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We derive integral equations for the low-frequency modes in a gravitating cylinder, disk, and 
sphere. An analytic theory is proposed for the instability of radial orbits, the most important 
instability in collisionless gravitational systems. Radially extended orbits arise naturally, and 
they become the dominant type of orbit as a heterogeneous population of stellar systems is 
produced by collapse of an initially highly tenuous cloud. Such systems include galaxies, their 
individual components, clusters of galaxies, and so forth. Based on this theory, the instability in 
question harks back to the classical Jeans instability; in the present case, it entails the deformation 
of a system by virtue of the gravitational attraction of orbits that extend toward one another. This 
embodiment of the Jeans instability has a very interesting feature: the theory predicts that even in 
the limit of perfectly radial orbits, instability will only develop under one additional condition- 
that the precession of low angular momentum orbits in the gravitational potential of a particular 
stellar system take place in the same direction as the stars' orbital motion. The final dispersion of 
orbital precession rates will remove the instability. Here we obtain simple equations for the 
relationship between the minimum scatter in angular precession rates necessary for stability and 
the instability growth factor for exactly radial orbits. We demonstrate the importance of disk and 
ellipsoidal deformation of spherical systems with radially extended orbits, which relates directly 
to the role played by radial orbit instability in the formation ofbarred spirals and elliptical 
galaxies. Finally, we briefly discuss the possible explanation of ellipticity of thin planetary rings as 
a manifestation of the appropriate instability in systems with quasicircular orbits. 

1. INTRODUCTION 

Radial-orbit instability has attained its status as the 
principal instability of collisionless gravitational systems by 
virtue of the fact that highly elongated orbits are unavoid- 
able when a collection of gravitating masses collapses out of 
a tenuous initial state. Essentially all modern scenarios for 
the formation of galaxies, clusters of galaxies, and other such 
systems predict a collapse of this type. The ensuing instabil- 
ity in collisionless gravitational systems dominated by radi- 
ally extended orbits heats the system in the transverse direc- 
tion (i.e., perpendicular to the radius), and thereby 
smoothes out any anisotropy in the "particle" (i.e., star or 
galaxy) radial and transverse velocity distributions, reduc- 
ing it to some critical value. 

In contrast to, say, plasma systems, it is already known' 
that in gravitating systems there are no instabilities that 
serve solely to equalize the temperature of a medium (isotro- 
pize it). In fact, it is usually some manifestation of the Jeans 
instability that takes on that role. Radial orbit instability is 
likewise basically a Jeans phenomenon. Recall that the clas- 
sical Jeans instability of a gaseous medium leads to the gravi- 
tational compression of a mass of gas large enough that the 
pressure force is incapable of withstanding the gravitational 
force (details may be found, for example, in Ref. 2 ) .  Clearly, 
the colder the medium, the smaller the scales on which per- 
turbations that are unstable "a la Jeans" commence, and the 
more unstable the medium overall. So it is in the present 
case: If we imagine a system with radial orbits, and those 
orbits approach some conic section at some instant, then 
their subsequent coalescence (i.e., something other than ra- 
dial orbit instability) will be entirely natural, since the sys- 
tem is cold in the transverse direction. Actually, this is not a 

complete explanation, as we shall see below: apart from the 
existence of the radial orbits, the presence or absence of in- 
stability will also depend on the nature of the orbital preces- 
sional motion induced by the perturbations. Instability will 
develop only for prograde precession (i.e., the direction of 
precession is the same as that of the stars' orbital motion); 
there will be none for retrograde precession. In those cases 
when instability is present, however, it will unquestionably 
be essential Jeans instability; but here, the elementary ob- 
jects will most likely be orbits as a whole, rather than indi- 
vidual stars. In terms of its significance for collisionless grav- 
itational systems, radial orbit instability is entirely 
comparable to the more familiar Jeans instability in a gase- 
ous medium (which is thought to be responsible for star 
formation, for example). 

Thus, in the world of astronomical objects, collisionless 
systems are at least as well represented as gaseous systems. 
Similarly, the manifestations of radial orbit instability are 
quite multifaceted. Radial orbit instability is responsible, for 
example, both for the shape of elliptical galaxies and that of 
the spheroidal component of spirals. There is no particular 
reason to doubt that it is also related to the apparent flatten- 
ing of compact clusters of galaxies. Less obvious (but no less 
true) is the assertion that essentially the same instability 
bears a direct relationship to the central bars of many spiral 
galaxies (which in general are rapidly rotating). As yet an- 
other instance, we note the possible role played by radial 
orbit instability in the formation of galactic s ~ ~ e r c l u s t e r s . ~  
Here it is obviously important that this instability does not 
depend on the sign of the radial velocity, and it can therefore 
develop unimpeded by the Hubble expansion of the universe. 

