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The generation of a quasisteady magnetic field over electron time scales in the presence of a small- 
scale temperature modulation is analyzed. The modulation results in a strengthening of the large- 
scale magnetic field. The amplitude of this field, plotted as a function of the modulation amplitude 
M, reaches a maximum at M- (kL) - ' , where k is the modulation wave vector, and L is a length 
scale of the average temperature profile. 

The generation of a quasisteady magnetic field as laser 
light is absorbed in a plasma is a well-known The 
fields which are generated do not have any significant effect 
on the motion of the plasma ions, but they can strongly affect 
the electron transport. Several mechanisms are known to 
lead to a strengthening of the quasisteady fields: a deviation 
of the density gradient and the temperature gradient from a 
parallel orientation, resonant absorption of light, parametric 
instabilities, ~ t c . ~ - '  The spatial structure and time evolution 
of the spontaneous magnetic fields in a laser plasma were 
studied in Refs. 8-12. 

Different generation mechanisms correspond to differ- 
ent spatial and temporal scales of the field. In particular, the 

B,-[Vn, V T ]  

mechanism generates a field with a length scale correspond- 
ing to the predominant length scale of the plasma motion. 
Local variations in the density and temperature distribu- 
tions lead to a strengthening of the field at the corresponding 
scale. As was shown in Ref. 11, however, variations can also 
lead to a strengthening of the average field with the maxi- 
mum (hydrodynamic) length scale. The approach taken in 
Ref. 11, which is based on perturbation theory, yielded the 
component of the average field due to the modulation and 
estimates of the conditions under which this component is 
comparable to the field generated in the absence of a modula- 
tion. Strictly speaking, however, at high modulation ampli- 
tudes the results of Ref. 11 should be regarded as approxi- 
mate. 

In the present paper we analyze the generation of a 
spontaneous magnetic field over times on the order of the 
time scale of the electron thermal conductivity. We examine 
the effect of a short-wave modulation of the temperature on 
the strength and dynamics of the average field. This tem- 
perature modulation might be caused by. for example, a 
modulation of the laser intensity or fluctuations in the inten- 
sity due to instabilities. The particular formulation of the 
problem adopted here reflects certain aspects of experiments 
with ultrashort laser pulses. In particular, this formulation 
of the problem corresponds to the experimental situation in 
which the plasma is produced near a solid target by a low- 
intensity precursor pulse and is then heated by the intense 
ultrashort pulse. In this case, a significant strengthening of 
the magnetic field can occur (saturation may also set in) 
over a time shorter than the time scale of the hydrodynamic 
motion, so the usual hydrodynamic convection can be ig- 

nored.I3 On the other hand, it is necessary to consider the 
convective transport of magnetic field by the electron heat 
flux (Nernst convection). The equation for the field in this 
can be written8.I4 

Here 

V =  - ( r , / r n , ) ( ( B , ~ ~  +PO)/A)VT, A =x4 +SIx2  +SO, 

x = oHr, is the Hall parameter, 7, is the electron mean free 
time, and B,, Po, S,, and 6, are constants whose values are 
given in Ref. 14. Equation ( 1 ) is the standard MHD equa- 
tion, in which the mass velocity has been replaced by the 
velocity ( V )  of heat propagation due to electron thermal 
conductivity. 

We begin our analysis with a very simple model. We 
assume that the density and temperature profiles are given 
and, for simplicity, are independent of the time. We also 
assume that the density depends on only the coordinate z, 
which runs along the normal to the target surface, while the 
temperature depends on only the coordinate x .  In this case 
the magnetic field has only the one component 
By = B(x,z,t). With a qualitative analysis of the modulation 
effects in mind, we will ignore the convection associated 
with the Nernst effect along the z axis. This assumption does 
not affect the result if the temperature profile is modulated 
only along the x axis. The transport of magnetic field (asso- 
ciated with Nernst effect) along the direction of the laser 
beam in the absence of a modulation was studied in Ref. 15. 

Under the assumptions made above, we can replace Eq. 
( 1 ) by the scalar equation 

aB a(J3V) $2' -- + -- +G-=0,  (2)  
at az I% 

where G = (c/en)dn/dz. If the magnetic field is weak 
enough that the Hall parameter satisfies ~4 1, Eq. (2)  be- 
comes linear and comparatively easy to study analytically. 
We begin our analysis with this case. The general solution of 
the Cauchy problem for Eq. (21 can be written in the form 

where 
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and F(v  - t )  is an arbitrary function of its argument. Using 
B(x,O) = 0 as an initial condition, we find an equation for 
determining F: F(v(x)  ) = T(x).  It is convenient to use the 
solutions of Eq. ( 3 )  to calculate average values of the mag- 
netic field over x, i.e., to find the large-scale component of 
the field. A direct calculation yields 

wherev-I =v (xO) ,v t  = v ( x o + 2 ~ N / k ) , k i s t h e m o d u -  
lation wave number, and N is a natural number. 

We note an obvious property of the solutions of Eq. (2) .  
taking an average of this equation over x between the points 
a and b, at which the temperature gradient vanishes, we find 

The field thus does not reach saturation in the "heat-insulat- 
ed" regions. The field increases linearly with time; this in- 
crease may be limited by hydrodynamic convection or dissi- 
pative effects. Let us examine the behavior of the solutions of 
Eq. ( 3 )  over a short time. For this purpose we expand 
F ( v  - t)  in a Taylor series in t .  After some straightforward 
manipulations we find 

m 

where the operator D is given by D = V(x) d /dx. Retaining 
only the first two terms, we find 

It can be seen from Eq. (5)  that over a short time the field 
increases linearly (independently at each point). The second 
term on the right side of Eq. (5 )  is due to convection. De- 
pending on its sign, it determines a tendency toward either a 
stabilization of the field or a convective strengthening of the 
field. The coefficient o f t  in this term is proportional to the 
gradient of the flux density, d /dx(b V), calculated in the cor- 
responding approximation. 

