
Two-photon atomic relaxation in the field of a monochromatic nonresonant 
electromagnetic wave 

A. M. Basharov 

Moscow Engineering Physics Institute, Russia 
(Submitted 20 May 1992) 
Zh. Eksp. Teor. Fiz. 102,1126-1 139 (October 1992) 

A mechanism is suggested for two-photon spontaneous atomic relaxation in an external 
monochromatic field. A unitary transformation of the initial Hamiltonian and a technique 
involving Ito's quantum stochastic differential equation are employed to obtain an equation for 
the atomic density matrix and the relaxation constants that describe two-photon atomic 
relaxation. The equation for the density matrix is generalized to the case of relaxation involving 
one photon of the monochromatic field and one photon of the squeezed vacuum. The possibility of 
experimentally studying two-photon relaxation is also demonstrated. 

INTRODUCTION 

Analyzing spontaneous atomic relaxation in an exter- 
nal coherent field usually involves solving an equation for 
the denisty matrix with given spontaneous relaxation con- 
stants and then determining the effective relaxation times.' 
It is commonly assumed that spontaneous relaxation is due 
to one-photon transitions in the absorption or emission of 
resonant vacuum photons. But in addition to one-photon 
processes, there can be a complex hierarchy of multiphoton 
spontaneous processes in the external field, when the transi- 
tions in an atom that lead to additional relaxation occur with 
the absorption of one or several photons from the coherent 
field simultaneously with the absorption or emission of a 
vacuum photon. Owing to the intensity of the external field, 
such processes may be pronounced and can dominate ordi- 
nary one-photon spontaneous relaxation. Obviously, when 
the intensity of the coherent field is high and the role of these 
vrocesses is imvortant, one must re-examine even the ordi- 
nary two-level model of an atom,' since for any such field, 
resonant or nonresonant to two selected energy levels, other 
energy levels and an appropriate frequency of the vacuum 
photon can always be found, with the result that one is 
forced to allow for relaxation transitions from the two select- 
ed levels to other levels with photons of both coherent and 
vacuum fields being involved. The respective relaxation con- 
stant will depend here on the intensity of the coherent field in 
the starting equations for the density matrix of the atom and 
must be taken into account in the N-level approximation. 
Needless to say, this constant will affect many optical phe- 
nomena. 

In this paper'' the above mechanisms of spontaneous 
relaxation in an external coherent field described in classical 
terms are taken into account systematically. For the sim- 
plest case of one- and two-photon relaxations an equation is 
derived for the atomic density matrix containing, in addition 
to the usual Einstein relaxation constant, relaxation param- 
eters that depend on the intensity of the external coherent 
electromagnetic field. The equation is generalized to the case 
of a squeezed vacuum, whose photons participate only in 
two-photon relaxation transitions. Relaxation constants 
that allow for these processes are obtained for the three-level 
model of an atom. The possibility of experimentally studying 
two-photon spontaneous relaxation is illustrated by the ex- 
ample of Raman scattering of light in the coherent excitation 

of a three-level system by a pair of ultrashort pulses in reso- 
nance with adjacent optically allowed transitions3 

The theoretical approach expounded here is based on 
the unitary transformation method4s5 and the technique of 
Ito's quantum stochastic differential e q ~ a t i o n . ~  In Sec. 1 the 
unitary transformation method is used to derive an effective 
Hamiltonian that in addition to one-photon relaxation tran- 
sitions allows for two-photon transitions involving a vacuum 
photon and a coherent photon. The quantum stochastic 
equations of Langevin and Ito are derived in Sec. 2. Section 3 
is devoted to the equation for the density matrix and its gen- 
eralization to the case of a squeezed vacuum. Section 4 gives 
the relaxation constants for various three-level models of an 
atom. Finally, Sec. 5 discusses the possibility of experimen- 
tally studying two-photon relaxation. 

