Supersymmetry of a two-level system in a variable external field

R. G. Unanyan

Institute of Physical Studies, Armenian Academy of Sciences
(Submitted 26 July 1991)
Zh. Eksp. Teor. Fiz. 101, 1463-1467 (May 1992)
This paper shows how the method of supersymmetric quantum mechanics can be employed to obtain the exact solutions to a broad spectrum of problems describing a two-level system in an alternating field.

1. INTRODUCTION

Exact methods of determining the behavior of a twolevel system in an alternating field are of considerable interest because they reveal the physical aspects of the interaction of laser radiation with matter in atomic-collision theory and are used to build models of various physical situations. The problem cannot always be solved analytically, however. The exact solutions via a hypergeometric differential equation can be found in Refs. 1 and 2.

This paper considers the problem of the behavior of a two-level system in an alternating field from the angle of supersymmetric quantum mechanics. ${ }^{3,4}$ The supersymmetry method enables establishing the exactly solvable cases of this problem, on the other hand, and finding the solutions via algebraic calculations, on the other.

2. THE TWO-LEVEL SYSTEM IN AN ALTERNATING FIELD OF VARIABLE AMPLITUDE

The behavior of a two-level system in an external alternating field is described by the following system of differential equations: ${ }^{1,2}$

$$
\left\{\begin{array}{l}
i \dot{a}_{1}(t)=V(t) e^{-i e t} a_{2}(t) \tag{1}\\
i \dot{a}_{2}(t)=V \cdot(t) e^{i \varepsilon t} a_{1}(t)
\end{array},\right.
$$

where ε is the resonance detuning, $\hbar V(t)$ the energy of the interaction of the external field with the two-level system, and $a_{1,2}(t)$ the population amplitudes of the ground $|1\rangle$ and excited $|2\rangle$ states. Below we assume that $V(t)=V^{*}(t)$. For a two-level atom in an external electromagnetic field in the resonance approximation ε is qual to $\omega_{21}-\omega$, where ω_{21} is the atomic transition frequency, and ω the laser field frequency.

Let us assume that before the external field was switched on the system was in the $|1\rangle$ state, that is, we subject system (1) to the following initial conditions

$$
\left\{\begin{array}{l}
a_{1}(t \rightarrow-\infty)=1 \tag{2}\\
a_{2}(t \rightarrow-\infty)=0 .
\end{array}\right.
$$

Obviously, as $t \rightarrow+\infty$ the population amplitudes $a_{1,2}(t)$ acquire the following form:

$$
\begin{aligned}
a_{1}(t \rightarrow+\infty)= & A_{1} \exp \left\{-\frac{i}{2}(\varepsilon-2 \lambda) t\right\} \\
& +A_{2} \exp \left\{-\frac{i}{2}(\varepsilon+2 \lambda) t\right\}
\end{aligned}
$$

$$
\begin{align*}
a_{2}(t \rightarrow+\infty) & =A_{1} \frac{\varepsilon-2 \lambda}{2 V_{0}} \exp \left\{\frac{i}{2}(\varepsilon-2 \lambda) t\right\} \\
& +A_{2} \frac{\varepsilon+2 \lambda}{2 V_{1}} \exp \left\{\frac{i}{2}(\varepsilon+2 \lambda) t\right\}, \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda=\left[\frac{\varepsilon^{2}}{4}+V_{0}^{2}\right]^{4}, \quad V_{n}=V(t \rightarrow+\infty) \tag{4}
\end{equation*}
$$

Thus, to calculate the probability of the system's transition from state $|1\rangle$ to state $|2\rangle$ we must only find the coefficients A_{1} and A_{2}.

We introduce the function

$$
\begin{equation*}
b(t)=a_{1}(t) \exp \left\{\frac{i \varepsilon \ell}{2}\right\}+a_{2}(t) \exp \left\{-\frac{i \varepsilon l}{2}\right\} \tag{5}
\end{equation*}
$$

Clearly, $b(t)$ satisfies the following second-order ordinary differential equation:

$$
\begin{equation*}
\frac{d^{2} b(t)}{d t^{2}}+\left(\frac{\varepsilon^{2}}{4}+V^{2}(t)+i V(t)\right) b(t)=0 . \tag{6}
\end{equation*}
$$