What we have said thus far points up the importance of 
a detailed investigation of radial orbit instability. 
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The possibility of radial orbit instability was first point- 
ed out in Ref. 4, and it was subsequently found in direct 
numerical sir nu la ti on^^.^ and by numerically solving the lin- 
earized kinetic equation.' Curiously enough, in the many 
papers published in 1985 modeling the collapse of collision- 
less gravitational systems (except for Ref. 5), no mention 
was made of the deformation that accompanies the collapse 
of an ellipsoidal system, even though such a deformation 
must have been encountered, for example, by the authors of 
Refs. 8 and 9, inasmuch as they studied collapse in extremely 
cold systems. They failed to draw attention to the phenome- 
non, since they obviously did not entertain even the possibil- 
ity of instability (the sole reasonable explanation!) which 
alters the shape of an initially spherically symmetric, nonro- 
tating system. Indeed, a spherical system is traditionally 
supposed to be the stablest possible. This mass hypnosis (be- 
sides Refs. 8 and 9, mentioned above, we cite Refs. 10 and 
11 ) continued right up through appearance in 1984 of the 
English edition12 of Ref. 13, where these problems had al- 
ready been addressed in detail. In Ref. 7 and in other papers 
by the present author (details and references can be found in 
Refs. 12 and 13), several criteria were identified for stabiliz- 
ing the instability in question-in other words, various val- 
ues of the necessary minimum transverse stellar kinetic ener- 
gy. In all of the papers cited, however, numerical methods 
were employed exclus&ely. We feel the need, therefore, for a 
more analytical approach, perhaps to assist in filling in the 
overall picture and providing the key to identifying more 
general criteria for instability and its stabilization. 

The first (and as yet the only) attempt to prove analyti- 
cally the existence of instability in systems with radial orbits 
was undertaken in Ref. 14. However, despite the author's 
claims,14 it is untrue that such systems-with strictly radial 
stellar motion-are automatically unstable, and that they 
possess no stable modes at all, a point that we shall return to 
subsequently. For example, with predominantly retrograde 
precession of orbits, the instability is purely oscillatory, i.e., 
it is manifestly a stable mode. The correct result can only be 
obtained by approaching the limiting case of purely radial 
motion from a system with highly elongated but nevertheless 
slightly nonradial orbits. By attempting to deal directly with 
the limiting system from the outset, one inevitably en- 
counters integrals that diverge as r-0. 

In Sec. 2 below, we develop a general stability theory for 
collisionless gravitational systems, a task made feasible by 
two simplifying assumptions. The first is that the mass of the 
active group of stars (i.e., those affected by the perturba- 
tions) is small compared with the mass of the passive "halo," 
which determines the equilibrium potential cPO but remains 
unaffected by the perturbations. The second is that the 
spread in angular rates of precession (about some mean) is 
small compared either with typical rates of stellar radial os- 
cillation or with the small values of the precession rates 
themselves, as in systems with almost radial orbits. In such 
systems we shall study slow, low-frequency modes. For ex- 
ample, the orbital frequencies of quasiradial orbits are of the 
same order of magnitude as the precession frequencies. 

It is important to emphasize that both conditions are 
fulfilled in many realistic gravitational systems. The pro- 
posed approach, which should make radial orbit instability 
more comprehensible, therefore has immediate practical ap- 
plications. 

As a result, we have obtained a description of gravita- 
tional systems analogous to the drift approximation in plas- 
ma physics (see, e.g., Ref. 15), but for orbits of a much more 
general form. The general integral equation for low-frequen- 
cy modes presented in Sec. 2 will be applied to the theory of 
radial orbit instability in cylindrical and disk systems 
(§3.1), and a modified version will be applied to spherical 
systems (53.2). 

