ii' = - m(F  )/(r) of 
the hologram we have 

where we have assumed that n is positive (n > 0); for nega- 
tive n we must replace n with In I in Eq. ( 6 ) .  The subscript sin 
indicates the shape of the field on the crystal. 

A solution for recording a static interference pattern 
was found in Ref. 3 and has the form 

As is known, the effectiveness of nonstationary mecha- 
nisms of hologram recording greatly depends on the relation 
between the electron drift length and the grating period: 
ql, = Eo/Ep (Refs. 3 and 8).  Hence, in further discussions 
of the recording process we ignore electron diffusion and 
trap saturation: 

As for the applied external field, its amplitude is assumed 
constant and is limited by the field of surface breakdown of 
the crystal. Hence, lo = I~rEo,max is a parameter indicative of 
a specific crystal sample. 

Thus, if conditions (8)  are met, we have the following 
limiting cases for E,, : 

The maximum amplitude of the space-charge field E with 
conditions (8)  met is attained at Q = (n2 - 1)'" (n > 1): 

When a static interferetlce pattern (n = 0) is recorded, the 
maximum amplitude of the space-charge field E :Ed asymp- 
totically tends to - imEo for large spatial grating frequen- 

cies q. In the case of n = 1, E :>,' attains its maximum value 
- mE0/2 for small values of q. 

Let us summarize the results of our theoretical analysis. 
The amplitude of the space-charge field, E :,?', realized in the 
recording the hologram by the signal and primary beams 
with a frequency difference nR in an external ac field 
Eo cos Rt  increases in proportion to q " - ' (n > 1 ) for small 
q < 1 ; ' and decreases like q- ' for large q > I  ; I. Examining 
the dependence of the grating amplitude on the amplitude of 
the external field, we note that the grating amplitude is pro- 
portional to E ;f for small Q <  1 and tends to E, for Q>  1. 
The maximum value E !&)x asymptotically decreases in pro- 
portion to n (for large values of n). We also note that a 
sizable photorefractive response of the crystal to waves with 
a frequency difference nR (n # 1 ) is realized only in crystals 
with large drift lengths, that is, when the condition 
Q = ql0 = Eo/E, > 1 is met. As for the lock-in detection 
method (n = 1 ), hologram recording is possible in crystals 
with large drift lengths and with small drift lengths, being 
more effective in the latter. The hologram amplitude E Ai',' 
depends on q like E:>,'-Ep-q-', starting at mE0/2 for 
small q < 1 ;  '. 

Figure 1 depicts the amplitude of the space-charge field, 
E::', as a function of the spatial grating frequency q with 
conditions (8)  met and pr = 2.3 X 10W8 cm2 V-I, which 
coincides in order of magnitude with the data from the litera- 
ture on the Bi,,TiO,, crystal.'.I0 It must be noted that Eqs. 
(9)-( 11) are valid only if there is no trapping-center satura- 
tion and no electron diffusion. Allowing for trap saturation 
leads to a decrease in the hologram amplitude for large val- 
ues of q, and allowing for electron diffusion also leads to a 
decrease in the amplitude of the space-charge field for large q 
(Refs. 4-6). 

Figures 2(a)  and (b)  depict the qualitative spectrum of 
the photorefractive response of the crystal when hologram 
recording is done in a sinusoidal field, for two different val- 
ues of parameter Q. A small frequency detuning 
AR(So = nR + AR) results in the holographic grating 
moving with a velocity of AR/q and a decrease in its ampli- 
tude: 

FIG. 1 .  Theoretical curves representing the amplitude of the space-charge 
field, E I:,' (in units of Eo) ,  as a function of the spatial grating frequency q 
in the case of a sinusoidal field Eo cos fir acting on the crystal, with 
ED = E; '  = 0 and EF = (,u.rg)-' = ( 2 . 3 ~  10WBq)-I. 
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FIG. 2. The spectrum of the photorefractive response of a crys- 
tal to a moving interference pattern (So is the frequency differ- 

-4 -2 0 2 4 - -2 0 2 4 &,,/a ence of the interacting beams): ( a )  and (b),  in a sinusoidal field 
E,, cosRt; and (c) and ( d ) ,  in a sign-alternating meander-type 
field E,sgn(cos Rt). Cases ( a )  and (c)  correspond to E,,/ 
Efi = 0.3, and (b)  and (d )  to E,/E, = 3. 

