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Instabilities of the dislocation shapes in crystals supersaturated with intrinsic point defects are 
theoretically investigated. It is shown that instabilities can develop via two different mechanisms, 
each ofwhich having a threshold, i.e., they coexist only at sufficiently large supersaturation with 
point defects. The expressions obtained for the critical supersaturations and for the growth rates 
of instability developments lead to the conclusion that under the conditions of crystal irradiation 
the loss of stability of small-radius dislocation loops is substantially faster than that of infinite 
dislocations. This agrees with experimental observations of dislocations of unusual shape in a 
high-voltage electron microscope. 

1. INTRODUCTION 

The onset of inhomogeneous and periodic structures in 
various substances under nonequilibrium conditions is a 
well known phenomenon, most frequently observed when 
the system becomes supercooled. The cellular structure that 
develops on the phase-transition front of a solidifying alloy 
and the dendritic growth of crystals are well known exam- 
ples of this behavior under conditions of sufficient super- 
cooling (of the temperature of "concentration" type1). 
Spinodal decay is of frequently produced in rapidly 
quenched liquid alloys as a result of development of concen- 
tration waves in a crystal of homogeneous composition, and 
causes stratification of the material. When the cooling rate is 
increased the substance can go over into a metastable amor- 
phous state. 

Similar phenomena can be produced under nonequilib- 
rium conditions by large fluxes of radiation or of particles. 
Thus, spinodal decay and stratification of alloys can be ob- 
served when a solid is irradiated by a sufficiently large neu- 
tron flux.293 At very high irradiation the number of defects 
produced in the material can exceed a critical value and the 
substance becomes amorpho~s .~  Another important phe- 
nomenon in irradiated materials is the appearance of period- 
ic lattices ofpores or gas bubbles, which can be quite natural- 
ly attributed to development of self-organization in a 
nonequilibrium dissipative system5 and constitutes a crystal 
with nonequilibrium point-defect den~ i ty .~  

It appears that another example of such a behavior is 
the onset of dislocation loops of unusual shape in irradiated 
materials containing many nonequilibrium point defects. 
Thus, electron-microscope investigations reveal occasional 
appearance and growth loops in the form of "camomiles" or 
"rosettes" with "petal" dimensions much smaller than the 
loop Since such a shape is energywise unfavorable 
for a dislocation with isotropic linear tension, it is of interest 
to investigate the physical mechanism of its development. It 
is well known10911 that anisotropy of the elastic properties of 
a crystal can cause the dislocation line to be bent in a shape 
different from that typical of an isotropic crystal; this form, 
however, does not differ greatly from a "camomile" and fur- 
thermore the degree of anisotropy of the crystal decreases 
when it is irradiated, while "camomiles" are produced main- 
ly under strong irradiation. In some cases the onset of loops 
of complicated shape may be due to blocking of the loop 
growth,12,13 but no such blocking was observed in the cited 

and such a possibility can apparently be ex- 
cluded. 

In the present paper, in which our earlier results are 
generalized (see Refs. 14-16), the perturbation of the regu- 
lar shape of a dislocation line is attributed to the onset of 
kinetic instability due to absorption of unequal numbers of 
excess vacancies (and interstitial atoms) by different sec- 
tions of the dislocation line. In Sec. 2 we consider the case of 
an infinitely long open dislocation. Its instability has a 
threshold, i.e., sets in at point-defect densities exceeding a 
certain critical value. Numerical estimates of this threshold 
show that such densities can apparently not be reached un- 
der the experimental conditions of Refs. 7-9. In addition, we 
study the influence of the elastic interaction of the disloca- 
tion with point defects on the character of the instability of 
the dislocation shape. Allowance for this interaction de- 
creases substantially the growth rate of the perturbation, 
while the threshold density of the point defects decreases by 
at least an order of magnitude. 

In Sec. 3 we consider in this connection the influence of 
finite dimensions of a closed dislocation loop on the instabil- 
ity development mechanism. A new type of instability is pro- 
duced in this case, and its influence on the shape of the dislo- 
cation decreases with increase of the radius of the latter, and 
vanishes completely in the limit of large dimensions. The 
threshold density for the development of the shape stability 
of such loops turns out here to be several orders smaller than 
in the previously investigated case, and reaches values of 
experimental order. 