Although the present paper is chiefly concerned with 
radial orbit instability, we comment in Sec. 4 on low-fre- 
quency modes in ring and disk systems with quasicircular 
orbits. Low-frequency modes are probably also important in 
normal spiral galaxies, where stellar orbits are closer to be- 
ing circular than radial, on average (except possibly near the 
center). We have already remarked that radial orbit instabil- 
ity and its associated low-frequency modes bear a direct rela- 
tion to the formation of two large classes of galaxies, the 
barred spirals (see 43.1) and the ellipticals (53.2). Normal 
spirals comprise the third (and last) large class of galaxies 
(leaving out the so-called irregulars, which are not nearly so 
well organized structurally), and they are consequently also 
a suitable target for the theory. Our theory therefore encom- 
passes all of the basic types of galaxies, and it may also ac- 
count for the elliptical deformation of the thin ring systems 
around Saturn and Uranus (Sec. 4).  

2. DERIVATION OF THE GENERAL INTEGRAL EQUATION 
FOR LOW-FREQUENCY MODES IN A CYLINDER, DISK, AND 
RING 

It makes sense to treat planar systems (disks and rings) 
or planar (flute) perturbations in a gravitating cylinder sep- 
arately from three-dimensional systems (spherical in the 
present case). We begin with the former-as might be ex- 
pected, the equations for perturbations in spherical systems 
can be obtained virtually automatically from the corre- 
sponding equations for cylindrical systems by taking advan- 
tage of simple group-theoretic considerations (see Sec. 3 ) . 

The most convenient description is in terms of action- 
angle variables I = (1,,12) and w = ( w1,w2), which suitably 
takes account of the double periodicity of stellar motion in 
the equilibrium potential. We start out with the linearized 
kinetic equation in its usual form (see, e.g., Ref. 12): 

where fo(I) andf, (I,w,t) are the unperturbed and perturbed 
distribution functions, cP, is the perturbation of the gravita- 
tional potential, R, and R, are the frequencies of the radial 
and azimuthal oscillations of stars in the equilibrium poten- 
tial cPo(r), R, = dE(I)/dIi (E is the energy in terms of 
I,i = 1,2). The change of variables Z2 = w, - w,/2, 
b, = w, in ( 1 ) yields 

o i d l  o j , ,  d m  - + i,nn,,l+n, - = --- + i m ~ )  (- - - - 
3 t arc, 41, aw, at, 2 d l ,  

where we have assumed that the perturbations are propor- 
tional to exp (imb,) : 

m is the azimuthal index (an even integer), and 
R,, (E,L) = R2 - R1/2 is the rate at which an orbit with 
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energy E and angular momentum L precesses. If we also 
transform from the action (1,,12) to(E,L), we obtain a form 
of the linearized kinetic equation that will be more conve- 
nient for subsequent use: 

where F,(E,L) = fo(Il,12). Note that in this form, Eq. (3)  
also holds for a quasi-Coulomb potential a,, i.e., one that is 
due principally to a large central mass. All that is necessary 
then is to redefine E2 and R,, : 

Then, neglecting self-gravitation in the system and the quad- 
rupole moment of the central object, we have R,, = 0, as one 
would assume for closed Keplerian orbits. Here the azi- 
muthal index m can be either odd or even. 

We assume that the rms deviation of the precession - 
rates about the mean O,,, given by ARpr 
= [ (apr - a,, )'I 'I2, and the typical gravitational fre- 

quency w, are both small, An,, , w, 4 R, .  Note, for exam- 
ple, that for cylindrical (and spherical) systems, w, is of the 
order of the Jeans frequency: o, -w, = ( 4 ~ + , ) " ~  where 
po is the density and G the gravitational constant. The above 
inequality also means immediately that we are dealing with a 
system of stars that have essentially equal precession rates 
within a massive halo which, while remaining unpertubed 
itself, furnishes the dominant contribution to the equilibri- 
um potential a,. Under these circumstances, then, there 
may exist a low-frequency mode ( aexp( - iZt), with - - 
w =w - ma,, -w,,AR,, ) in a coordinate system rotating 
at angular velocity R,, such that the slow precessional dis- 
persal of orbits is canceled by their mutual gravitational at- 
traction. It would be natural to suppose that if self-gravita- 
tion were to win out over the spread in orbital precession 
rates, an instability might develop that could eventually de- 
form the system (under the influence of the largest-scale 
growing modes ) . 