A:;; ( A Q )  = 
E:;"' (0) 

exp ( - i A Q t ) .  
~ - ~ A Q T , ~  

Thus, the spectral lines in Fig. 2 are Lorentzian with the 
width determined by the inverse hologram relaxation time, 
7,' = (I?) (Ref. 5) .  

If the recording of the holographic grating is done in a 
sign-alternating meander-type field Eo sign(cos a t ) ,  the re- 
spective solution to Eq. (5) has the form 

When conditions (8) are met, these formulas become 
simpler: 

Note that in a meander field the holographic grating is 
not recorded in the case of even harmonics, that is, when the 
difference in frequencies of the primary and signal beams is 
2fl,4fl ,... (n = 2,4 ,... ). Also, the amplitude of a hologram 
recorded in a meander field depends neither on the spatial 
frequency q nor on the parameter Q for n $0. In contrast to 
recording in a sinusoidal field for Q( 1, there is no propor- 
tionality to E t f  , since a meander field contains all odd har- 
monics, whose contribution is described by the factor l/n in 
Eq. ( 14b). Accordingly, for Q) 1 the grating amplitude is 
not restricted to Ep. Hence, hologram recording in a 
meander field is preferable to recording in a sinusoidal, 
where large values of Q (large values of the electron drift 
length) are required. 

Qualitative spectra of the photorefractive response of a 
crystal in a meander field are depicted in Figs. 2(a) and (d) .  

The phases of the gratings recorded by different har- 

monics merit a separate discussion. In the recording in a 
sinusoidal field the odd harmonics have an alternating phase 
factor + 1, while in a meander field all these harmonics are 
in antiphase with the interference pattern (we are speaking 
of their position at the zero moment in time, when the field 
attains its maximum value). The even harmonics, however, 
in a sinusoidal field possess a factor + i, and in a meander 
field they are not recorded. 

Experimental investigations were conducted with two 
samples of a Bi,,TiO,, crystal: the one with a large electron 
drift length in comparison to the holographic grating period 
(for A < 10 pm) ,  BTO1, and the one with a small electron 
drift length, BT02. The assumptions about the electron drift 
length were made on the basis of a degenerate two-wave in- 
teraction in the ac field.3 

Figure 3 depicts the experimental setup for studying the 
nondegenerate two-wave interaction in PRC. A 1-mW heli- 
um-neon laser ( A  = 0.63 p m )  was used as a source of coher- 
ent radiation. A beam-splitting plate 5 was employed to 
form the two beams recording the holographic grating in the 
crystal. The beam reflected by plate 5 was used as the signal 
beam E, exp( - iwt). The primary beam passed through 
plate 5 and was reflected by mirror 4 mounted on a piezoe- 
lectric ceramic cylinder. The movements of mirror 4 were 
due to a sawtooth voltage applied to the cylinder. The vol- 
tage across the cylinder increased linearly to its maximum 
value, which resulted in a 277 phase shift in the primary 
beam, and then dropped rapidly to zero (the trailing-edge to 
leading-edge ratio did not exceed 0.01 ) . The frequency of the 
primary beam reflected by mirror 4 was shifted by a quantity 
n a  (n = 1,2,3,4), an integral multiple of the frequency of the 
field on the crystal. This was done by a specially manufac- 
tured frequency multiplier driving the generator of sawtooth 
pulses fed to the piezomirror. The frequency shift in the pri- 
mary beam was monitored by an auxiliary interferometer 
consisting of elements 1-4 and a photodetector (PD). In 
front of the photodetector was placed a diaphragm with a 
diameter roughly equal to the period of the interference pat- 
tern at the exit from the interferometer. The signal from the 
photodetector was fed to an oscilloscope on whose screen 
sinusoidal oscillations were observed at a frequency equal to 
the frequency difference of the interacting beams. The auxil- 
iary interferometer was used only for monitoring the fre- 
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quency shift in the primary wave E, exp[ - i(w + nR)t] ,  
and the ray from mirror 2 was blocked when the waves were 
interacting in the crystal. 