2. INSTABILITY OF LINEAR DISLOCATION 

Consider a crystal of infinite size, containing straight- 
line edge dislocations. The vacancy density at the dislocation 
core is given, according to Ref. 17, by 

C J . .  =c, e x p ( - E , , I T ) ,  

where c, is the thermodynamic-equilibrium density far from 
the dislocation, Tis the temperature (in energy units), and 
Eo is the energy of the elastic interaction of the vacancy with 
the dislocation. If, for one reason or another (quenching or 
irradiation of the crystal) the average vacancy c far from the 
dislocation exceeds c,, the excess vacancies trickle down on 
the dislocations (one says that the latter serve as sinks for the 
former), and the result is creeping of the dislocations. It is 
obvious then that if, firstly, all the dislocations are parallel to 
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each other (and to thex axis), secondly, the crystal contains 
no stoppers or microdefects with a geometry other than cy- 
lindrical (pores, dislocation loops, etc.), and thirdly, the va- 
cancy density is independent of x, then we have a planar 
problem, and all the segments of the dislocation line climb at 
the same rate. On the other hand, if at least one of the forego- 
ing conditions is violated, different segments of the disloca- 
tion line can climb at different rates, and the shape of the 
dislocation is altered as a result. 

All the foregoing conditions are external for any fixed 
dislocation. The present study, however, just as in Refs. 14- 
16, deals with "internal" causes of the change of shape, con- 
nected with deviation of the initial form of the dislocation 
from ideal (straight line for an infinite dislocation or circu- 
lar for a loop of finite size). 

We introduce a Cartesian coordinate frame (x,y,z) 
such that the Burgers vector b of the dislocation is parallel to 
they  axis, the points of the dislocation line have at some 
initial instant of time to the coordinates Y = 0, 

z(to. X )  = [a,,  ( to )  sin ( k n X )  + bn (l.) cos ( k n X )  ] . ( 1 ) 

where a, and b, are functions of the time and must be deter- 
mined, and k is the wave number. The shape of the disloca- 
tion is determined by the climb rate of the sections of the 
dislocation line 

The vacant density at the core of the dislocation is17 

where Pis  the energy of the elastic interaction of the vacancy 
with the considered dislocation, Fand K are respectively the 
linear tension and the curvature of the dislocation line, R, is 
the atomic volume, and b is the modulus of the dislocation 
Burgers vector. 

The main contribution to E is made by the so-called 
dimensional interaction, described by the expre~sion '~, '~ 

where 

v andp are respectively the Poisson coefficient and the shear 
modulus of the crystal, and AR is the dilatation volume of 
the vacancy. The integral in (4)  can be determined analyti- 
cally only under strong constraints on the amplitude of the 
harmonics, viz., a,, b, (p, wherep is the radius of the dislo- 
cation core. Sincep is of the order of (2-3) b, greater physical 
interest attaches to the opposite case a,, b, >p. We consider 
therefore first the sampler problem with E = 0, which de- 
scribes qualitatively correctly the behavior of the system, 
and take into account the influence of the elastic interaction 
of the defects later on. 

a) Absence of elastic interaction 

In this case Eq. (3)  takes the form 

and the change of the vacancy density outside the dislocation 
core is described by the equation 

d c -- - DAc, 
at 

where D is the vacancy-diffusion coefficient. 
The characteristic dimension of the region from which 

the dislocation draws vacancies is 0 = 2 0  /vo (this will be 
seen from the solution of the diffusion equation, which has at 
r / 0 >  1 an exponentially decreasing asymptote). The dislo- 
cation velocity is ultimately determined self consistently 
with the degree of supersaturation Ac = c - c, of the crystal 
by vacancies: 

where n and ds are respectively the normal and the surface 
element ds of the core. Therefore at large supersaturation, 
when Q< Q (where Q is of the order of half the average dis- 
tance between the dislocations), the external conditions can 
be written in the form 

For the opposite case D)Q the external boundary conditions 
is specified on the surface of a cylinder of radius Q: 

we assume hereafter that Z is independent of time and con- 
sider, unless otherwise stipulated, a steady stage of the pro- 
cess with vo constant. 

We change to a coordinate frame moving with velocity 
vo:z+z - vot. Obviously, we can regard the dislocation to be 
immobile in this system and solve instead of (6)  the quasi- 
stationary continuity equation for the vacancy density 

(where a = 1/0  = vd2D) under the condition that the 
characteristic time of change of the dislocation shape is 
much longer than the time of establishment of diffusion 
equilibrium on its core, i.e., that the following relations hold 
at a, #O and b, #O: 

a,, b,, [an/ (/in)]= - -- :: - 
1. 

(i,, ' bn D 
(11) 

Thus, to obtain the a, ( t )  and b, ( t)  dependences we must 
solve Eq. (10) with boundary conditions (5)  on the disloca- 
tion core and (8)  or (9)  on the outer boundary of the region. 

The curvature ( 1 ) of the dislocation line is equal to 

and the linear tension calculated using Blin's f o r m ~ l a ' ~  can 
be written in the form 
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where H i s  determined by the ratios of a ,  and b, . We have 
thus H- Q for an unperturbed dislocations and H = 2r/km 
for a dislocation with a perturbation wave vector km. 