It is clear, however, that even in a system with essential- 
ly radial orbits, this holds true only if the torque that alters 
the orbital angular momentum of the stars forces their orbi- 
tal precession rates to change in the same direction (upper 

part of the "tuning-fork" diagram, Fig. lc'). If the orbits 
exhibit "asinine" behavior (a  term we owe to Lynden-Bell 
and KalnajsI6, i.e., they tend to move in the direction oppo- 
site that toward which they are being pushed, then rather 
than instability we will have pure oscillations (lower tine of 
the "tuning fork," Fig. lc").  The type of precession that 
takes place (prograde or retrograde) will depend on the 
form of the potential Q0(r).  It is not possible to claim that 
retrograde precession requires some sort of unusual poten- 
tial, even for low angular momentum stars, although in most 
actual systems, such orbits in fact undergo prograde preces- 
sion (see 43.1 ) . For the opposite limiting case-quasicircu- 
lar orbits-the situation is considerably more complicated 
than for quasiradial orbits, and the nature of the precession 
that takes place is not so directly related to the possibility or 
impossibility of instability. 

We employ perturbation theory to derive the desired 
solution. Let F = F"' + F'~' ,  where F"' corresponds to the 
reversible mode obtained from (3)  by neglecting terms pro- - 
portional to Afl,, and a G: o = 0 (of w = mil,, for 
a,, #O), d~" ' /dw,  = 0. In other words, F"' = F"'(E,L) is 
an as-yet arbitrary function of the integrals of the motion, 
which we will subsequently make more specific by requiring 
that the solution of the next approximation be periodic. The 
equation for F'2' takes the form 

Averaging (4)  over w, from 0 to   IT, and bearing in mind the 
periodicity of F '~ '  and a ,  we have 

?n 

- 
where SO,, = R,, - R,, . 

Invoking the Poisson equation, some minor manipula- 
tions yield 

where d I' = d l  ; dl; ,  dw' = dw; dw; , and r is the Green's 
function, which is 

........... A N  .... 
FIG. 1. "Tuning fork" diagram elucidating the phys- 

a b ical mechanism for radial orbit instability. a )  Two 
typical radial orbits A, and B, in an equilibrium axially 

........... symmetric state. A and B are their initial positions in 
the perturbed state on either side of the minimum of 

....... .-\ a*........ 

A" quired a small amount of angular momentum (L < O  ..... on A ' and L > 0 on B '); c') the major axes of orbits A ' 
and B ' havedrawn closer together (to positionsA " and ..... B "), i.e., radial orbit instability has set in (in the case ......... of prograde orbital precession, the direction of preces- 
sion is shown by the double arrows); c") return of the 
orbital major axes to their original equilibrium posi- .... . , ,  tion, i.e., oscillation in the case of retrograde preces- 
sion. 

A" 
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2 In ( I r )  r,,= [i+rfZ-2rr' cos (cp'-cp) 1'" (7') nically somewhat more complicated, and we will simply re- 
strict ourselves to a few general remarks (see Sec. 4).  

for a cylinder and 

l'= 1/rl2 (7" 3. THEORY OF RADIAL ORBIT INSTABILITY 

3.1. Cvlindrical and disk svstems 
for a disk or ring. Equation (6)  is an integral equation for 
@ (I,w, ) which takes into account (5 )  for F"' in terms of @. 
Particle coordinates r,p,rl,p ' in (6)  and (7)  must be ex- 
pressed in terms of I, 1', w, w', where 

r=r(I. w,). rl=r' (1'. wIr)? z2'-E2= (w,'-w2)-(w,'-wI) 12. 
9'-cp=6cp=w2'-w2+@(I. 1'. w, ,  w, ') .  

and we refrain from writing out the expression for 4. Since 
the perturbed potential can always be written out as 

we have 

4=iij1(r)esp[im6 (1. ru,) ] 

(6  = p - E2 is a known function of I and w, ) . In actual fact, 
then, (6)  is an integral equation for the unknown function 
m, ( r )  in only one variable. That equation, however, is not in 
a terribly symmetric form, a situation that can be improved 
somewhat. The right-hand side of (6)  depends on w, 
through r and exp(imE,) alone, so by averaging (6) over 
w,, we obtain for the function 

Z i l  

,(I) =a= j 4 dwI/2x 
0 

the expression 

(8 

where 

II (I, 1') = jdw, dw,' d6ur,I'(r, r', 8rp) 

X esp (im6w2)exp[--im(wIf-w,)/2], 

(8') 
6wZ=w,'-w2. 

