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The paper proposes a well-defined procedure, based on the steady-state principle, for linearizing 
equations of motion. The one-particle Green's function is obtained in the special case of a single 
flipped spin in the saturated ferromagnetic state (the three-particle problem). I t  is proved that 
irrespective of whether theinitial (unperturbed) stateis a tight binding band (the Bloch 
representation) or a two-level atomic system (the Hubbard representation), the results for the 
one-particle Green's function coincide for arbitrary values of the Hamiltonian constants and the 
electron concentration nr . In the nontrivial limiting case U = co this Green's function agrees 
with the exact result of J. Igarashi [J. Phys. Soc. Jpn. 54,260 ( 1985) ] and A. E. Ruckenstein and 
S. Schmitt-Rink [Int. J. Mod. Phys. 3,1089 ( 1989) 1 based on the solution of the Faddeev 
equations. 

1. INTRODUCTION 

The recent progress in solving the problem of the 
ground state in the Hubbard model is due to the following 
results: 

(a)  Shastry, Krishnamurthy, and Anderson' consid- 
ered the variational problem of the stability of the Stoner- 
Nagaoka phase (saturated ferromagnet, U = co ) under a 
single spin flip. They established that such a system becomes 
unstable at a certain threshold hole concentration depending 
on the symmetry of the lattice. 

(b)  Igarashi2 arid Ruckenstein and Schmitt-Rink3 
used a reduced Hubbard Hamiltonian that allowed only for 
the interaction between an electron and an electron-hole 
pair with opposite spin. In such an approach the one-particle 
Green's function is linked to the three-particle Green's func- 
tion, which in turn satisfies the Lippmann-Schwinger equa- 
tion. This equation can be separated into two coupled equa- 
tions (Faddeev equations) describing the scattering in the 
particle-particle (P-P) and particle-hole (P-h) channels. 
The equations have yet to be analyzed for the general case 
( U # ) (Ref. 2 contains only numerical analysis for the 
one-dimensional case). However, in the nontrivial limit 
U = co the equations have been s01ved.~ 

In previous papers by the present author and Kuz- 
~ ~ i ~ 4 . 5  the starting point was the site (atomic) representa- 

tion presupposing the use of Hubbard operators. In this ap- 
proach a two-level system (E, ,E, + U) was the initial 
(unperturbed) state, while the transfer integral b( f - f ') 
between two nearest atoms acted as the perturbation. The 
next step was to build a self-consistent kinematic field theory 
that generalized Nagaoka's assertions to the thermodynam- 
ic limit (N-P co ) for macroscopic deviations of the hole con- 
centration from h = 0. It was found that the resulting equa- 
tions describe instability in the Stoner-Nagaoka phase at 
finite hole concentrations, h ~ 0 . 2 ,  a result obtained by inte- 
gration with a rectangular density of statesp = 1/2 W. This 
agrees with the rigorous assertion made in Ref. 3. 

In a later paper,6 a result (which we feel is remarkable) 
was achieved: within the framework of the kinematic-field 

approximation in the region where R = n 1  - n' = 0 
( 0 . 7 ~ n ~ 0 )  holds the static susceptibility ~ ( 0 ~ 0 )  was found 
to be negative at U = CO?! This fact could indicate a singlet 
phase in the system. 

But how well does the kinematic-field approximation 
describe physical processes in the region of intermediate and 
low energy concentrations, where the Bloch representation 
is the appropriate one? In this representation the unper- 
turbed state is the quasiparticle spectrum calculated in the 
tight-binding approximation, ~ ( k )  = 8, b(h)exp(i(kh) ), 
and the Coulomb interaction U between two electrons with 
opposite spins at a single site acts as a perturbation. 

The results obtained in this paper are: 
( 1 ) The procedure for linearizing equations of motion 

is substantiated from the standpoint of the steady-state prin- 
ciple. 

(2)  A one-particle Green's function for which the un- 
perturbed state is the tight binding spectrum is found in the 
special case of a single "down" spin ( 1 ) in a saturated ferro- 
magnetic state with an arbitrary concentration of "up" spins 
( t ) . At U = co the Green's function coincides with the exact 
solution of Faddeev equations. 

(3)  The resulting Green's function is compared with 
the results of the kinematic-field theory (the atomic ap- 
proach) and their full equivalence for any Hamiltonian con- 
stants and electron concentrations is established. This re- 
sult, however, is restricted to the problem being considered. 

2. THE VARIATIONAL PRINCIPLE AND THE ONE-PARTICLE 
GREEN'S FUNCTION 

To find the "best" approximation for the Green's func- 
tion, we must linearize the multiparticle equations of motion 
according to a variational principle. This means that in the 
class of quasiparticle states determined by the operator 
A = Bici ai , where {a, ) is the base set of operators, the quasi- 
particle energy is found from the steady-state condition, i.e., 
the condition that variations of the energy 
E = ( [ [A,H] ,A + ] , ) vanish under variations of the c, , 
where 
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with the constraints ( [ A J  'I . ): 
6< [ [ A H ] ,  A + ] * - o  (-4A+]*>=O, 

where H the Hamiltonian of the system and o is a Lagrange 
multiplier or, in the case at hand, the quasiparticle energy. 
From ( 1 ) it follows that 

If, in general, there is a set of operators A,, the condition 

involving the variations in energy E,, = ( [ [Ai,H 1, 
A 2 ] * ) and the constraints ( [A,J 2 ] + ) leads to the 

- 
following generalization of Eq. (2)  : 

where T,, is a matrix Lagrange multiplier. If Eq. (4) is ob- 
tained, diagonalizing T, yields the energy of an excited qua- 
siparticle state. 