The polarizations of the interacting waves were fixed in 
such a manner that they would assume, owing to intrinsic 
optical activity, the values + 45" in the plane of incidence in 
the middle of the crystal, approaching the intrinsic polariza- 
tions for the given orientation of the ~rys ta l . ' ,~  The front face 
of the crystal was positioned at right angles to the bisector of 
the angle between the incident beams which formed the peri- 
odic interference pattern moving with a velocity v = nR/q. 
The direction of the grating's wave vector q coincided with 
the direction of the electric field applied to the crystal along 
the [ 1101 axis. 

The field on the crystal had either a sinusoidal time 
dependence Eo cos Rt  (R/2z- = 50 Hz) or a meander-type 
time dependence Eo sin(cos Rt )  (W27-7 = 60 Hz). The 
grating period A = A  /sin(8/2), with 8 the angle between 
the signal and primary waves and R the wavelength of the 
incident light, was varied by moving the beam-splitting plate 
5, with the path difference of the recording beams always 
remaining smaller than the laser's coherence length. The dif- 
fraction efficiency was determined when the hologram was 
read by the primary beam with the signal beam blocked. 

The choice of the intensity ratio of the signal and pri- 
mary beams merits separate consideration. The thing is that 
as a result of diffraction two new waves, El exp( - iwt) 
and Ei exp [ - i(w + nR)t 1, appear on the static hologram 
of the initial waves Esexp(- iwt)  and Ep 
X exp[ - i(w + nR) t  1. The pairs of equal-frequency 
waves, E, - E: and Ep - E;, record two secondary grat- 
ings owing to electron diffusion or drift in the external ac 
field.4,6 It can easily be shown that these secondary self-dif- 
fraction gratings are in antiphase with each other. Thus, if 
the amplitudes are equal, the effect of self-diffusion gratings, 
which distorts the functional dependence of the amplitude of 
a recorded hologram on the spatial frequency, is nil. Hence, 
although the theoretical analysis was done for the case of a 
low-contrast interference pattern, m < 1, the experimental 

FIG. 3. The schematic of the experimental device. 

results were obtained for m = 1 and, as the reasoning below 
shows, confirm the basic conclusions of the theory. 

Figure 4 depicts the experimental data obtained with 
the BTO 1 crystal (large diffusion lengths) for the first har- 
monics of the phase modulation of the primary beam 
(n = 1 ). As expected, the values of the diffraction efficiency 
for orthogonal intrinsic polarizations coincide. This coorro- 
borates the fact that at m = 1 the interference patterns of the 
self-diffusion grating balance each other. For a meander 
field on the crystal the diffraction efficiency of the recorded 
hologram is higher than that for a sinusoidal. The solid 
curves in Fig. 4 represent the theoretical dependence ob- 
tained at N, = 1015 cm-3 and pr = 2.3 X lo-' cm2 V-', 
and these are in reasonable agreement with the data from the 
literature on the Bi,,TiO,, ~rystal. ' . '~ The discrepancy be- 
tween the experimental data and the theoretical curves for 
small spatial frequencies q can be explained by the transition 
to the Raman-Nath diffraction, provided that q<q, 
= ( n , / L / Z ) " 2 ~ 2 ~  lo3 cm-', where no is the unperturbed 

refractive index, and L the hologram thickness. 

FIG. 4. The diffraction efficiency 7 as a function of the spatial grating 
frequency q ( 6 0  = fi and n = 1): 0 ,  a sinusoidal field on the crystal 
( E ,  = 8 kV c m '  and R/2a = 50 Hz); A, a meander field on the crystal 
( E ,  = 8 kV c m '  and R/2r = 60 Hz). The polarizations of the interact- 
ing waves: 45" to the plane of incidence (A,.); - 45" to the plane of 
incidence (A,O). The intensity ratio Z,/I, is equal to unity. The solid 
curves represent the theoretical results at ,u~ = 2.3 X lopS cm2 V-' and 
N, = loL5 ~ m - ~ .  
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FIG. 5. The diffraction efficiency 7 as a function of the spatial grating 
frequency q ( 6 0  = 2 0  and n = 2). The notation is the same as in Fig. 4. 