1. THE EFFECTIVE HAMlLTONlAN OF SPONTANEOUS 
PROCESSES IN AN EXTERNAL COHERENT FIELD 

We will describe the system consisting of an atom, the 
field of a classical electromagnetic wave of frequency v and 
electric field strength 

and the vacuum electromagnetic field by the Hamiltonian 

where H, is the Hamiltonian of the isolated atom, H, the 
Hamiltonian of the photon thermostate, V,,,,i,, the operator 
of the interaction of the atom with field ( I ) ,  and V, the 
operator of the interaction of the atom with the thermostat 
photons. We have introduced the following notation: a,+ 
and a,  are the creation and annihilation operators of an 
atom in a state with energy E,, satisfying the commutation 
relations [ a ,  ,a: ] = S,,. ; b ,f and b, are the creation and 
annihilation operators of photons of frequency w ,  with 
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[b,,b ] = S(w - a ' ) ;  d,,. is the matrix element of the 
operator of the dipole moment between states with energies 
E, and E,.; and K(w) is the coupling ~onstant .~ '  We have 
ignored polarization effects and recoil and employed the 
one-dimensional approximation, while the interaction with 
fields is considered in the electric dipole approximation. 

The initial Hamiltonian H describes the evolution of the 
density matrixp of the entire system: 

i f iap lat= [ H ,  p l .  ( 3  

To identify in this Hamiltonian the effective terms responsi- 
ble for the hierarchy of the spontaneous processes under dis- 
cussion, we perform the following unitary transformation:' 

We write S and in the form of series in powers of the 
strengths of the coherent and vacuum fields: 

where the left index in each pair of superscripts refers to the 
external coherent field and the right index to the vacuum 
field. Obviously, 

Now we must require that g(lO' vanish since the exter- 
nal electromagnetic field ( 1 ) is assumed to be out of reso- 
nance with the atom. The quantity g ( O 1 '  must contain only 
terms with the appropriate frequency dependence, corre- 
sponding to absorption and emission of resonant vacuum 
photons: 

According to Ref. 7, the frequency spectrum of the vacuum 
photons is divided so that to each atomic transition there 
corresponds an individual source of noise related to the reso- 
nant interaction with thermostat photons, whose frequen- 
cies are denoted by w, (aa ' ) .  Hereo, (aa') = a, (a 'a ) ,  and 
the central frequency of this noise source, Z, (aa ' ) ,  is equal 
to laa,. I, where a,,. = (E, - E,. )/fi. We must also bear in 
mind that all the sources of noise just mentioned act as a 
single source in relation to an atomic transition out of reso- 
nance with these sources. We have also used the standard 
notation for the unit step function, that is, 8 (x)  = 1 for x > 0 
and 8(x)  = 0 for x < 0. Then, assuming that the coherent 
field is switched on adiabatically, we get 

where the prime on the integral sign indicates the absence of 
terms with resonant denominators. 

We now substitute these expressions into the formula 
forg""and retain only the terms with the correct frequency 
dependence (by defining S" l' appropriately), which in the 
final analysis corresponds to the approximation of slowly 
varying amplitudes: 

Lz 2 
J do. (ay) K (o. (ay))8e-"taa+o,b~p(a,, 

The noise source w,(ay) with the central frequency 
Z, (ay)  is in two-photon resonance with the two-photon 
(optically forbidden) transition E, +E,, that is, Z, 
( ay )  + Y = (E, - E, )/fi(E, > E, ); the noise source 
w, ( ay )  with central frequency Z, ( ay )  and the noise source 
wp (ay)  with central frequency ( ay )  are in combination 
resonance with the two-photon transitions E, + E,, that is, - 
w, (ay)  - Y = (E, - E, )/fi(E, > E,) and Y - Zp (ay)  
= (E, - E,)/fi,(E, >E,);  and the central frequency Z, 
of the noise source w, coincides with the frequency Y of the 
nonresonant wave ( 1 ). Here we have introduced the follow- 
ing n~ ta t i on :~  

determines the effective dipole moment of the two-photon 
transition, and 

Id, I 1 
)l na(w)= E+(xo+ ,,-o 

determines the Stark shift of the level E,. Since 

n,, (v )  =nu, (me (ar) ), Ha, ( Y )  =nu, ( - ~ ~ ( a y )  ) 
Ha, (v) =Ha, (-GI (a7 1, 
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ignoring the frequency dependence of the rI parameters, we 
can write 

+iz J d ( ~ , K ( e . ) h P ' e " k + a ~ b . ~ I I .  ( v )  + H.c. 