Physically, n ( I , I f )  is proportional to the torque 6M acting 
upon some selected (test) orbit with action I and resulting 
from all orbits with fixed action 1'; these all have the same 
shape, but their major axes are oriented in all possible direc- 
tions: 

SMa -imG exp(imv,)n (I. 1') F'" (I1)dI'. (8") 

For a quasi-Coulomb field @,(r), instead of ( 1/2) dfo/6'I ; 
in (8)  we have simply df f l ; ,  and instead of 
exp [ - im(w; - wl)/2] (with m required to be even) in 
(8') we have exp [ - im( w; - w,) ] (with arbitrary m). 

One might hope to reduce ( 8 ) to a set of one-dimension- 
a1 integral equations in two limiting cases: 1 ) the distribu- 
tion function fo(I) is close to a delta function in I, near some 
value I, = I iO' = Lo; we will be commenting on this circum- 
stance, writing fo = A2(Il,12 -Lo) z6 (12  - Lo)po(I,);  2)  
the system in question has quasicircular orbits, whereupon 
fo = A1(11,12), with A,zS(11)&(12). Below we will con- 
cern ourselves mainly with the first case. The second is tech- 

We take fo = A2(I,,12 - I:'') and neglect the term 
dfd/dl;, which is small in the present case. Using the fact 
that Li and x hardly vary in I; over the characteristic scale 
length of the function (dfo/dI ; )/ [ - mSQ,, (I ; , I  ; 1, 
we can reduce Eq. (8)  to an integral equation for the func- 
tion of one variable $(I,) -x(I1,I ; = I y ' ) :  

where 

f'(I1, I,') =rl ( I , .  1%'. IZ=121c11. 12'=12(01). (9') 

If we are dealing with orbits that are almost radial (and 
assume that E,, = 0, so that 5 = w and Sap,  = a,, ), we 
can put I io' = 0 when we calculate P(I , , I  ; ). Furthermore, 
6 p  = p ' - p z E ;  - E2 for such orbits, so the function KI can 
then be substantially simplified: 

11(1,1') = 2n J dw, dw, '~, l r(~,  w,), r' (If. w,') I ,  (10) 

where 
2z  

1 
jrn (r, rf ) = - dar (r, r r ,  a)cos ma. 

2n 0 

( 10') 

When the orbits are exactly radial ("cold" system), i.e., 
fo = 6(Iz)po(I,), 

where 

Accordingly, the integral equation (9) ,  which then de- 
scribes radial orbit instability in a cold system, is 

By making use of ( lo ' ) ,  it can easily be shown that 
J ,  (r,r1) is a positive function; consequently, so is n (1,11) in 
( lo) ,  and most importantly, so is P(I , I  ; ) from (9') when 
I iO' = 0, which enters into the derived equation ( 12). This 
can be made explicit for a disk system, for example. Expand- 
ing (? + r " - 2rr ' cos a)  -"' in a harmonic series, we ob- 
tain 

m n 

,,(I; r') = z F n  0.. j daP,, (cos a)coi ma. 
" S O  ,, 

where 
n+t F,, (r, r') =r<"/r, , r< = ~n i~ l ( r ,  r'), r= 3 ~ni,x(r, r'). 

(13) 

and the Pn are Legendre polynomials. Now the positive defi- 
niteness of J,,, follows from the fact that Pn (cos a)  can in 
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turn be expanded in cosines of multiples of the angle, with 
positive coefficients: l7 

- - 1 n ( 2 n - i ) ! '  [cos na + -- cos (n-2) a+ . . .] 
2"-In! 1 2n-1 

with all A p' > 0 (a  prime indicates that the parity of k and n 
must be the same), and from 

T 

We finally obtain a convenient representation for J,,, (r,rl) in 
simple series form: 

Ci" ( r ,  /)A:.' >o. I", ( r ,  r ' )  = - 
2 n 2 . n  

Given the positivity of P ( I , , I ;  ), the sign of the inte- 
grand in ( 12), and therefore the sign of w2 (i.e., the stability 
or instability of a system with purely radial orbits), will de- 
pend on the sign of A( I  ; ) as defined by ( 1 1 ). If A > 0 for all 
orbits in the system under consideration (in other words, for 
all values of I, ,  or what amounts to the same thing in the 
present case, for any value of the energy E of radial stellar 
oscillations), then w2 < 0. As a result, radial orbits are unsta- 
ble with A > 0. On the other hand, when A < 0, it is the purely 
oscillatory mode that is unstable. The most compact formula 
for computing A (E) is 