We now consider a modulated temperature profile 
T(x) = T,(x) (1  +Mcos(kx) ) ,  where Ts(x) isaslowly 
varying function with a length scale L. We assume M g  1 and 
kL % 1. Using Eq. ( 5 ) , and taking an average over the rapid- 
ly varying functions, we find 

Here V, = - V,TYdT/dx. It follows from Eq. (6)  that 
the modulation always leads to a strengthening of the aver- 
age field, and the corresponding component is proportional 
to (Mk)*. This conclusion agrees with a result found in Ref. 

11. The method used to derive Eq. (6 )  is actually equivalent 
to the perturbation theory which was used in Ref. 11, so the 
range of applicability of Eq. (6)  is limited to small values of 
(MkL) and to short times t. Since series Eq. (4)  converges, 
however, it could in principle be used for arbitrary t ,  if the 
necessary number of terms were taken into account. 

At MkL> 1 the situation changes qualitatively. In this 
case, points with dT/dx = 0 can appear on the modulated 
temperature profile: 

As we mentioned earlier, the magnetic field in the region 
between these points increases linearly with time, and con- 
vection does not affect this growth. If the modulation ampli- 
tude remains low ( M <  I ) ,  then at MkL> 1 the average field 
does not depend on the modulation amplitude and is deter- 
mined by the average temperature gradient dTs/dx. The lo- 
cal field is oscillatory and large in magnitude. An estimate of 
this field on the basis of our model might prove to be overly 
crude, because we have ignored the dependence of the 
Nernst velocity on the magnetic field (this dependence is 
important at X -  1 ) and also because we have ignored the 
field diffusion, which plays an important role when the gra- 
dients are high. 

There is yet another factor which limits the applicabili- 
ty of the simple model described above for calculating the 
small-scale magnetic field. Numerical estimates show that 
under the conditions typical of laser experiments kinetic ef- 
fects may be important. In particular, the nonlocal nature of 
the heat flux may be important.''.'' A switch to a kinetic 
description would seriously complicate the formulation of 
the problem and the task of solving it. However, by applying 
the method of Ref. 11 to the equations derived in Ref. 17, one 
can show that the qualitative picture of the increase in the 
average field as the result of a small-scale modulation of the 
temperature profile remains the same in a kinetic descrip- 
tion. 

To determine how the nonlinearity of the Nernst effect 
and the finite conductivity of the plasma affect the genera- 
tion of the magnetic field, we integrated Eq. (2 )  numerical- 
ly. The dependence of the Nernst velocity on the magnetic 
field was taken into account. A Gaussian temperature pro- 
file with a small periodic modulation was assumed for these 
calculations: 

FIG. 1. a-Time evolution of the average magnetic field BSin the absence 
of field diffusion; &The same, with field diffusion. I-M = 0.01; 2- 
0.005; 3 4 .  To = 6.  
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to the right side of Eq. ( 1 ) , with a diffusion coefficient 

D (x) = 

FIG. 2. a-Average magnetic field BS versus the modulation amplitude 
M ( M S  = 100 M) in the absence of field diffusion; b-the same, with field 
diffusion. T,, = 6, t = 1 .  

T (x) =To exp(-xVE) (1+111 cos (kx) ) .  

The following parameter values were adopted: To = 600 eV, 
L = 25 pm, kL = 40a, A =  2a/k = 1.25 pm, and G = 2. 
The charge of the ions was taken to be 4 (the components P, 
and 6, depend on this charge). 

The results of these calculations are shown in Figs. 1 
and 2. The fields are given in units of lo4 G, the time in units 
of lo-'' s, and the temperature in units of 100 eV 
(MS = 100M) . Figure la shows the time dependence of the 
magnetic field, averaged over the interval (0,L /2). In the 
absence of a modulation, the field exhibits a tendency toward 
saturation, in agreement with a calculation from Eq. (4) .  A 
modulation accelerates the increase in the average field over 
the interval (0,L /2): At M = 0.008 (MkL z 1 ), the growth 
becomes essentially linear. Figure 2a shows the dependence 
of the field averaged over the interval (0,L /2) on the modu- 
lation amplitude M at the time t = 10 - l o  s. The amplitude 
of the average field reaches saturation at MkL - 1, in agree- 
ment with arguments above. 

We have already mentioned that incorporating the field 
diffusion even at high temperatures (i.e., even at small diffu- 
sion coefficients) can have an important effect on the evolu- 
tion of the local magnetic fields and thus on the magnitude of 
the average field. To take the diffusion into account in the 
numerical calculations, we added a diffusion term 

Here a, and a, are  constant^.'^ At a sufficiently high tem- 
perature (at To = 600 eV), there is no qualitative change in 
the picture of the average field as a function of the modula- 
tion parameter M (i.e., the field increases and then reaches 
saturation as Mis increased). There are, on the other hand, a 
substantial change in the strength of the field and a temporal 
growth of this field at MkL> 1. Figures lb  and 2b show the 
results of the numerical calculations incorporating field dif- 
fusion. These calculations show that the long-wave compo- 
nent of the magnetic field reaches a maximum at MkL - 1. 
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