The term a'20' is obtained in the same way as in the classical 
case5 and describes the Stark shift of atomic levels: 

Thus, the effective Hamiltonian of the atomic system 
and vacuum photons in the field of a classical coherent elec- 
tromagnetic wave can be written as the sum of four terms 
determined by Eqs. ( 5 ) - ( 8 ) :  

The first term H(O0) is the sum of the Hamiltonians of the 
atomic and photon subsystems isolated from each other and 
from the other fields. The term a'2o' characterizes the Stark 
shifts of the levels in the field of the nonresonant wave ( 1 ) . 
Both 3"" and 8'"' correspond to spontaneous relaxation 
processes in the slowly-varying-amplitude approximation, 
with 8'"' corresponding to one-photon relaxation and 8 ( I 1 '  

to two-photon relaxation involving thermostat photon and 
the coherent wave. In what follows it is convenient to think 
of the effective Hamiltonian ( 9 )  as the sum of the Hamilto- 
nian of the atomic system in the external coherent nonreson- 
ant field H,,, , the vacuum-photon Hamiltonian H,  , and the 
operator of one- and two-photon interaction of the atom 
with the vacuum photons: 

where H,,, = Ha + HI2'' and Hint = 5 ( 0 1 )  + 5 ( l 1 ) ,  and for 
the sake of brevity we write 

~ , . , = - i l ~  J d o , ~ ( w , )  [ j , ( t ) ~ , + b ~ , - f i ( t ) ~ , b ;  I .  ( 10) 

In such expressions the sum indexjnumbers the atomic tran- 
sitions and all the above-mentioned noise sources (Fig. 1 )  
that are in resonance both with optically allowed transitions 
( j = I and w l  z w , ,  > 0 )  and with two-photon transitions 
( j = 8 for the double resonance w, .t v z w, > 0 ,  and j = q 
and j = p for the combination resonances w, - Y zwy, > 0 
and v - w p  zwy, > 0 ) .  The operators R, and the parameters 
6 ( t)  for the respective transitions are 

X,=a;a, O(E, , . -E , ) ,  f,(t)=d,,,lfi, 
He=an+a10 (E,-E,), f, ( t )  =8e-c\tn,, ( v )  / f i ,  
R,=aa+a,O (E,-Em),  f,,( t )  =8 'en ' I I , ,  ( - v ) / A .  
Rp=al+aaO (E,-E,) , f, ( t )  =B'eWtIIa, ( - v )  / A .  

In addition, j "incorporates" the noise source w, at the fre- 
quency of the nonresonance wave ( 1 ) ( j = v at w, z v )  . In 
contrast to the noise sources w,, w,, w,, and up, the w, pho- 
tons cause random variations to occur in the Stark frequency 
shifts rather than participate in atomic transition. For this 
source, 

If in addition to the nonresonant field ( 1 ) there is a 
resonant classical electromagnetic field acting on the atomic 
system, the atomic Hamiltonian H,,, incorporates the term5 
that allows for this resonant interaction in the slowly varying 
amplitude approximation. This introduces additional terms 
into S'"' that contribute to ( 1 0 )  and to the Stark shifts of the 
resonant levels. In relation to nonresonant transitions some 
of these terms are the same as those considered above but are 
determined by this resonance frequency. The other fraction 
differs for resonant transitions and, among other things, is 
the cause of the Bloch-Siegert shift.5 Often, however, these 
terms can be ignored, which is done in the actual calculation 
in Sec. 5. 

2. THE QUANTUM EQUATIONS OF LANGEVIN AND IT0 

We go over to the Heisenberg representation and write 
the equation of motion for an operator of the atomic system, 
say A: 

--I% 
I 1 1: +- rr. - Ed* I FIG. 1. The energy levels and noise sources participating in (a) 

I 
I "9 one-photon and (b)-(d) two-photon relaxation processes. I Or I 

A a Ed 1, b iL c d 

-j-? f, 
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In this equation we replace bWJ with the integral representa- 
tion 

where bhJ is the value of b, at the initial time to, and apply 
the Markov approximation6 

Assuming that 

we arrive at the quantum Langevin equation 

A = - -!- h [ A ,  H,,,*]- E{ [ A ,  R?] 