This equation resembles the time-independent Schrödinger equation in which t acts as the spatial coordinate and the difference between the total and potential energies is $\varepsilon^{2} /$ $4+V^{2}(t)+i \dot{V}(t)$. As $t \rightarrow \pm \infty$, the function $b(t)$ satisfies the following conditions:

$$
\begin{equation*}
b(t)=\exp \left(\frac{i \varepsilon t}{2}\right), \quad t \rightarrow-\infty \tag{7}
\end{equation*}
$$

$$
b(t)=B_{1} \exp (i \lambda t)+B_{2} \exp (-i \lambda t), \quad t \rightarrow+\infty .
$$

Combining (5), (2), and (7), we obtain a relation that links $A_{1,2}$ and $B_{1,2}$:

$$
\begin{equation*}
A_{1,2}=\frac{2 V_{0}}{2 V_{0}+\varepsilon \mp 2 \lambda} B_{1,2} . \tag{8}
\end{equation*}
$$

The structure of Eq. (6) has a remarkable property: it can always be factorized, that is, can be represented in the form

$$
\begin{equation*}
Q^{+} Q-b(t)+\frac{\varepsilon^{2}}{4} b(t)=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
Q^{ \pm}= \pm i \frac{d}{d t}+V(t) \tag{10}
\end{equation*}
$$

This property can be used to solve Eq. (9) or (1) subject to
conditions (7) or (2), respectively, by the supersymmetry method known from quantum mechanics. ${ }^{3,4}$ Following this method, we consider the supersymmetric counterpart of Eq. (9),

$$
\begin{equation*}
Q^{-} Q^{+} b_{1}(t)+\frac{\varepsilon^{2}}{4} b_{1}(t)=0 \tag{11}
\end{equation*}
$$

with the following conditions:

$$
\begin{align*}
& b_{1}(t)=\exp \left(\frac{i \varepsilon t}{2}\right), \quad t \rightarrow-\infty \\
& b(t)=B_{1}^{(1)} \exp (i \lambda t)+B_{2}^{(1)} \exp (-i \lambda t), \quad t \rightarrow+\infty \tag{12}
\end{align*}
$$

From Eqs. (11) and (9) it follows that if the particular solution $b_{1}(t)$ of Eq. (11) is known, then

$$
\begin{equation*}
b(t)=\alpha Q^{+} b_{1}(t) \tag{13}
\end{equation*}
$$

is the solution to Eq. (9), with α an arbitrary constant.
Now let us suppose that the function $V(t)$ is the solution of the following functional differential equation:
$V^{2}\left(a_{n}, t\right)-i V\left(a_{n}, t\right)=V^{2}\left(a_{n+1}, t\right)+i V\left(a_{n+1}, t\right)+C\left(a_{n}, a_{n+1}\right)$,
where

$$
\begin{equation*}
C\left(a_{n}, a_{n+1}\right)=V_{+}^{2}\left(a_{n}\right)-V_{+}^{2}\left(a_{n+1}\right)=V_{-}^{2}\left(a_{n}\right)-V_{-}^{2}\left(a_{n+1}\right), \tag{15}
\end{equation*}
$$

with the a_{n} comprising the set of parameters of the external field, and $V_{ \pm}\left(a_{n}\right)=V\left(a_{n}, t \rightarrow \pm \infty\right)$. Note that Eq. (14) is invalid for real a_{n} since $V(t)$ is assumed to be a real function. Using Eq. (13), we arrive at a relation that links $B_{1,2}$ and $B_{1,2}^{(1)}$:

$$
\begin{equation*}
B_{1,2}\left(a_{n}\right)=\frac{V_{+}\left(a_{n}\right) \mp \hat{\lambda}_{n}\left(a_{n}\right)}{V_{-}\left(a_{n}\right)-\varepsilon / 2} B_{1,2}^{(1)}\left(a_{n}\right) \tag{16}
\end{equation*}
$$

Assuming that condition (14) holds true for $V(a, t)$, we obtain the following recurrence formula:

$$
\begin{equation*}
B_{1,2}\left(a_{0}\right)=\frac{V_{+}\left(a_{0}\right) \mp \lambda\left(a_{0}\right)}{V_{-}\left(a_{0}\right)-\varepsilon / 2} B_{1,2}\left(a_{1}\right) . \tag{17}
\end{equation*}
$$