I 
lim { J dx 

-4 ( E )  = - 
(2E)" ,,+, 10 x2 [ I  -(Do (x)/E]" 

where cP,(r,,, ) = E. Consider, for example, the potential 
@,(r) near the center of a system. If we assume that no large 
point mass is present there, it can be represented in the form 

(R  and b are constant). For the low-frequency modes in 
question, then, if they are confined to some region where 
( 14) holds, instability (w2 < 0)  will develop if b < 0; conver- 
sely, if b > 0, then w2 > 0, corresponding to oscillations. In 
actual fact, what is required for instability (by way of illus- 
tration) is merely that some mean 2 be positive, a condition 
that can be met, in principle, even when A is positive for 
certain values of E and negative for others. Such circum- 
stances are not at all unrealistic. 

Suppose, for example, that we have a system whose po- 
tential cP,(r) can be represented near r = 0 in the form ( 14) 
with b > 0. Then, as we have already pointed out, modes of 
the given type that are localized near the center will be oscil- 
latory. The possibility of such localization, however, is not 
obvious apriori: it might ultimately depend, for instance, on 
the specific orbits followed by the bulk of the mass in the 
active system. If those orbits stray far from the region in 
which ( 14) holds, a more accurate representation of the po- 

tential will be required in place of ( 14). The precession of 
low angular momentum orbits may then reverse sign (as 
compared with orbits that consistently remain close to the 
center). Radial orbit instability should then ensue. The po- 
tentials of real systems are such that sufficiently elongated 
orbits experience prograde precession. Which type of orbit 
predominates, however-those confined near the center or 
those that stray far from the center--depends on the detailed 
distribution of orbits over energy, and in principle either 
type of behavior is possible. 

We remark here that Lynden-Belll8 actually proposed 
the inequality an,, (I,,12)/a12 > 0 as a condition for forma- 
tion of a bar-i.e., of an elliptical deformation of the disk of a 
spiral galaxy. What is in fact responsible for the formation of 
a bar of the specified type is radial orbit instability in the 
stellar disk, and the proposed inequality (evaluated at 
L = 0) is, as we pointed out above, a necessary condition for 
that instability. Rather than radial orbits, Lynden-Bell had 
in mind orbits that are close to being circular. The point is 
that at the time of Lynden-Bell's paper ( 1979), such orbits 
were deemed to be the only admissible type in spiral galaxies 
(that situation has since changed). For general orbits, how- 
ever, no such simple condition exists." Formally, this fol- 
lows, at the very least, from the necessity of retaining the 
term proportional to aJ /aI  ; in the integrand of (8) ,  since it 
is not small compared with the term dfo/dI ; . Furthermore, 
for quasicircular orbits, with f,=:A, (1,,12), it is the former 
term that dominates. 

Physically, this formal result corresponds to the fact 
that systems with quasicircular orbits evolve primarily 
through changes in the orbital energy of stars, rather than in 
their angular momentum. In the same vein as Lynden-Bell, l8 

we can imagine an orbit that has outdistanced a bar that has 
formed in the disk, having acquired a somewhat higher 
precession rate R,, (compared with the angular rotation 
rate of the bar, fl, = R,, ). The sign of the torque exerted on 
such an orbit by the bar is then obvious: the bar will tend to 
turn the orbit backwards, bringing it closer to the bar. If this 
were the only mechanism in operation, the precession of the 
orbit would be retarded, and the orbit would tend back to- 
ward the bar if dflp,/d12 > 0. But the bar also induces a 
change in the orbital energy of a star, and for quasicircular 
orbits that effect is the decisive one. The orbit in question 
will then precess at a rate corresponding to the new energy E 
(or action I, ) . In other words, the rate of orbital precession 
is altered not so much through the direct influence of the 
bar-induced torque as through the aforementioned indirect 
agency. In the present case, where we have a group of active 
stars embedded in a massive halo, the orbits perturbed by the 
bar drift slowly among the admissible orbits belonging to the 
given set, which itself is determined by the pre-existing equi- 
librium potential of the system. Accordingly, for quasiradial 
orbits, this drift results primarily from changes in I, (L), 
while for quasicircular orbits, it results from changes in 
I l (E) .  