At not too low crystal temperatures and are not too 
high values of the amplitudes a, and b, we get the relation 
FKn/bT( 1 and the boundary condition (5) can be written 
in the form 

It is easy to show that if the weak logarithmic dependence of 
F on a, or b, is neglected the diffusion problem formulated 
above is linear, i.e., all the quantities a ,  and b, are indepen- 
dent, and to determine them if suffices to solve the problem 
( lo), ( 14), (8), or (9)  for a dislocation line having the sim- 
ple shape 

Z ( to,  X) =a, ( to )  sin (knX) ,  (15) 

which we shall indeed do, using for simplicity the transfor- 
mations kn -+ k and a ,  -a. 

At a = 0 we have a straight dislocation for which the 
solutionsofthesets ( lo) ,  (14), (8) ,  and ( lo) ,  (14), (9) are 
respectively l9  

We consider now the casep 4 Qg Q, assumingp 4 a 4 A, 
whereR = 2r/k  is the length of the perturbation. Making in 
( 10) the change of variables {x,y,z) - {x,y,z - a sin(kx) ) 
are retaining the terms linear in the parameter ak( 1, we 
obtain for the diffusion field the equation 

d c  d Z c  ac 
A c f 2 u  - - cos ( 1 ~ ) -  + uk%in ( k x ) -  = 0. ( 18) a z ax a- a z 

the solution of which in polar coordinates (3  = y2 + z2, 
8 = tan - ' (z/y) ) isI4 

c=c+cxp(-ar cos 0)  { - A C  ['"'a:: -- .a(.., 
K (  ) 

where I, and K, are modified Bessel  function^,^' and 
do = F W b T .  Substituting (19) in (7) and defining the 
growth rate w of the perturbation in the linearized problem 

as usual by a/a (see, e.g., Ref. 21), we obtain it for the 
expression 

where x2 = k + a*. Returning to the previous designation 
k-+ kn, we see that the condition ( 1 1 ) is satisfied if k and n 
satisfy the relation k n > 2 ~ a ,  i.e., if the maximum wave- 
length of the perturbation does not exceed G. 

It follows from (20) that the change, influencing the 
instability development, of the vacancy flux into the disloca- 
tion core is determined by two competing factors. On the one 
hand, the asymmetry of the vacancy field ahead and behind 
the creeping dislocation leads to instability when the disloca- 
tion line is bent. On the other, the increase of the chemical 
potential of the vacancies located near the deformed section 
of the dislocation contributes to an increase of their equilib- 
rium density and eliminates the instability. 

It is easily seen that at high velocity, when Q&Q, the 
dislocation motion is always unstable to bending. To deter- 
mine the threshold of this instability we must therefore con- 
sider the opposite case of slow motion (G> Q). Solving the 
set ( lo) ,  ( 14), and (9)  we obtain in this case the following 
expression for the growth rate:14 

It can be concluded from it that the critical supersaturation 
corresponding tow = 0 is determined as the root ofthe equa- 
tion 

Recognizing that the relation a -4 k holds for a slow disloca- 
tion, we get 

It is known that the diffusion coefficient D, of the va- 
cancies along a dislocation line is much larger in the immedi- 
ate vicinity of the line than the vacancy diffusion coefficient 
D in the bulk of the crystal.22 This produces a one-dimen- 
sional vacancy flux I proportional to the gradient of the 
chemical potential of the M vacancies located along the dis- 
location. Recognizing that 

c (S) 
111 (S )=T  ln  --- 

Ce ' 

where c (X) is given by Eq. (14), we have 

from which it follows that the diffusion along the dislocation 
tube becomes substantial for the elimination of the instabil- 
ity at 

The expression for the growth rate is thenI4 
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We consider now the stability of the system to a pertur- 
bation produced by the deviation of uo from the stationary 
state described by Eq. ( 17). The difference from the earlier 
treatment is that account must be taken in the computations 
of the time dependence of the perturbed density field. In the 
case a Q <  1 the root of the obtained dispersion relation is 
6 =: - Da2, i.e., the motion of a dislocation having a station- 
ary v, is stable. In the second limiting case, aQ, 1 there 
exists, alongside the root 6 =: - Da2, a positive growth rate 
6 z Da2pa. However, by virtue of the condition a p  4 1 the 
instability corresponding to this solution evolves within a 
time 

1 Q2/D t --=- 
1 - 

G a p  ' 

which is much longer than the characteristic diffusion time 
t ,  = 0 '/D, as does also (under the condition A <2ag)  the 
evolution time of the instability to dislocation-line bending, 
given by the Eq. (20) : 

1 ?'- In i l xp  t s=-=- - - -  
o D l n x l a  ' 