Figure 5 depicts the diffraction efficiency 7 as a func- 
tion of the spatial grating frequency q for the case where the 
frequency difference of the recording beams exceeds the fre- 
quency of the field on the crystal by a factor of two (n = 2). 
The solid curve in Fig. 5 represents the theoretical depend- 
ence for recording in a sinusoidal field, a dependence ob- 
tained for the same parameters NA andpr  as in Fig. 4. As for 
recording in a meander field, from the theoretical analysis of 
(14) it follows that the holographic grating should not be 
recorded for the even frequency-detuning harmonics of the 
interacting beams, Sw = nR (n = 2,4, ... ) . Nevertheless, we 
observed a nonzero diffraction efficiency of the grating. This 
can be explained, first, by the fact that the piezomirror does 
not operate in ideal conditions, as a result of which the pri- 
mary beam has, in addition to a component with frequency 
w + 2R, components with frequencies w and w + R that in- 
teract with the signal beam, and, second, by the effect of the 
nonideal shape of the meander field on the crystal (the edges 
of the meander are not infinitely steep). Thus, further com- 
parison of the experimental data does not seem possible: the 
observed photorefractive response of the crystal at n = 3 was 
found to be of the same order as that at n = 2 in the case of a 
meander field on the crystal. 

A number of test experiments were conducted with the 
BT02 sample (small electron drift lengths). When a sinu- 
soidal field is applied to the crystal, significant hologram 
recording should be possible only for the first phase-modula- 
tion harmonic of the primary beam (n = 1 ). The response to 
other harmonics should be insignificant because the condi- 
tion of large electron drift lengths is not met. Qualitatively 
these facts were found to be ture: the photorefractive re- 
sponse of the crystal was observed only when the frequency 
difference between the signal and primary beams, R/ 
2n = 50 Hz, coincided with the frequency of the ac field 
E, cos Rt on the crystal. Similarly, when a meander field 
was applied to the BT02 crystal, significant hologram re- 
cording was observed only at n = 1. As for hologram record- 
ing for n # 1, this was found to be insignificant, and com- 
parative analysis is impossible, for the reasons given above. 

POLYCHROMATIC MODULATION 

Let us study the possibility of recording a static holo- 
gram for the case of polychromatic modulation of the pri- 
mary beam, that is, when the Fourier expansion ( 1 ) contains 
many components with frequencies w, o + R, w + 2R, etc. 
The result of illuminating PRC with two beams, the modula- 
ted primary beam and the unmodulated signal beam, can be 

represented by a set of interference patterns that move with 
different velocities (0, + R/q, + R/2q, ...). The contrast of 
each interference pattern is proportional to the respective 
coefficient a, in the Fourier expansion ( 1 ) of the primary 
beam. In this section we consider two types of modulation of 
the primary beam: amplitude odulation via a chopper and 
sinusoidal phase modulation via a piezomirror. 
Amplitude modulation. In the case of amplitude modulation 
of the primary beam the recording of the holographic grat- 
ing is done by an interference pattern of the type 

I I'~P = 2 
2 [sign (cos (~t+cp))  

where g, is the phase shift between the modulated signal and 
the ac field on the crystal. To find the amplitude of the re- 
corded hologram we use Eq. (5).  Averaging r ( t )  and F ( t )  
over the period 2n/R, we arrive at the following expression 
for the amplitude of the space-charge field in the case of a 
sinusoidal field Eo cosRt on the crystal: 

chp- imEO n E., .  - - - [Td+~')' - tg-I( iCf+Q2)"' ) ]  . (,,) 
nQ Q cos cp 

Here the subscript designates the type of field on the crystal 
and the superscript the type of modulation. Depending on 
the relation between the electron drift length and the spatial 
grating period, Q = qlo = Eo/E,, , we have two limiting 
cases: 

coscp, Qal. 
chP - 

E,I. - 

Equation (17a) shows that the amplitude of the space- 
charge field depends on the phase shift g, only when the pa- 
rameter Q is small. 