Strictly speaking, the steady-state condition, Eqs. ( 1) 
and (3), is the necessary condition for the energy minimum, 
but the expected value of o may coincide with the exact val- 
ue. Ideas concerning the connection between Eq. (4) and the 
steady-state condition were first expounded in Ref. 7. 

The Hubbard Hamiltonian in the Bloch representation 
has the form: 

Let us examine the problem of a single flipped spin ( 1 ) 
propagating in a Stoner-Nagaoka state (saturated ferro- 
magnetism). First we note that the Green's function for an 
"up" spin ( t ) in this case has the simple form 

((ckt; ckTt ) ) O = ~ k h , ~ k f  ( w ) = G ~ ~ ' / ( o - E  ( k )  +to). ( 6 )  

We begin the calculation of G,, (o) from the exact 
equation of motion for the fermion operator c,, : 

U '  
[ c h i ~ l = ( e ( k ) + ~ n t ) c k , + - x  R,'(kfq). 

h'q  

where in (7) we have written the Stoner factor Unr explicit- 
ly, and R : (k ',q) is the "elementary" annihilation operator 
for a three-particle excitation in an intermediate state of the 
system, 

For the basis { A , )  for the variational solution we take 
the one-fermion operator C,, and the "collective" operator 
B;.,R (kl,q), where k '  and q assume their values inside 

and outside the Fermi surface, respectively. It can easily be 
verified that 

(FI {Rk' (k', q )  , chi'} ck$JF)=R? (k ' ,  q )  IF>=O, 

(10) 

<FJ {Rki (k ' ,  q) ,  Rk'+(kW, q ' ) }  IF)=6h.k,*6qq*fk,t (1 - fq t ) ,  

(11) 

where f = ( F  In: ( F  ), and IF) is a Stoner-Nagaoka state 
( I ) in what follows). 

In accordance with Eq. (4),  we seek an expression for 
[ckl  ,HI in the form 

Using the properties ( 10) and ( 1 1 and Eq. (7 ) , we obtain 

Thus, the linearized equation ( 12) is identical with the 
exact equation (7) in which the Stoner factor is averaged 
over the ground state, Un' + U (n' ). 

The equation of motion for R : (k ',q) has the form 

S2,(k1, q)=e (k+kl-q)+e (q)-e ( k ' ) ,  

Note that the last two terms on the right-hand side of ( 15) 
are annihilation operators for a five-particle excitation in the 
intermediate state with two flipped spins. The dynamics of 
such excited states is, obviously, "cut out" from the linear- 
ized equation of motion in terms of the chosen basis. Indeed, 
according to Eq. (4),  the equations for [R : (k  ' ,q) ,H ] are 
found in the form 

After calculations similar to ( 13) and ( 14) we get 

(18) 
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In the Stoner-Nagaoka phase, after a Fourier transfor- 
mation, Eq. (25) assumes the form 

To find Gk, ( w )  we will need Eq. ( 17) summed over k ' Comparing (2 1 ) with (281, we see that 
and q, that is, 

z,"? (k, o)=ZY (k, W) 

where valid for all values of the constants in the Hamiltonian (5)  
and of the electron concentrations n T  . 

1 'v' The importance of this result is also seen from the fact 
0, = -- L 'k("'. q)L" (I-/,t) (21) that at U- CQ the self-energy part (29) coincides with the (ni><l-ni)  N' 

exact solution obtained by Igarashi' and Ruckenstein and 
~chmitt- ink'; specifically, 

is the three-particle excitation energy averaged over all elec- 
tron and hole states. As a result we get h~ *a, exact '  ( n + )  

X,=, (k, W)  =Xu=, (k, a) =Xu=, ( k ,  m) = - --- w < 1 - 1 7 ' >  . - 
[w-E (k)-zY (k, w ) ] G ~ ~  (W)=l, 

-I- I Q ) ) (30) 
(<1--nt)N)2 k,q 

U ( l - n t >  
Xyr(k, o ) = ~ ( n ' ) [ l + ~  

W-U(1-nt>-SZI I wish to express my gratitude to A. Ruckenstein for 

3.COMPARlSON WITH OTHER RESULTS 

The one-particle Green's function in the kinematic- 
field (kf) approximation, where we start from the atomic 
representation, can be transformed i n t ~ ~ ' ~  

discussions concerning the main ideas of this paper and to A. 
I. Larkin, D. I. Khomskii, and E. V. Kuz'min for discussion 
at various stages of the work. 
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