The inequality (an,, /dl,), =, > 0 is merely a neces- 
sary (and in no way sufficient) condition for radial orbit 
instability, and in particular, for the formation of a bar. The 
insufficiency of this criterion is immediately obvious from 
the fact that the retarding torque due to the bar can turn out 
to be ineffectual in the face of large orbital precession rates. 
To derive valid conditions for bar formation, it is necessary 
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to stabilize a set of radial orbits whose precession rates have 
some finite spread [having demonstrated once again the pre- 
dominance of the bar mode (m = 2) 1. The bar formation 
criterion is in fact none other than the condition for bar- 
mode instability of the type under consideration. We there- 
fore now proceed to derive the stabilization conditions for 
systems with quasiradial orbits. 

For definiteness, we assume a Maxwell distribution in 
I, = L: 

1 
.i, = - exp (-I,2/IT2) cp, ( E )  , 

n"LT (15) 

where L, = I, is the thermal rms deviation. If we then as- 
sume in (9") that Z = w = O ,  I iO'=O, SQ,, =a,, 
zA(E)L ,  we will then have for the system stability limit 

so that the integral equation (9) becomes 

This is almost the same as Eq. ( 12). A comparison of 
these two equations suggests a simple relationship between 
the instability growth rate y for a system with strictly radial 
orbits, 9 = - w2, and the minimum dispersion in orbital 
angular momentum required to curtail that instability: 

where 7 is some mean over the stellar orbits of the different 
energies E. 

Equation ( 17) acquires a precisely defined meaning 
when all stars have almost the same energy, E z  E,, since we 
can then take 7 = A(E,). If in ( 15) we go to a precession 
rate distribution a,, = AL, we then obtain a more tractable 
relation in place of ( 17) : 

where (Q,, ), denotes the thermal spread in precession 
rates, and the growth rate y is given in the form y(m) to 
emphasize that in general it depends on the azimuthal index 
m. Note that Eqs. ( 17) and (18) hold both for a disk and a 
cylinder (for all m ) . Since y(m ) is only a weak function of 
m,,' it follows from (18) that the most difficult modes to 
stabilize (and in that sense, the most unstable) are those 
with the smallest possible m. For almost radial orbits we 
have m,, = 2, which corresponds precisely to formation of 
an elliptical bar out of an initially circular disk. All the 
modes with odd m, particularly the m = 1 mode, are sup- 
pressed in this case, two oppositely directed (but equal) mo- 
ments of forces would act on the two halves of an elongated 
orbit. The forces break, but do not rotate such "spoke" or- 
bits. 

For quasicircular orbits in a potential approximating 
that produced by a central point mass, however, the m = 1 
mode is immediately set apart (we will make this clear in 
Sec. 4). 

3.2. Spherical systems 

We can in fact reduce the stability problem for a spheri- 
cal system to a simpler problem (and one already treated 
above), the stability problem for an appropriate cylindrical 

system, by writing the linearized kinetic equation in r, 8, p, 
v, , v, , and a (where r, 8, p are spherical coordinates, v, is the 
radial velocity of a star, v: = v i  + vi, v, and v, are the 
velocity components in the direction of 8 and p ,  and 
a = arctan (v, /v, ) that describes the perturbation of a 
sphere with distribution function F,(E,L) (see, e.g., Refs. 
12 and 13): 

where we have introduced the operators 

d sin a d a 
t=cosu-+------ sinactge-, 

$3 sine acp aa  

A 

The operator L has the standard form for the operator repre- 
senting an infinitesimal rotation about the y axis19 (ex- 
pressed in terms of the Euler angles 8, p, a )  .3' 

In the present case of complete spherical symmetry, the 
angular part of the perturbation of the potential can be sepa- 
rated out in a form proportional to a particular spherical 
harmonic: @, a Y ;"(B,p). The kinetic equation canAbe 
solved in a natural way in a coordinate system in which L is 
diagonal, i.e., one corresponding to rotation about thez' axis 
of the rotating system. In that system, the perturbation of the 
distribution function can be expanded as 

where 

T,,,,' (cp,, 0, cp?) =cxp (-im cp,- is cp2)Pm,'(cos e),  

and P is (COS 8) are triply indexed functions; l9 in particular, 
the Pk0 (COS 8) are, up to a constant, identical to the asso- 
ciated Legendre functions. The potential can also conve- 
niently be written as 

(I),=i:(r, t )  T,,,,,'(cp. 0. a ) ,  

or in primed coordinates, 

where the af are coefficients corresponding to the rotation 
that carries the y axis into the z axis. Thus, in the primed 
system, we have independent equations for each of the ex- 
pansion functions (20) : 

h 

with LF, = isF,. Equation (22) is identical to the equation 
for the response of a cylindrical system to a flute perturba- 
tion of the potential in the form @(r,p)  = x(r)exp(isp), 
where rand p are cylindrical coordinates. To solve the origi- 
nal "spherical" problem, it is thus necessary to find a solu- 
tion of the "cylindrical" problem (22) with parity 1 for all s 
in the interval ( - 1,I) (see below). 