The dislocation motion is thus stable to changes of the 
steady-state velocity v,. 

b) Allowance for elastic interaction 

If the perturbation of the dislocation shape is small (if 
the condition IZ(X) 1 g p  satisfied in a ~oordinate frame 
moving with the dislocation) the right-hand side of (4) can 
be integrated for any point located in the region r>p. In this 
region the expression for the energy of interaction between a 
vacancy and a dislocation takes the form 

where Eo = TL cos 8 /r.  
Let us write down a continuity equation for the vacancy 

density in a coordinate frame moving with velocity v0 (the 
values of u, and {a, ,b,) can differ in the presence of elastic 
interaction from those corresponding to the case E = 0; our 
problem is to determine them) : 

It follows from ( 2 5 ) ,  (3),  (24), and (8)  or (9)  that under 
the condition (E - E,) < Twe have again a linear problem, 
so that the values of a and b can be determined separately for 
each fixed n by considering the problem ( 15) for a disloca- 
tion line of simple form. 

We make, as before, the notation changes kn --. k and 
a, +a and determine 

El=E-E,='/,TLkZa sin ( k z )  [-KO ( k r )  +K2(kr)cos(28)  1.  

We write the expression for the density in the form 
c  = c, + c, ,  where c, is the solution of the two-dimensional 
problem for a straight dislocation: 

C O ( P ,  ~ ) = c , ~ x P ( - E o )  I,,, e l ,  

co (Q. 0 )  =F, 

and c, is the solution of the three-dimensional problem 

Solving (26)-(28) (see Ref. 23) and (29)-(31) (see 
Ref. 15) we obtain for the density an equation of the form 

+PmFekm(7, -q) +ak sin ( kx )qrn ( r )  11, (32) 

where ce, (0,q), Ce, (T - q), and Fek, (T, - q) are 
regular and modified Mathieu f~nctions, '~ 
q = - aL /2, a, and 0, are constants determined from 
the boundary conditions (27) and (28), and $, ( r )  is the 
solution of the one-dimensional problem 

where a, is an eigenvalue of the function ce, (B,q), while 
@, ( r )  $mO - m are the mth terms of the expansions of 

and 

[ ~ l i  sin ( hx )  I-' c s p  - - i2ap cos 0 cl  1." I 
in terms of ce, (0,q), respectively. 

The rate of creeping of a section of the dislocation line in 
the presence of elastic interaction with vacancies is deter- 
mined self-consistently by the expression 

Substituting (32) in (36) and integrating," we readily 
obtain an equation for the growth rate (it is too complicated 
to write out here), in which the only known quantity is the 
derivative $; (p). To determine this derivative, Eq. (33) 
was solved numeri~ally'~ using boundary conditions (34) 
and (35). 

Figures 1-4 show the dependences of the growth rate on 
the physical parameters. It  was assumed in all computations 
that Q = lOOb, corresponding to a dislocation density on the 
order of 3-10" cm - ', which is established in metals during 
the stationary irradiation stage. The characteristic values of 
the parameters L, c,, and d, were chosen to correspond to 
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FIG. 1. Growth rate vs intensity of elastic vacancydislocation interac- 
tion at a b  = 5 .  10V3 and2 /b = 25. Solid line-p/b = 2, dashedp/b = 3. 

metals in the temperature interval 0.3 T,,, < T<0.6Tm (T, 
is the melting temperature), where the recombination of va- 
cancies and interstitial atoms can be neglected and where 
radiation-stimulated processes prevail over thermal ones.26 
Figures 1, 3, and 4 correspond to the value a = 5 .  1OP3/b 
deduced from the following considerations: Firstly, it is seen 
from Fig. 2 that the growth rate becomes positive (meaning 
instability) only at sufficiently dislocation climb rates (val- 
ues of a ) .  Secondly, according to ( 16) the relation between 
the effective supersaturation of the point defects and a is 

Ac=ab In ( Q l p )  In. 

so that substitution of Q = lOOp and a = 5 -  10- 3/b yields 
ACZ 5.10 - 3, i.e., very large vacancy supersaturation attain- 
able only at high irradiation intensities. 

The computation results can be readily explained qual- 
itatively. The increase of the growth rate with increase of a is 
an already known phenomenon, due to asymmetry of the 
field ahead (z> 0) and behind ( z  < 0) the vacancy field; this 
asymmetry is larger the higher the velocity. The decrease of 
w with increase of the elastic interaction is made clear by 

FIG. 3. Growth rate vs wavelength of dislocation line at a b  = 5.10 3and 
p = 26. Solid line-L /b = - 10, dashed-l /b = - 5.  