Here for each noise source we have introduced the in-fields 

1 
o, , , , ) , ( t ,=  ,J d q  exp[ - iwj ( t - to )  ~ b ~ ~ , .  (13)  

(2n) 

which satisfy the commutation relations 

b i t .  b ( t  j - t  [b,tn,j(t) 7 b,cn,jl ( I r )  1 ~ 0 ,  

Note that f i b , , , ) ,  ( t ) f ,  ( t )  + ix ,  I f ,  ( t )  I2Rj commutes with 
any atomic operator. 

We assume that the in-fields are sources of white noise: 

~ r { ~ ( ~ , ) b ~ , , ~ ( t )  b( in)j*(t ' )} .5<b:n)j( t )  b(m)j* ( t1))=Nj6jj ' ( t - t ' ) ,  

= ( N j + l )  6j jd ( t - t ' ) ,  ( 14) 

which corresponds to 

(bb , jbo , ; )=~j&i  ( a j - o j l ) ,  <bo , jb ,~;>= (N,+ 1 ) 6 ( w ~ - ~ , ' ) ,  

(bow ,boa; )=(bo: bb.; >=o, 

with p,,,, the density matrix of the in-fields. If we also as- 
sume that N, = X(W, ), where N ( w )  = l/[exp(fiw/ 

kT) - 1 1, Eqs. ( 14) will correspond to the case of a photon 
thermostat of a temperature T. 

If we reason along lines similar to Ref. 6,  we can also 
examine out-fields and the respective quantum Langevin 
equation reversed in time. But this will not be needed here. 

We introduce the quantum Wiener processes Bj ( t , t o )  in 
the following manner: 

t 

with [B ,  ( t , t , ) ,B ,t ( t , to )  ] = ( t  - to)S, . .  Defining the Ito 
integral and differential in the usual way,6 we have the fol- 
lowing basic formulas of stochastic analysis: 

dBj+ ( t )  dBj ,  ( t )  =ArjGjj,dt, dBj ( t )  dB,*+ ( t )  = (N j+  1 )  Gjj,dt, 

dB j ( t ) dB j .  ( t )  =dB,+ ( t ) dB j r i ( t )  =dtdt 

To obtain Ito's quantum stochastic differential equa- 
tion from the quantum Langevin equation ( 12) ,  we must 
replace b,,), ( t ) d t  with dBj ( t )  and then add terms that will 
guarantee the validity in the obtained equation of Ito's rule 
of differentiation; namely, that 

for each pair of atomic operators A ,  and A,. This leads to the 
quantum Ito equation 

(18) 
which can be written as 

i 
d a =  - - [ A ,  H . , . ] d t + z  z l i j ( t )  12(N,+1) (R,+ [A .  Rjl 

f i  2 

The structure of this equation coincides with that of the 
Ito equation of Ref. 6,  but because of the factor If;. ( t )  I *  the 
terms with j = 8, j = q, j = p, and j = Y are proportional to 
the intensity of the external field ( 1 )  and describe the spon- 
taneous processes of two-photon relaxation with simulta- 
neous participation of the coherent wave ( 1 ) and vacuum 
photons. 

3. THE EQUATION FOR THE ATOMIC DENSITY MATRIX 

In the Ito equation the coefficients of dB, ( t )  and 
d B  ,+ ( t )  are nonadvanced operator functions. Hence, aver- 
aging ( 18 ), we get 
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Here the average of an atomic operator in the Heisenberg 
representation is defined in terms of the density matrix 

[initially, at t = to, the density matrix is equal to the product 
of the density matrix p,,, (to) of the atomic system and that 
of the photon thermostat, p, (to) 1. Here 

<dA (t) > d ( A  (t) > i 
--= 

dt dt = ~ r { ~ ( t , )  H.,.I 

+ E$l (t) 12Nj (2Rj+pRj-pRjRj+-RjRj+p) ) } 
Since 

d ( A  (t) > dp ( t )  
= T ~ { A  (to)-) 

dt dt ' 

and the above equations are valid for any atomic operator A, 
comparison of (19) and (20) yields the following equation 
for the atomic density matrix: 

