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We consider surface plasma waves in semiconducting structures with resonant tunneling through 
a double barrier. We discuss the spectrum and the stability of the surface plasma waves. Under 
well-defined conditions the waves are found to be absolutely unstable. The growth rate increases 
with increasing wavelength. We discuss the effect of this instability on the work done by radiation 
sources using resonant tunnel structures. 

1. INTRODUCTION 

Recently a number of papers have investigated plasma 
instabilities in synthetic semiconducting struct~res. '-~ In 
most of these papers drift instabilities (known from the theo- 
ry of a gaseous plasma) in two-dimensional channels and 
superlattices have been studied. Unfortunately, an experi- 
mental realization of a drift instability is made difficult by 
the low value ( - 10' cm/s) of the velocity of the current 
carriers actually attainable in semiconductors. 

In the present paper we consider a new type of plasma 
instability which can arise in special semiconducting struc- 
tures with resonant tunneling (RTS) through a double bar- 
rier.6.7 

In RTS there is a layer of an unalloyed semiconductor 
with a built-in quantum well between two semiconductor 
layers with a high conductivity (Fig. 1 ). The dependence of 
the tunneling current through the undoped layer on the po- 
tential on it has a decreasing part which corresponds to a 
negative differential conductivity (NDC) . At the present 
time RTS are used for the production of high-frequency gen- 
erators (resonant tunnel diodes) .7 

It is well known that a NDC facilitates the development 
of an instability in the system. We consider the problem of 
the stability of surface plasma waves in RTS. At first sight 
the frequencies of the plasma waves in the conducting re- 
gions of the RTS are much higher than those for which a 
NDC has been observed. Indeed, the dopant concentration 
of conducting regions in a RTS on a GaAs-AlAs base is 
usually n, -- 2 x 10" ~ r n - ~ ,  which corresponds to frequen- 
cies of the bulk plasmons w, = (e2n, /~m)"2~2.rr .  1013 s-' 
(Ref. 8).  However, on the boundaries of the conducting re- 
gions there are surface plasma waves. If the plasma waves on 
different boundaries do not interact one another, their fre- 
quency is w,, = 2-"*wP. The interaction between waves on 
different surfaces leads to the presence of two branches in the 
spectrum. One branch corresponds to in-phase oscillations, 
the other to antiphase oscillations of the surface charge den- 
sity on different boundaries. Two features of the antiphase 
oscillations are important for us. Firstly, their frequency 
must decrease as a function of wavelength, since the longer 
the wavelength the stronger the relative attenuation of the 
fields produced by charges on different surfaces. It may thus 
turn out that the frequency of such oscillations decreases in 
the region where the NDC remains. Secondly, thanks to the 
presence of the normal component of the electric field the 

plasma oscillations may be amplified or excited due to the 
presence of the NDC. 

2. CALCULATION 

The evaluation of the spectrum of surface plasma waves 
is carried out in the hydrodynamic approximation for the 
idealized system shown in Fig. 2. A layer of an undoped 
semiconductor ( - A < z  < A, Fig. 2) with a built-in quan- 
tum well (not shown in Fig. 2) lies between two identical 
highlydopedlayers ( - d < z <  -AandA<z<d ,F ig .  2).  
On the boundaries of the structure (z = + d, Fig. 2) there 
are metallic electrodes with a conductivity which is assumed 
to be infinite. A constant bias Z? is applied to the electrodes 
so that the potential on the undoped layer ( U,, Fig. 3 ) corre- 
sponds to the NDC: 

where j is the tunneling current density. We neglect the 
charge of the electron beam in the undoped region and as- 
sume that Eq. ( 1 ) is valid in some range of frequencies (be- 
low we use as an estimate the frequency range up to 1012 
Hz). In what follows we shall be interested in the stability of 
the initial state of the system (the point 0 in Fig. 3). To 
describe the plasma in the conducting regions we use the 
hydrodynamic approximation and neglect retardation ef- 
fects. The equations of motion and the continuity and Pois- 
son equations take the form 

FIG. 1 .  Band diagram of a resonant tunneling structure: I-highly doped 
regions; 2-undoped region; 3-quantum well. 
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FIG. 2. Sketch of the structure and electric field distribution in uniform 
(a) and nonuniform (b)  plasma waves: I, 2-the same as in Fig. 1; 3- 
metallic regions (contacts). 