I L I. Thus, the forward segments of the perturbed dislocation 
line absorb fewer vacancies than the rear ones, bringing 
them closer together, i.e., decreasing the amplitude of the 
perturbation. On the other hand, the growth rate increases 
the core radius because the absolute value of the interaction 
energy decreases rapidly with increase of the distance from 
the dislocation line. It can be seen from Fig. 3 that the de- 
pendence of the growth rate on the perturbation wavelength 
is quite weak. 

As follows from the figures, elastic interaction between 
vacancies and an infinite dislocation increases the instability 
of the latter. Recognizing that a typical value of L of a metal 
at a temperature -0.5Tm is 10 b, it is easily seen that the 
growth rate can become positive only at very high supersa- 
iuration, Ac > 10 - * vacancies per atom, close to the thresh- 
old of amorphization of the material by irradiation. In addi- 
tion, it will be shown in Sec. 3 that allowance for the presence 
of interstitial atoms in the irradiated material lowers the 
growth rate further. 

It can thus be concluded from the foregoing that the 
shape of a straight dislocation is stable under the experimen- 
tal conditions of Refs. 7-9, so that the finite dimensions of 
the dislocations must be taken into account. 

analysis of the character of the vacancy field around an im- 3. INSTABILITY OFA D~SLOCAT~ON LOOP 
mobile (a = 0) linear ~acancy.~ '  Indeed, it follows from the 

It was noted above that there exist at least two types of results of Ref. 27 that the difference between the vacancy 
"internal" instability produced when the form of the dislo- 

flux densities at equal distances in front of and behind the 
cation line deviates from ideal. The first, due to motion of the 

dislocation is negative, and its modulus is larger the larger 

FIG. 2. Growth rate vs dislocation velocity at p/b = 2 and L/b = 25. FIG. 4. Growth rate vs dislocation-core radius at a b  = 5 .  and 
Solid line-L /b = - 10, dashed-L /b = - 5. 2 /b = 2 5 .  Solid line-L /b = - 10, dashed-L /b = - 5.  
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dislocation as a whole (v,#O) was investigated in the pre- 
ceding section. We shall find it convenient to study the sec- 
ond using the example of prismatic dislocation loops. Recog- 
nizing that the influence of the elastic interaction decreases 
with the loop radiusz8 (owing to the overlap of elastic fields 
of opposite sign from different dislocation segments), we 
assume hereafter E = 0. 

Consider a dislocation loop of the vacancy type (inter- 
stitial loops will be discussed at the end of the section) with 
the Burgers vector perpendicular to the plane of the loop and 
with a distance from the points of the axis at the initial in- 
stant of time to the center of the loop 

w 

where R is the radius of the loop and e, is the polar angle. We 
assume that a, (to) and b, (to) for all n are such that in the 
considered time interval we have the following relations: 

nu,, nb,eR. (38) 

The dislocation climb rate is 
w 

u ( t ,  cp)=uo(t)+ ( i n  ( t )  sin (ncp)+6, (t)cos (nl)). (39) 
"-1 

The vacancy density at the points of the loop core is 
specified by expression ( 14), with the curvature and linear 
tension defined, accurate to terms of second order of small- 
ness, by 

s 

pb' 
F =  

4R 
ln-. 

4n( l -v )  p 

Note that (41 ) was obtained under the assumption that the 
relations 

hold for all a, #O and b, #O. It will be clear from the solu- 

tion of the problem that these conditions are violated at suffi- 
ciently high supersaturation of the crystal by vacancies. 
However, as in the case of a straight-line dislocation [see Eq. 
( 16) 1, this leads only to a very insignificant change (de- 
crease) of F, with practically no effect on the final results. 

Let us carry out the calculation for the largest loop 
growth rates, when the time to establish a quasistationary 
vacancy density is much shorter than the characteristic time 
of change of the loop's geometric parameters. In this approx- 
imation, which will be corroborated below, the vacancy dis- 
tribution is described by the Laplace equation 

In view of the obvious linearity of the formulated prob- 
lem, we shall investigate below the solution for a loop of 
simple shape 

where the number of lobes obeys relations (38) and 

The external boundary condition is chosen initially in the 
form (8). 