+ 5 I A (t) I 'ATj (2RjtpRi-pRjRji-RjRj+p) . 
2 

(21) 

This equation can easily be generalized to the case that 
lately has been a topic of intensive investigation,'-'* where a 
vacuum field (with j = I,O,q, orp)  or several such fields are 
in a "squeezed" state. l 3  In Refs. [8-121 and other papers the 
relaxation of an atomic system was considered as being in a 
squeezed vacuum in resonance with optically allowed transi- 
tions. The above reasoning, however, suggests that after the 
transformed Hamiltonian is written in the form (9') and 
( lo) ,  the general analysis of ordinary one-photon relaxation 
and of the mechanism of two-photon relaxation proposed in 
this paper can be conducted along similar lines. Hence in 
what follows we denote by w, the frequencies of the fields of 
the squeezed vacuum that are in one-photon resonance with 
optically allowed transitions (w, zw,., > 0)  and in two- 
photon resonance with optically forbidden transitions 
(w, + Y wTa > 0 for a double resonance and w, - v z  w, 
> 0 and Y - a, zwy, > 0 for combination resonances). The 
meaning of the respective operators R, and parametersf, ( t )  

remains unchanged. For ideal squeezing the difference from 
the case of ideal white noise and thermostat consists in re- 
placing condition ( 15) with 

(b(,,,.(t) b,,,,,,. ( t ' )  )=M,6,;6(t-t'), 

(22) 
<b(:,,, (t) b(l,,,, (t') >=M,'6,,*6 (t-t'), 

and, in deriving the Ito equation, instead of 

dB,(t)dB ( t)  =dB +(t)dB,* ( t )  =O 

we must assume that 

dB,(t)dB,. (t) =.M,G",,dt. dB,-(t)dB,.+ (t) =dl.*S,,.dt, 

where the parameters M, and N, obey the condition 
I M, 1 '<N, (N, + 1 ), with the equality attained for squeezed 
light exiting from an ideal degenerate parametric amplifi- 
er.I4 The following result can easily be obtained: 

+ zz I f j  ( t )  J2N) (2RjipRj-pRjR7+-RjR;tP) 
2 

where in the sums over j we have included the summation 
over s. 

4. THE RELAXATION OPERATOR FOR THREE-LEVEL 
MODELS OF AN ATOM 

It has proved expedient to write the equation for the 
transformed aiomic density matrix f i  in terms of the relaxa- 
tion operator r as follows: 

Here the Hamiltonian & of the atomic system may include, 
in addition to as,, , the interaction of the atom with resonant 
(classical) electromagnetic fields. We assume that the ap- 
propriate unitary transformation5 [similar to (4)-(9) ] 
have been applied to the initial density matrix and the addi- 
tional terms in the initial Hamiltonian that describe this res- 
onant interaction with classical electromagnetic fields. 

The simplest model of an atom allowing for spontane- 
ous relaxation in an external field contains three levels, say 
E,, E,, and Ec,  that form two adjoining optically allowed 
transitions E,-Ea and E,-E, and an optically forbidden 
(two-photon) transition Ec-Ea . Three different configura- 
tions are possible here, A, V, and 6, and in each configura- 
tion the frequency Y of the coherent wave ( 1 ) can be either 
lower or higher than the frequency wca of the optically for- 
bidden transition. Below for these six three-level models of 
an atom (Fig. 2) we list the expresgons for the matrix ele- 
ments of the relaxation operator (I'p),,. . The matrix ele- 
ments of the other terms in Eq. (24) are well-known (see, 
e.g., Refs. 5 and 15). 
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FIG. 2. Three-level models of an atom and two-photon relaxation transi- 
tions in which the photons of the monochromatic and noise fields partici- 
pate. 