Here m and e are the electron mass and charge, Y is the 
collision frequency, n and u are the deviations of the electron 
density and velocity from their initial values no and vo (v, is 
the drift velocity of the electrons due to the source of the 
potential ), q, is the deviation of the electrostatic potential 
from its initial value, and E is the dielectric permittivity (as- 
sumed to be independent of the spatial coordinates). 

To describe the boundary conditions we assume that 
the carrier density at the boundaries (z = f A, Fig. 2) of 
the conducting regions changes abruptly (i.e., that there is 
no transition layer) and that the Debye radius is much 
shorter than the characteristic scales for changes in the 
quantities which occur in Eqs. (2) to (4)  (long-wavelength 
approximation). We can then introduce the concept of a 
surface charge density and write the boundary conditions in 
the form 

Here the ni are the deviations of the surface charge density 
from their initial values, the index i numbers the boundaries 

( i=  l f o r z =  - A a n d i = 2 f o r ~ = A ) , ~ ~ i ~ t h e u n i t v e c t o r  
perpendicular to the corresponding boundary (Fig. 2), and j 
is the deviation of the tunneling current from its initial value. 
Equation (7) describes the jump in the normal component 
of the electric field at the boundaries. We look for solutions 
of Eqs. (2)  to (4) in the form cc exp(iqr + iwt) .  Equations 
(2) to (4) take the form 

(io+v-iqv,)v= (-elm) Vcp, (8 

From Eqs. (8)  to ( l o )  we obtain 

n [  (i~+iqv,+v) (o-qv,) - i w i ]  = 0. (11) 

By putting the expression in the square brackets in (1 1) 
equal to zero we can obtain the dispersion relation for the 
bulk plasmons. However, in the discussion below (following 
the considerations given in the Introduction) we shall only 
be interested in surface plasmons. The solution describing 
surface plasmons corresponds to the relation n = 0 in Eq. 
( 11 ) . In that case we get from ( 10) 

where for the sake of simplicity we put q, = 0. In what fol- 
lows we use the notation q, = k. 

It follows from (12) that we can write the spatial de- 
pendence of the potential in a form corresponding to surface 
waves: 

paexp( + kt - i k x ) .  (13) 

We can write the boundary conditions (5) in the form 

G ion, (x)=-n,v, (x. z=A)+ -[rp(x. z=-A)  -cp(x. z=A)] 
e 

Equations (14) together with Eqs. (8)  and (10) and 
the boundary conditions (6)  and (7)  make it possible to find 
the dispersion relation for the surface plasma waves. In this 
case (as we shall show below) we can neglect the term 
iqv, = kvo in comparison with Y in the equation of motion 
(8). Since this system is symmetric with respect to the z = 0 
plane there exist symmetric (n, = n,) and antisymmetric 
(n, = - n,) oscillations. 

Neglecting the tunneling current and the damping 
( G  = 0, Y = 0)  we find the following dispersion relations 
from the equations we have obtained for the symmetric oscil- 
lations: 

FIG. 3. Tunneling current density j through the structure as function of 
the potential Uin the undoped region: j , , , ,  ( U) = (8? - U)/R, where R 
is the total resistivity (per 1 cm2) of the conducting layers of the structure 
and P is the potential maintained by an external source on the metallic 
contacts. 

where 

cop,= (',;re%,,/e~n 1"'. 

and for the antisymmetric oscillations 

(16) 
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where 

These solutions are shown schematically in Fig. 4. In what 
follows we shall only be interested in the low-frequency 
branch a'-'. Including the damping ( Y # O )  and the tunnel- 
ing current the dispersion relation it takes the form 

( - )  co, (k)='/,{ilv-vSB(k)] 

~t [ i 'w, , : 'A  (k) - ( V + V * B ( ~ ) ) ~ J ' ~ } ,  (18) 

where 

We note that for kd< 1 and A < d  we have 

A ( k )  =2Aldf 4kA: 

B(k) .=. l -A/d-IcA'ld-'/,kzdA. (21) 

For kA < 1 and kd 5 1 we have 

3. DISCUSSION 

Equation ( 18) determines the spectrum and the stabil- 
ity of the plasma waves. The waves become unstable for Im 
w'-'(k) <O. We consider first of all the case Y > v*B(k). It 
follows from Eq. (18) that even in that case there may be 
growing aperiodic (Re w'-' = 0)  perturbations. Indeed, all 
perturbations for which 

vv'B(k)>opsZA (k), 

will grow with time, and it follows from (21 ) that the largest 
growth rate occurs for the uniform (k  = 0)  solution. The 
evolution of a uniform perturbation causes the system to 
undergo a transition into one of the stable states ( A  or B in 
Fig. 3 ) .  