Let the z axis of the Cartesian frame (x,y,z) (at the 
center of the loop) be perpendicular to the plane of the loop. 
We introduce a curvilinear coordinate system (p$,y) such 
that 

x= [R+a, sin(ncp) +bas 71 cos q, 

y= [R+a, sin(np) + lcos ylsin cp, z=g sill 7. (45) 

The coordinates of the core points are here (e,,p,y). 
We solve the system (42), (14), and (8)  by the poten- 

tial method,29 placing a filament with a "charge" density 

q, (q) =Ao+A, sin ncp 

along the loop axis (6 = 0). The vacancy density at any 
point (x,y,z) outside the core is equal, accurate to a constant 
Z, to the potential produced by the filament at this point: 
c = F + V, where 

?a 

(A.+A, sin n$) dlp v = J  , {[z- (R+an sin nlp)cos $]Z+[y-'(~+a, sin nlp)sin ~ ] Z + ~ Z ) W '  

The constants A, and A, are determined from the boundary 
condition ( 14). In particular, at a, = 0 (i.e., in the case of an 
undeformed loop), we get 

and obtain the known relation3' 

where 

r, and r, are the longest and shortest distances from the ob- 
servation point to the loop axis, and K ( k )  is a complete ellip- 
tic integral. l3 

Substituting in (46) expressions (45) for x, y, and z, 
expanding (46) in a series of elliptic integrals, and using the 
expressionsz0 for the limits of the latter as k + 1, we find from 
the boundary condition ( 14) that the expression given above 
is valid for A,, and that A, is given by 

= -  ( C - ~ , , ) I L I  (RIp~z"')lln (8Rlp) - (n2-I) (d,lR) - c, 
2 In Rlnp 

(47) 

Substituting this solution in (7),  we obtain finally the 
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following expressions for the rate of change of the average 
loop radius and for the growth rate on = a,/a, of the per- 
turbation: 

2nD/b e-c, 
W,$ = -- 

In SRIp R 
( T , - I ~ , , ) .  

where 
In n do In SRlp c, 

t, = qn=(n2-I)-------- 
2 In Rlnp R InRlnp F-cn 

. (50) 

Expression (48) confirms the validity of using in (42) a 
quasistationary approximation for loops that are not too 
large. In fact, it follows from (48) that the characteristic 
diffusion time (2R)'/D is much shorter than the time R /v, 
necessary for a noticeable increase of the loop radius, for 
arbitrary vacancy-supersaturation levels satisfying the con- 
dition Ac(b /(8nR). Thus, if the loop radius is R< 100 b, 
Eq. (42) is valid for Ac< 10 - vacancies per atom. Further- 
more, comparing the growth rates (49) and (20) corre- 
sponding to like values of A, it is easily seen that at a loop 
radius R <  lo2 b and for crystal supersaturation by vacancies 
Ac< 10 - the amplitude of the perturbation increases con- 
siderably faster than in the case of infinite dislocations. This 
means that practically under all irradiation conditions, 
allowance for the climb of a small loop in the diffusion equa- 
tion for point defects can lead only to an insignificant in- 
crease of the growth rate (49). 

It follows from (49) that the direction of the develop- 
ment of the dislocation-loop shape is determined by the ratio 
of r, and 77,. The second of these quantities can be easily 
seen from (50) to be governed by linear tension and to make 
a negative contribution to the growth rate. The first term r,, 
however, is positive for any number n>2 of lobes satisfying 
the conditions (38) and (44). The nature of this term is 
governed by the asymmetry of the geometric locations of the 
"convex" and "concave" sections of the deformed disloca- 
tion loop. Roughly speaking, loop sections closer to the cen- 
ter are located in a region with a high density of drains (if 
drains are taken to mean sections of the dislocation loop), 
and those farther from the center are in regions with lower 
drain density. The effect of absorption of a large number of 
point defects by drains in "rarefied" regions compared with 
drains in "dense regions" is well known (see, e.g, Refs. 19 
and 3 1 for ensembles of straight parallel dislocations). 

From (48) and (49) follow expressions for the relative 
growth rates of the geometric parameters of the loop: 

from which it can be seen that an instability called absolute3' 
(the perturbation amplitude increases when the loop grows) 
is present when r, > I T , ,  as against a relative instability (the 
amplitude increases faster than the radius) is present at 
7 ,> (1  + % I .  

The critical supersaturation Ac: corresponding to a 
growth rate w, = 0, is equal to 

It is independent of the perturbation amplitude, decreases 
slowly with increase of the loop radius, and increases with 
increase of the number of lobes [but is never very large by 
virtue of Eqs. (38) and (44) 1. The condition under which 
w, is positive is Ac > Ac,*. When the crystal is irradiated, the 
harmonic numbered n = 2 is the first to develop in the dislo- 
cation loop, and this takes place when the supersaturation 

3 2d,In SRIp Ac' = - 
R ce . In 2 (54) 

is exceeded. 
The loop critical radius R ,*, such that at R > R ,* the 

amplitude a, increases, is given by 

R : increases rapidly with increase of the number of the har- 
monic, and decreases slowly with increase of the supersatur- 
ation of the crystal by vacancies. Recall that according to 
Ref. 30 the critical radius of a growing loop (which is not 
deformed) is given by 