We write the matrix elements of the relaxation operator 
in a form that reflects the "closed" nature of the three-level 
system (i.e., the fact that the number of three-level atoms 
does not change) : 

<pp),,,,= (rat18'+ [ x a ( c '  ) pa.-rbiu'pbb- r , . ""p~~.  
( t o )  bb= ( r b l ' " +  rb")) ~ b , ~ - r ~ ( " ' ~ ~ - r ~ ( ~ ) ~ ~ ~ ~  

In the formulas referring to the off-diagonal elements of the 
density matrix, the order of the indices in each pair of lower 
(upper) indices is unimportant. We write the constants raB, 
a #B (i.e., TCa , r,, , and I?, ) in the unified form 

and the remaining constants for each possible configuration 
of the three-level system as follows: 

1. A-configuration Ea < Ec < Eb with v > w,, (Fig. 
2a): 

rdoba'=xao~ db./h 1 (Nba+1/2), rk? =%ac 1 dbclfi l'(Nbc+1)/2r 

r:cbc)=xbe I dbc/fi 1 (ATbc+1/2), r::) =xba/ dba/fi l 2  (Nba+1)/2' 

ra'cca)=xp Ian,, (-V) ( 2 ~ p ~ z ~ 2 .  
r::11) (an, ,(-T) 12(Np+1/2)'/fiZ, 

r:;lob' =%be I db,/h 1 'Nb,/2, I?::) =xba 1 I 2N6,,/2r 

2. A-configuration Ea < Ec < Eb with v < wca (Fig. 2b) : 

r;?=)cba 1 d b d ~  I2(Nbo+ 1/2). r::) =%a, [dbc/fi 1 (Nbc+1)/2, 

r F =  ( ~ ~ l a n , , ( - v )  I2Nq+xe I ~ - I ~ ~ ( ~ ~ )  ~ ~ ~ ~ ) / z f i ~ ,  

(bc) - 
r b c  -%bc 1 dbe/fi 1 (Nb,+ 1/2), ri?) =%bal  I2(Nba+1)/2, 

I':? = [xq1811,, (-V) J2(Nq+l)  +xe I8IIeo(v) I2(Ne+1) 1/26', 

rl:") = [x,, 18nra(-~) 12(hTq+1/2) 

3. V-configuration Eb < Ea < Ec with v > wca (Fig. 2c) : 

r:bb) =Xob 1 dab/h (~ab+1/2). rtib) =xcb 1 drb/h 1 2~cb12.  

r67 =x,1811,,(-~) I"ATp+i) /2ti2. 

r::) a x c b  1 deb/fi I2(Ncb+1/2) , r?) =xnb 1 dab/5 1 

4. V-configuration Eb < Ea < E, with v <aca (Fig. 2d) : 

5. &configuration Ea < Eb < Ec with v > wca (Fig. 2e): 

rLh)x~ba 1 &a/E 1 (Nb,+ 1/2), rEb' =Xcb 1 dcbltC I 'Ncb/21 

ri?' =xp I 8nac (-V) I2(Np+1) /2n2, 

- ~ : * ~ x , ~ d d h l ' ( ~ ~ a + 1 / 2 ) ,  $dh I2(Nb.+1)/2, 

(b") - rgb' =X.b 1 dcb/h [ (Nd+ 1) /2, rca -xba 1 1 'Nbd2, 

6. 8-configuration Ea < Eb < E, with v < w, (Fig. 2f) : 

61 6 Sov. Phys. JETP 75 (4), October 1992 A. M. Basharov 61 6 



ri?) =%b. 1 db4/ft 1 (Nba+1/2), rgb) =xcb 1 &dft 1 WN,b/2, 

ri2' = [ x ,  ) LPII,, (-v) IZNq+xe (bII,, (v) I 'Ne l/2ha, 

(8'4 - rZb'=%.b I d,a/ft 1 (~,b+1/2), rcb -%a (dbdz 1 (Nb4+1)/2, 

rd:"'=[x,l&II,.(-v) 12(Np+l) +xe 181'ica(v) lZ(Ne+l) l/2ft2, 

I'i,""'= [%,I &II,.(-v) )'(Nq+I/2) 