For hologram recording in a sign-alternating meander 
field Eo sgn(cos Rt) the respective solution to Eq. (5)  has 
the form 

Depending on the value of Q, we have the following expres- 
sions for the amplitude of the space-charge field: 

Let us compare the effectiveness of hologram recording 
when an interference pattern of type ( 15 ) acts on the PRC to 
which a sinusoidal or meander field is applied. Formulas 
( 17) and ( 19) show that recording in a meander field makes 
it possible to obtain a large photorefractive response of the 
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crystal for small and large values of Q. With large drift 
lengths (Q% 1) hologram recording in a meander field is Q 
times more effective than in a sinusoidal [Eqs. (17b) and 
( 19b) ] because the main contribution in hologram record- 
ing is provided by the unshifted component of the primary 
beam (n = 0)  and, hence, by the equal-frequency mecha- 
nism of recording in an ac field [Eqs. ( lob) and ( 14a) 1. 

The experimental device used to verify the functional 
dependences resulting from the theoretical investigation of 
hologram recording for amplitude modulation of the pri- 
mary beam is basically similar to the one depicted schemati- 
cally in Fig. 3. Amplitude modulation was done by a me- 
chanical chopper. As a result, the primary beam consisted of 
periodic pulses with a frequency R/2r  = 20 Hz ( R )  7; ') 
and a unit duty cycle. The chopping frequency of the pri- 
mary beam was synchronized with the frequency of the field 
on the crystal. To this end a fraction of the primary beam was 
sent to a photodiode and was used as the driving signal of the 
high-voltage generator of rectangular pulses fed to the 
Bi,,TiO,, crystal. The phase difference q, between the modu- 
lating signal and the field on the crystal was varied from 0 to 
2 ~ .  

Experimental measurements were carried out with the 
BTO1 crystal at two values of the grating period: A = 60pm 
for simulating the condition Q < 1 and A = 3 p m  for Q > 1. 
Figure 6 depicts the results of studying the diffraction effi- 
ciency 7 as a function of the phase difference q,B between 
the modulating signal and the meander field on the crystal 
(Eo  = 8 V cm- ' ) . At A = 60pm the 7 vs p dependence was 
found [Fig. 6(a)  ] to correspond to formula ( 19a) obtained 
theoretically. But at A = 3 p m  no dependence of on q, was 
observed [Fig. (6b) 1. The marked decrease in diffraction 
efficiency at A = 3 p m  can be explained by electron diffusion 
and trap saturation. These were not taken into account when 
the recording process was considered theoretically. 

Phase modulation. One of the most important types of 
modulation often used in practice is the sinusoidal modula- 
tion of the laser beam phase. The interference pattern 
formed by two beams with the phase of one sinusoidally 
modulated has the form 

I W ' = I ,  {1+ Irn esp [ iqx - iA  sin(Qt+cp)] + c.c.1, (20) 

where A is the amplitude of the phase-modulation signal. It 
is impossible to derive a simple analytical expression for the 
amplitude of the recorded hologram obtained as a result 
of the action on the crystal of such an interference pat- 

tern by averaging Eq. (5)  directly. Hence, we employ the 
results of monochromatic analysis. The phase factor 
exp[ - iA sin(nt  + p) ] on the right-hand side of Eq. (5) 
can be written as follows: 

where J,, ( A )  is an n-order Bessel function. Thus, we can 
write the amplitude of the holographic grating in the form 

where E '"' is the response of the crystal with appropriate 
monochromatic modulation [see Eqs. (9),  ( lo), and ( 14) 1. 

Let us examine the case of a sinusoidal field on the crys- 
tal. For electron drift lengths that are small compared to the 
grating period (Q( 1),  the first harmonic (n = 1) provides 
the basic contribution to the sum in (22) [see Eqs. (9a) and 
( 10a) 1. For large drift lengths ( Q S  1 ) the unshifted compo- 
nent (n  = 0) of the primary beam plays the main role in 
hologram recording [see Eqs. (9b) and ( lob) 1. Allowing 
for the fact that J ,  (A) = - J (A) and E '") = E ' -"' , we 
get the following expression for the hologram amplitude: 

As in the situation with amplitude modulation [see Eqs. 
( 17a) and ( 19a) 1, a dependence on the phase shift q, be- 
tween the ac field on the crystal and the modulating signal 
exists only at small values of parameter Q. 