The system will be stable if 

FIG. 4. Spectrum of surface plasma waves when one neglects damping 
and the tunneling current. 

Using (20) we can show that the stability condition (23a) is 
equivalent to the condition 

where R is the resistivity (per 1 cm2) of the conducting lay- 
ers of the structure. Condition (23) means that the "load 
line" b, ( U) ] decreases more steeply than the current-vol- 
tage characteristic of the RTS. Note that condition (23) 
must always be satisfied in a RTS used for the generation of 
electromagnetic radiation.' In that case Eq. ( 18) leads to the 
well known result7 that a RTS not connected to an external 
resonant circuit is stable. 

It therefore follows from Eq. (18) that for v >  v*B(k) 
there can only be damped plasma waves in the system. Note 
that if Y - v*B(k) is sufficiently small the frequencies of the 
weakly damped surface plasma waves can fall in the operat- 
ing range of a generator based on a RTS. The excitation of 
such plasmons can lead to a significant reduction in the pow- 
er of the generator. 

We now consider the case v*B(k) > Y. Estimates given 
below show that such a situation can be reached in practice. 
It now follows from ( 18) that there always exists a growing 
solution, even when condition (23) is satisfied. It follows 
from Fig. 3 that when condition (23) is satisfied there are no 
other equilibrium states of the system (apart from the point 
0 in Fig. 3). Thus auto-oscillations appear in the system 
even without an external oscillatory circuit. The nature of 
the auto-oscillations can be determined from Eq. ( 18). We 
consider the uniform (k  = 0)  case, which is the most impor- 
tant from a practical point of view. Using (21 ) we then find 
that for 

we have Re w'-' = 0, Im a'-' < 0 and relaxation-type auto- 
oscillations arise in the system. 

For 

the system is characterized by the eigenfrequency of the plas- 
ma waves: 

and the growth rate 

The growth rate is for nonuniform oscillations equal to 

-Im o (I<)=--v+v'B(k) 

and decreases, according to (21), slowly with increasing k. 
Taking into account plasma effects (i.e., the electron 

inertia in the conducting regions of the RTS) at u*B(k) > v 
thus leads to an essentially new result: auto-oscillations arise 
in the system even without an external circuit. The absence 
of an external electromagnetic circuit may make it possible 
to decrease the size of a generator based on RTS. 
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We give an estimate of the quantities occurring in the 
formulae given above. We use the data of Ref. 7, in which a 
generator based on RTS with a very high frequency is de- 
scribed. For a GaAs-AlAs RTS (Ref. 7) the negative differ- 
ential conductance is equal to 6 X lop2 Ct-' for an area of - 10' crn2 and an undoped layer of thickness 2Az700 A. 
This gives v* ~ 2 . r r . 5  X 10" s- '. Starting from a mobility val- 
ue ,u = 3000 cm2/V s we get v = 2 ~ -  1.5 x 10" s-'. There- 
fore we have v,--3 v*. The value of v* may be larger for 
structures with a larger "peak-to-valley" ratio on the cur- 
rent-voltage characteristic. For the GaAs-AlAs structure in 
Ref. 7 this ratio was 1.4, a relatively small value. In the same 
paper a structure based on InGaAs-AlAs was discussed 
with a "peak-to-valley" ratio of more than 10. Hence, the 
condition v* > v may be reached in the very near future. 

As we mentioned earlier, in Eq. ( 8 )  we neglected the 
term quo in comparison with v. Let us show that one can 
indeed do this. For a constant tunneling current - lo5 A/ 
cm2 and7 no = 2~ 10" cmP3 we find v, = 3 x lo5 cm/s. We 
estimate the typical value of q to be q - 2.rr/L, where L is the 

lateral size of the structure for which one usually has L - 1- 
10,um (Ref. 7).  This leads to quo- 2 r . 3  X lo9 s ', consider- 
ably smaller than vz2.rr. 1012 s- ' .  

The author is grateful to I. B. Levinson and S. V. Ior- 
danskii for useful discussions and to T. Sollner for a discus- 
sion of problems connected with the operation of resonant 
tunnel diodes. 
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