The procedure described can be repeated, replacing at each step a_{n} with a_{n+1} in $B_{1,2}\left(a_{n}\right)$ and $V_{ \pm}\left(a_{0}\right)$. As a result we get

$$
\begin{equation*}
B_{1,2}\left(a_{0}\right)=B_{1,2}\left(a_{v}\right) \prod_{n=0}^{x-1} \frac{V_{+}\left(a_{n}\right) \mp \lambda\left(a_{0}\right)}{V_{-}\left(a_{n}\right)-\varepsilon / 2} . \tag{18}
\end{equation*}
$$

Let us now see how $B_{1,2}\left(a_{N}\right)$ can be determined. Problem (6) subject to conditions (7) is known to be exactly solvable for an arbitrary $V(t)$ if $\varepsilon=0$. Equation (9) illustrates this fact in a straightforward manner. The case where $\varepsilon \neq 0$ can also be reduced by the recurrence transformations (18) to a known solution. Indeed, after the N th step we arrive at an equation of the following type:

$$
Q^{+}\left(a_{N}\right) Q^{-}\left(a_{N}\right) b\left(a_{N}, t\right)+\frac{\varepsilon_{\mathrm{eff}}^{2}\left(a_{N}\right)}{4} b\left(a_{N}, t\right)=0
$$

where

$$
\begin{align*}
& Q^{ \pm}\left(a_{N}\right)= \pm i \frac{d}{d t}+V\left(a_{N}, t\right) \tag{19}\\
& \frac{\varepsilon_{\text {eff }}^{2}\left(a_{N}\right)}{4}=\frac{\varepsilon^{2}}{4}+V_{+}^{2}\left(a_{N}\right)-V_{+}^{2}\left(a_{N}\right) \tag{20}
\end{align*}
$$

The condition $\varepsilon_{\text {eff }}\left(a_{N}\right)=0$ is satisfied for complex N, that is, we must perform an analytic continuation of the product (18) defined on the set of natural numbers N to complexvalued N. Then the particular solution of Eq. (9') has the form

$$
\begin{equation*}
b\left(a_{x}, t\right)=C\left(a_{x}\right) \exp \left(-i \int^{t} V\left(a_{x}, \tau\right) d \tau\right) \tag{21}
\end{equation*}
$$

where a_{N} is determined by the equation $\varepsilon_{\text {eff }}\left(a_{N}\right)=0$. Imposing the conditions at infinity, $t \rightarrow \pm \infty$, we can find $B_{1,2}\left(a_{N}\right)$.

Thus, if $V(a, t)$ satisfies the functional differential equation (14), the problem of interaction of an external field of variable amplitude with a two-level system is reduced to solving the recurrence equations (18).

We illustrate this method with an example ${ }^{1,2}$ where

$$
\begin{equation*}
V(t)=\frac{V_{0}}{2}(\operatorname{th} \gamma t+1) \tag{22}
\end{equation*}
$$

As $\gamma \rightarrow 0$ we have the limiting case of adiabatic switch-on, while for $\gamma \rightarrow \infty$ the field is suddenly switched on at $t=0$. With respect to its parameter, (22) does not satisfy Eq. (14). For the equation to be valid in this case, we represent $V(t)$ as follows:

$$
V(t)=V(a, t)=\frac{V_{0}}{2}\left(a t h \gamma t+\frac{1}{a}\right)
$$

where a is a parameter. It is easy to verify that with respect to parameter a function $V(a, t)$ satisfied Eq. (14). For $V(a, t)$ we have $a_{n}=\left(2 i \gamma / V_{0}\right) n+1$ and

$$
C\left(a_{n}, a_{n+1}\right)=\frac{V_{0}^{2}}{4}\left(a_{n}+\frac{1}{a_{n}}\right)^{2}-\frac{V_{0}^{2}}{4}\left(a_{n+1}+\frac{1}{a_{n+1}}\right)^{2}
$$

with $n=0,1, \ldots$.
After simple calculations we arrive at the following relations for $B_{1,2}\left(a_{0}\right)$:

$$
\begin{align*}
B_{1}\left(a_{0}\right) & =\prod_{n=0}^{N-1} \frac{V_{+}\left(a_{n}\right)-\lambda\left(a_{0}\right)}{V_{-}\left(a_{n}\right)-\varepsilon / 2} B_{1}\left(a_{N}\right) \\
& =\frac{\Gamma(\delta-\alpha+N) \Gamma(\beta-N+1)}{\Gamma(\delta-\alpha) \Gamma(\beta+1)} B_{1}\left(a_{N}\right) \tag{23}\\
B_{2}\left(a_{0}\right) & =\prod_{n=0}^{N-1} \frac{V_{+}\left(a_{n}\right)+\lambda\left(a_{0}\right)}{V_{-}\left(a_{n}\right)-\varepsilon / 2} B_{2}\left(a_{N}\right) \\
& =\frac{\Gamma(\delta-\beta+N) \Gamma(\alpha-N+1)}{\Gamma(\delta-\beta) \Gamma(\alpha+1)} B_{2}\left(a_{N}\right) \tag{24}
\end{align*}
$$

where $\delta=i \varepsilon / 2 \gamma$, and

$$
\begin{aligned}
& \alpha=\frac{i}{4 \gamma}\left(\varepsilon+2 V_{0}-\left[\varepsilon^{2}+4 V_{0}^{2}\right]^{1 / 2}\right), \\
& \beta=\frac{i}{4 \gamma}\left(\varepsilon+2 V_{0}+\left[\varepsilon^{2}+4 V_{0}^{2}\right]^{1 /}\right) .
\end{aligned}
$$

To find, say, $B_{1}\left(a_{N}\right)$ we must solve the equation $\varepsilon_{\text {eff }}=0$, that is,

$$
\frac{\varepsilon^{2}}{4}+\sum_{n=0}^{N-1} C\left(a_{n}, a_{n+1}\right)=\frac{\varepsilon^{2}}{4}+V_{0}^{2}-\frac{V_{0}^{2}}{4}\left(a_{N}+\frac{1}{a_{N}}\right)^{2}=0
$$

and allow for the conditions (7). This yields $N=\beta-\delta$ and $B_{1}\left(a_{N}\right)=1$. Substituting these into (23), we find that

$$
B_{1}\left(a_{0}\right)=\frac{\Gamma(\beta-\alpha) \Gamma(\delta+1)}{\Gamma(\delta-\alpha) \Gamma(\beta+1)}
$$

or, allowing for (8), we arrive at an expression for A_{1} :

$$
A_{1}=\frac{\Gamma(\beta-\alpha) \Gamma(\delta)}{\Gamma(\delta-\alpha) \Gamma(\beta)} .
$$

In a similar way we can find $B_{2}\left(a_{0}\right)$ and A_{2} if we substitute $N=\alpha-\delta$ and $B_{2}\left(a_{N}\right)=1$ into (24). The final expression for a_{1} is

$$
\begin{aligned}
& a_{1}(t \rightarrow+\infty)=\frac{\Gamma(\beta-\alpha) \Gamma(\delta)}{\Gamma(\delta-\alpha) \Gamma(\beta)} \exp \left\{-\frac{i}{2}(\varepsilon-2 \lambda) t\right\} \\
&+\frac{\Gamma(\alpha-\beta) \Gamma(\delta)}{\Gamma(\delta-\beta) \Gamma(\alpha)} \exp \left\{-\frac{i}{2}(\varepsilon+2 \lambda) t\right\}
\end{aligned}
$$

which coincides with the results of Refs. 1 and 2, where this problem was solved be means of a hypergeometric equation.
${ }^{1}$ A. O. Melikyan, Candidate's dissertation, Erevan (1970); S. P. Goreslavskiĭ and V. P. Yakovlev, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 2211 (1973) [Bull. Acad. Sci. USSR, Phys. Ser. 37, 171 (1973)].
${ }^{2}$ N. Rozen and C. Zener, Phys. Rev. 40, 50 (1932); A. Bambini and P. R. Berman, Phys. Rev. A 23, 2496 (1981); C. E. Carol and F. T. Hios, J. Phys. A: Math. Gen. 19, 3579 (1986).
${ }^{3}$ E. Witten, Nucl. Phys. B188, 513 (1981); L. È. Gendenshteĭn and I. V. Krive, Usp. Fiz. Nauk 146, 533 (1985) [Sov. Phys. Usp. 28, 645 (1985)].
${ }^{4}$ L. È. Gendenshteĭn, Pis'ma Zh. Eksp. Teor. Fiz. 38, 299 (1983) [JETP Lett. 38, 358 (1983)].

Translated by Eugene Yankovsky