Comparison of the last equation with (55) shows readily 
that the relation R ,* > R,, is valid for any number of lobes 
n>2, i.e., growth of the loop radius is a necessary but not 
sufficient condition for stability of its shape. The minimum 
loop dimension at which the amplitude of at least one har- 
monic is increased is determined from the equality 

We consider now the case of large supersaturation of a 
crystal by vacancies 

do 2 In SRlp 
A c B  (n'- 1)- Ce , 

H Inn 

when one can neglect the terms 7, in the equation for the 
growth rate and write it in the form 

2nDlb 2, 
0 ,, = ------- - Ac. 

ln8RIp R 

It follows from (58) that at sufficient supersaturation the 
growth rate is independent of either the linear tension or the 
character of the dislocation density distribution on the core 
of the dislocation loop. 

For those supersaturations at which (57) is valid one 
can neglect the terms 7, also in Eqs. (51 ) and (52); it fol- 
lows hence that satisfaction of the relations (38), (44), and 
(57) always leads to absolute instability, as well as a relative 
instability if the inequality 7, > 1 holds. When (57) is satis- 
fied, the perturbation amplitude takes RQ a function of the 
loop size the simple form 

from which it follows that for loops of equal radius the am- 
plitude increases monotonically with increase of the number 
of lobes. According to (38) and (44), however, the number 
of lobes cannot be too large (for otherwise the solution of the 
problem changes). It can therefore be assumed that to each 
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value of R there corresponds a definite quite large but finite 
"optimal" number of lobes. It follows from (59) that when 
the crystal is highly supersaturated with vacancies the per- 
turbation amplitude corresponding to some limiting dimen- 
sion R of the growing loop does not depend on the supersa- 
turation and is determined, given the initial values of R (to) 
and a, (to), only by the dimensionp of the loop core and by 
the number n of lobes. 

By way of example let us find the perturbation-ampli- 
tude change corresponding to a fivefold increase of the loop 
radius [R = 5R (to) 1, at the parameter values p = 36, 
n = 15, R (to) = 100 b satisfying (38) and (44) and corre- 
sponding approximately to see the experiments of Refs. 7-9. 
Substitution of these values in (59) yields a,/a, (to) = 4.5, 
i.e., the amplitude is increased by approximately the same 
factor as the radius. An estimate according to (57) shows 
that to satisfy the validity of the obtained value of 
[a,/a, (to) ] at a temperature equal to half the melting tem- 
perature of the crystal the supersaturation should be not less 
than Ac-300 c,, which for metals is of the order of lop6 
vacancies per atom. This supersaturation level was certainly 
achieved in the cited experiments. Note that the conditions 
(38) and (44) prevent us from considering large values of 
a, (to), but even at a, (to) = 3b we obtain a, = 14 6, i.e., a 
value fully sufficient to observe a perturbation of the loop 
shape in an electron microscope. 

When account is taken of the presence in the crystal of 
other drains (besides the considered loop) via replacing the 
boundary condition (8)  by (9)  (where Q is the sphere radi- 
US), and if the relation Q)R is valid, the field of vacancy 
density near the loop (at r(R), as well as the rate of increase 
of its radius and the growth rate, are determined (accurate 
to second-order terms) by the earlier equations in which we 
substitute 7 defined as 

where 2. is determined from the vacancy-balance equation.33 
Obviously, for an interstitial dislocation loop in a crys- 

tal supersaturated with vacancies, the earlier expression 
(49) for the growth rate remains valid if the sign of T, is 
reversed, that is to say, the loop is stable. The same stability 
conclusion is valid for a vacancy loop in a crystal supersatur- 
ated with interstices, even if one disregards the strong elastic 
interaction of the loop with the interstitial atoms (approxi- 
mately double the interaction with the vacancies). However, 
for an interstitial loop in a crystal supersaturated with inter- 
stitial atoms the signs of its growth rate will coincide with 
signs in Eq. (49). Moreover, by virtue of the exceedingly 
small thermodynamic-equilibrium interstice density c, 
(Ref. 19) we can neglect the term v n ,  and the growth rate 
might seem to be positive for any supersaturation. In fact, 
however, the high energy of the elastic interaction with the 
interstices causes the growth rate of an interstice loop in a 
crystal supersaturated with interstitial atoms to be smaller 
[at like values of DAc] of the growth rate of a vacancy loop 
in a crystal supersaturated with vacancies. Note that crystals 
supersaturated simultaneously by vacancies and interstices 
have not been considered in the present section. This situa- 
tion is discussed in Sec. 3. 

It follows from the very nature of the instability due to 

asymmetry of the geometric arrangement of the various seg- 
ments of the dislocation line that the line should be so wide- 
spread rather than a distinguishing feature of closed loops of 
simple form; in particular, instability can set in on individual 
segments of dislocations having a sufficiently large local cur- 
vature. This instability can result in an increase of the dislo- 
cation density due to dislocation-line bending. 