For a meander field on the crystal only odd harmonics 
in the primary beam record the holographs grating [see Eqs. 
( 14a) and ( 14b) 1. As a result we arrive at the following 
expression for the amplitude of the space-charge field: 

which has two limiting cases depending on the values of Q, 

FIG. 6. The diffraction efficiency as a function of the phase difference q, between the modulating signal and the meander field on the crystal (E,, = 8 V 
cm-I) for the case of amplitude modulation of the primary wave. The spatial grating period A is (a)  60pm and (b)  3 pm. 
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An important aspect of this result is that for Q< 1 and p = 0 
no holographic grating is recorded. 

Experimental studies of hologram recording with the 
primary beam phase-modulated were carried out for a sinu- 
soidal field on the crystal. The frequency of the field was 
synchronized with that of the modulating signal on the pie- 
zomirror. To this end both the sinusoidal signal on the piezo- 
mirror and the ac field on the crystal were taken from the 
electric power line (a = 50 Hz). The amplitude of the mo- 
dulating signal on the piezomirror was varied by a linear 
autotransformer and the phase of the signal by a phase 
shifter. The sinusoidal field was fed to the crystal through a 
step-up transformer, and the amplitude Eo was 8 Vcm-'. 
What was varied in the experiments was either the phase 
difference between the voltage across the piezomirror and 
the field on the crystal at a fixed amplitude of the sinusoidal 
signal on the piezomirror, or the amplitude of the sinusoidal 
voltage across the piezomirror at a fixed phase difference. 

As predicted by theory [see Eq. (23a) 1, a dependence 
of the diffraction efficiency 7 on the phase difference p be- 
tween the voltage across the piezomirror and the field on the 
crystal was observed only for large grating periods, A = 60 
pm [Q < 1; Fig. 7(a)  1. For small grating periods, A = 3pm, 
no p-dependence in 7 was noted [Fig. 7 (b)  1. The discrepan- 
cy between 7 at q, = 0 and 7 at p = P in Fig. 7(a)  can be 
explained as follows. The theoretical expressions for the am- 
plitude of the recorded grating were obtained in two limiting 
cases: Q g  1 and Q) 1. The first yields (23a) for the depend- 
ence on the phase difference between the modulating signal 
and the field on the crystal, and the second yields (23b), 
which contains no such dependence. Hence, if we assume 
that there is a small pindependent term a in (23a), the 
7 ( p ) a (sin p + a ) functional dependence and the respec- 
tive solid curve in Fig. 7(a)  provide a good description for 
the experimental data. 

In the studies of the dependence of the diffraction effi- 
ciency on the amplitude of the sinusoidal signal on the piezo- 
mirror (the phase-modulation amplitude A) the phase dif- 
ference p between the modulating signal and the field on the 
crystal was zero. To compare the obtained 7 vs A depend- 
ence with the theoretical expressions (23a) and (23b), 
which are proportional to the zeroth- and first-order Bessel 
functions J,(A) and Jo(A), respectively, we laid off on the 
abscissa not the amplitude of the sinusoidal voltage across 
the piezomirror but the corresponding phase shift of the pri- 
mary beam. The correspondence of the voltage across the 

piezomirror to the phase shift of the primary beam was de- 
termined in monochromatic modulation: an auxiliary inter- 
ferometer (see Fig. 3) was used to monitor the interference 
pattern formed by the two beams, one of which (the pri- 
mary) was modulated by sawtooth voltage applied to the 
piezomirror, with the maximum amplitude of this voltage 
chosen in such a way that the phase of the primary beam 
varied by 27~. In our case this voltage amounted to 120 V. 
Thus, by changing the voltage and assuming that the re- 
sponse of the piezomirror is linear one can vary the phase of 
the primary beam. 