Sxe l&IIca(~)' I2(Ne+i/2) I/hz, 

(cb) - (80) - r,. -x,b (d,b/h ( '(N,b+1)/2. rc, -%&I 12Nbd2, 

5. DISCUSSION 

At present the most effective methods of studying 
atomic relaxation are those based on the photon echo phe- 
n o m e n ~ n . ' ~ , ' ~  In analyzing two-photon relaxation it has 
proved expedient to employ echo phenomena that manifest 
themselves against the background of nonresonant illumina- 
tion, since if a two-photon transition Ec - Ea is in some way 
excited in advance (b, # 0), any probing nonresonant wave 
with an electric field strength 

experiences Raman scattering, that is, radiation appears at 
(a, + wca If the duration and intensity of (26) are suffi- 
cient for the spontaneous processes discussed above to mani- 
fest themselves, the Raman scattering signals will strongly 
depend on the respective relaxation parameters. A simple 
example is the Raman scattering of light in coherent excita- 
tion of three-level systems. References 3 and 17 show that 
when two light pulses (of duration T, and T, and separated 
by a time interval T)  

E1=8, exp{i(k,z-wit-rp,)) + c.c., O<t-z/c<-c,, 
E,=8, exp{i(k,z-02t-9,) ) + c.c., a t + r ~ t - ~ / c < - c I + t 2 + ~ ,  

act on a gaseous medium in conditions where the first pulse 
is in resonance with the optically allowed transition Ea + Eb 
and the second is in resonance with the adjacent optically 
allowed transition Ec - Eb (the V-configuration of the 
three-level system; w1 -- w,, and w, zz wcb ), this induces spe- 
cific Raman scattering on the nonresonance wave (26). Ra- 
man scattering at the Stokes frequency w- = w, - w, - w, 
and the anti-Stokes frequency w+ = w, - o, + w, emerges, 
after the pulses E, and E, have passed, at time 

and is determined by the following value E+ of the electric 
field strength of the anti-Stokes (upper sign)and Stokes sig- 
nals: 

e, (t) =e,' (t)8,11ia, exp[ -.(,.t-rca(b-~) 1. (28) 

Here e', is independent of the field strength (26) and for 
small areas of the exciting pulsed fields El and E, is given in 
Ref. 3 (el, = e + /go). It is assumed that the nonresonant 
field (26)-is switched on no later than when the second excit- 
ing pulse has ceased to act. 

If there are no vacuum photons 
(Nab = Ncb = N,, = 0)  and the Stark shifts of levels are ig- 
nored, the relaxation constants y,, and y, have the follow- 
ing form: 

where the constants y::' and are determined by atomic 
collisions and are independent of the intensity of the light 
fields, y:;' and y6t' describe ordinary spontaneous relaxa- 
tion, y::' corresponds to the present mechanism of two-pho- 
ton spontaneous relaxation with a photon from the mono- 
chromatic wave (26) participating in the process, and I, is 
the intensity of wave (26) averaged over the period of rapid 
oscillations, I, = cl Z?,I ,/237-. 

It is easy to see that studying log(1, /I,) as a function 
of I, in experiments makes it possible to avoid determining 
2a(w: Inca ( - w,) l 2  + 0 3  In,, (a,) I2)/fic4 and to verify 
the importance of the two-photon relaxation mechanism. 
Experiments involving monochromatic waves of the form 
(26) at different frequencies w, and other echo effects 
should make it possible to separately estimate the param- 
eters Inc, ( - w,) I and I nCa (w,)  / of the operator of two- 
photon interaction. When the Stark shifts of levels cannot be 
ignored, an additional relaxation constant Tap emerges, 
whose study provides information about 
In, coo) - n, (ao) I .  

As for the order of magnitude of y::', for the 
42S1/2- 32S1,2 two-photon transition in sodium, with a 1012 
s- detuning of the nonresonance wave from the 3,P:,, lev- 
el, we find yL : ' z4~  10-51, s-' in the esu system, that is, 
two-photon spontaneous relaxation manifests itself in 
megawatt fields. Two-photon relaxation may also prove sig- 
nificant at lower intensities of the external monochromatic 
field if noise fields are employed at frequencies of the vacu- 
um photons emitted in the relaxation process. 

Note that two-photon relaxation depends on the type of 
two-photon transition and the polarization of the mono- 
chromatic field, since linearly and circularly polarized 
waves scatter differently. 

The above method also makes it easy to describe other 
two-photon relaxation processes in nonresonant light fields, 
say, in a nonresonant noise electromagnetic field [which es- 
sentially is determined by the constants in (25)]  or in a 
squeezed field. 
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