4. ALLOWANCE FOR INTERSTITIAL ATOMS 

Up to now we have dealt mainly with an idealized situa- 
tion with only vacancies as the point defects in the crystal 
and with no interstitial atoms. Usually (e.g., following irra- 
diation), however, excess vacancies as well as excess inter- 
stices are produced in a crystal. In this case both the average 
climb rate of the dislocation-line segments and the average 
instability growth rate increase. This has in general two 
causes: first, the mutual recombination lowers the supersa- 
turation levels of both types of point defect, and second, the 
absorption of interstitial atoms by a segment of a dislocation 
line produces a climb in a direction opposite to that corre- 
sponding to vacancy absorption. As noted above, at tem- 
peratures T >  0.3Tm (which are typical for materials in the 
active zone of a reactor) the recombination can be neglected. 
The continuity equations for the vacancy and interstice den- 
sities are therefore independent and linear. For simplicity, 
we disregard here in the calculation of the growth rates the 
elastic interaction of the point defects with the dislocations. 

We denote the relative difference between the average 
dislocation and interstitial-atom fluxes (called "prefer- 
ence") to a dislocation (infinite of closed) by 
B = (J, - J,)/J,. It  is easily seen that the average climb 
rate of the dislocation-line sections, for both slow and fast 
motion, is given with good accuracy by 

where u,, is the climb rate in the absence of interstitial 
atoms. 

The expression for the growth rate of a fast infinite dis- 
location is 

where 

It is taken into account in (62) that, firstly, the equilibrium 
density of the interstitial atoms is negligibly small and, sec- 
ondly, that under real conditions the relation vo)2Di/Q is 
never satisfied. Taking into account (62) and the fact that 
we always have Ac, ) Ac,, we can write 

where o, corresponds to absence of interstitial atoms. Since 
the dislocation preference can reach an order of 
expression (63) can serve as an additional confirmation of 
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the validity of the conclusion drawn in Sec. 2, that the shape 
of a linear dislocation is stable. 

Using Eqs. (48)-(50), we can readily show that if the 
preference of a finite-radius dislocation loop amounts to 

In 8R/p d,, c ,  
B>2(ri2-I)--------. 

111 12 R ?,-cn, 

then allowance for the presence of excess interstitial atoms in 
the crystal leads to an expression similar to (63) for the 
growth rate: 

where w,, corresponds to the absence of interstices. The ear- 
lier dependence (59) of the amplitude on the loop radius 
remains therefore in force. 

Assume a number of lobes n - 10, a radius R - 100/b, 
and a loop preference B-- 10%. It is easily seen then from 
(64) that expression (59) remains in force only at a suffi- 
cient supersaturation Ac, > lo4 c, of the crystal by vacan- 
cies. However, to satisfy the less stringent condition w,  > 0 
at the same values of the problem parameters it suffices to 
have a supersaturation lower by at least an order of magni- 
tude. Thus, the presence of interstitial atoms in the crystal 
raises somewhat the threshold vacancy density correspond- 
ing to the onset of the instability of the dislocation-loop 
shape. 

5. CONCLUSION 

We investigated the conditions for the development of 
shape instability of dislocation lines in crystals supersaturat- 
ed with point defects; two different mechanisms of the devel- 
opment of this instability were studied. 

We have shown that the first mechanism, which ensures 
a change of the shape of a linear dislocation, is connected 
with absorption of unequal amounts of excess vacancies by 
different segments of a dislocation climbing with sufficient 
speed. 

The action of the second mechanism, present in loops of 
finite radius, is also connected with nonuniform absorption 
of point defects by different sections of a dislocation line. 
Compared with the first, however, this mechanism ensures 
an onset of instability at substantially lower climb rates and 
is determined by the asymmetry of the point-defect density 
fields inside and outside the dislocation loop. 

We have shown that both types of instability have 
thresholds, i.e., are produced only when definite critical val- 
ues of the supersaturation of the crystal by point defects and 
(or) of the loop radius. The critical supersaturation for 
loops decreases slowly with increase of their radius and in- 
creases rapidly with the number of the harmonic (the num- 
ber n of the lobes), whereas the critical radius decreases 

slowly with increase of the supersaturation and increases 
rapidly with increase of n. The expressions obtained for the 
critical supersaturation agree with the experimental data on 
the observation of "camomile" loops. 

The results have been generalized to allow for the influ- 
ence of factors such as the presence of elastic interaction 
with point defects, tubular diffusion along a dislocation, pre- 
ference (i.e., preferred absorption of one type of point defect 
over others) and the presence of many extended defects in 
the crystal. 
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