Figure 8 depicts the dependence of the diffraction effi- 
ciency 7 on the amplitude A of the phase modulation of the 
primary wave. As the theoretical analysis predicted, for 
large values of the recorded-grating period (A = 60pm) the 
7 vs A dependence is proportional to the square of the first- 
order Bessel function [Fig. 8 (a )  ] ; accordingly, for small 
values of the period ( A  = 3 p m )  it is proportional to the 
square of the zeroth-order Bessel function [Fig. (8b) 1. The 
insignificant discrepancy between the experimental data and 
the approximations by the functions J: (A) and Ji (A) can 
be explained by the effect of other frequency components, 
since the limiting cases of Q, 1 and Q g  1 can be realized in 
practice only with finite accuracy. 

CONCLUSION 

In many media phase gratings can be recorded owing to 
the Brillouin or Raman nonlinearity." The optimum phase 
shift between the interacting waves in such cases is deter- 
mined by the medium's resonance frequency. It reaches 1O9- 
1013 Hz and is affected only slightly by external fields. In 
photorefractive media, the effectiveness of the studied mech- 
anisms of recording drops considerably if the frequency dif- 
ference between the recording waves exceeds the inverse of 
the hologram-formation time, which is determined primar- 
ily by the Maxwell relaxation time r M .  Thus, the zero veloc- 
ity of motion of the interference pattern is resonant for most 
photorefractive recording mechanisms. An exception is the 
mechanism of drift in a dc field, where the electron drift 
length exceeds the interference-pattern period, that is, 
qlo > 1. When a moving interference pattern is illuminated, 
the hologram moves in step with it and the holographic grat- 
ing amplitude increases resonantly at a resonant velocity 
v,,, = fl,,,/q = (q2l0rM ) (Refs. 12 and 13). It must be 
noted that the resonance frequency shift a,,, = (ql0rM ) - ' 

I 1 1 -  

4 I 2 3 4 5 lp. rad 

FIG. 7. The diffraction efficiency 7 as a function of the phase difference q, between the modulating signal and the sinusoidal field on the crystal ( E ,  = 8 
kV cm- ' ) for the case of phase modulation of the primary wave (at a fixed modulation amplitude A ). The spatial grating period A is (a)  60pm and (b) 3 
P". 
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which synchronous detection of the moving interference 
pattern is stil possible, the physical measure of limiting the 
frequency of the detecting field is the inverse of the time that 
an electron stays in the conduction band, T - I .  If 51%rP', 
the photoexcited electrons oscillate in the external field and 
are captured by trapping centers without a substantial space- 
charge redistribution owing to the averaging over the elec- 
tron ensemble. Thus, the frequency of the detecting field, 51, 
can vary between T: ' and T - I .  

We have also studied both theoretically and experimen- 
tally the mechanism by which a static grating is recorded by 
a moving interference pattern in an external ac field. The 
effectiveness of hologram recording by this mechanism is 
found to depend primarily on the relation between the elec- 
tron drift length and the period of the recorded grating. Both 
phase and amplitude modulations of one of the interacting 
beams have been investigated. 

We are grateful to N. D. Kundikova and V. S. Liberman 
for fruitful discussions of the present paper. 

FIG. 8. The diffraction efficiency q as a function of the phase-modulation 
amplitude A of the primary wave (at a fixed phase difference p). The 
spatial grating period A is ( a )  60pm and (b)  3 pm. 

is smaller than the inverse Maxwell relaxation time but 
greater than the inverse record-erase time 7;' 

= (q1, 2)~i1. 
In this paper we have shown that in recording in an ac 

field of frequency 51 the spectrum of the photorefractive re- 
sponse of a crystal to an interference pattern moving with a 
velocity Sw/q (Sw)r,; I )  broadens and consists of bands 
whose frequencies are integral multiples of the external-field 
frequency, Sw = n51 (see Fig. 2). As a result of our analysis 
we have determined the relative height of the lines. The 
linewidth is determined by the inverse recording time, and 
the position of the lines is related to the external-field fre- 
quency. As for the maximum frequency of the ac field at 
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