The second part of the reduction procedure entails writ- 
ing a prescription for calculating the perturbation of the den- 
sityp, of the sphere. Assuming that Eq. (22) for F, has been 
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solved; to calculatep,, we must transform back to the origi- 
nal unprimed coordinate system in (20), using 

Since the expression for the density perturbation, 
p1 = SFlv, dv, dv, da, includes an integration over a ,  the net 
result is that only one term (corresponding to s' = 0 )  re- 
mains in each of the sums in (23), and the desired expression 
is 

pl'=l.m:(cp. 6 , a )  [ ~ n . ' J 1 7 a ( r , v . ,  v,)u,dv,du,]. (24) 
8 

for I +. s even and af = 0 for I + s odd. 
We can apply this procedure to derive an integral equa- 

tion resembling Eq. (8), which was derived earlier for a cyl- 
inder and disk. Introducing action-angle variables, as in Sec. 
2, for the two-dimensional motion of a star in its orbital 
plane, we obtain instead of (2) ,  

where 

and the remaining notation is the same as in Sec. 2. The 
equation analogous to ( 3 ) is 

,)F"' dF'" i)Po ao'"' 
---- + i.sS2,,F('j+QI ---- = 52, -- 

at ~ I U ,  aE a / ~ ,  

(25) 

Proceeding now to a discussion of the low-frequency 
modes (with the same assumptions as in Sec. 2), we may put 
I;<"' = FIs' + F:"', and in place of ( 5 ) ,  we obtain for the 
"exchange" function F :"' 

ax 

Accordingly, Eq. (24) gives the perturbed density p,:  

(o-sQ~~)=--T, , , :  (cp. 0. a ) B  (r) . (27) 

It still remains to take advantage of Poisson's equation. 
which yields the desired integral equation, 

where we have already encountered F, (r,rl) [see Eq. ( 13) I .  

B( r )  is defined in (27); it depends on 
2., 

- 
= ~ ( r ( 1 ,  lo,) )crp[isb (I. I U , )  ldu.,, 

0 

i.e., we have in fact again derived an equation for an un- 
known function of one variable, x = x ( r ) .  

Essentially the only important kind of spherically sym- 
metric system is one with radially elongated orbits. We 
therefore put Fo = F(L)po(E) ,  where F(L)  is close to 
S (L 1; for example (for small L, ) 

Equating the integral equations obtained for a "cold" system 
(L, = 0) at the limits of stability ( w  = 0, L ,  = (L,),i, ), 
we obtain expressions analogous to ( 17 ) and ( 18) : 

2'"y 
( L T )  min = 

A[l(l+l) I" ' l l(l+l)l" '  

Note that in actuality, for the present case, requiring that the 
system be at the limit of stability determines the value of 
F (L)  at L = 0 [Eq. (30) has been derived for a Maxwell 
distribution (29) 1 .  Since y(1) is essentially constant in a 
spherical system and odd-m modes are also suppressed, Eq. 
(30) shows that the mode I = 2, which corresponds to ellip- 
soidal deformation, is again special. This is the direct analog 
of a bar mode in a disk system. For stationary states, the 
stability requirement against such a deformation imposes 
constraints on the minimum possible dispersion among orbi- 
tal precession rates. These constraints become quite strin- 
gent for systems in a self-consistent equilibrium state, in 
which the potential @,is determined by the density distribu- 
tion of the very same stars affected by the perturbations-in 
other words, there is no massive halo. 

The most natural form for a general stability criterion 
applicable to any system would be the ratio of that part of the 
kinetic energy (of the active subsystem of stars) attributable 
to orbital precession,T,, , to the magnitude of the gravita- 
tional energy of interaction among those stars, I W,  I. This 
ratio must be less than some critical value for a system to be 
stable. In light of the large scale of the dominant mode en- 
compassing the system as a whole, which mode therefore 
does not depend on structural features, it would not be sur- 
prising if the actual value of the critical ratio were essentially 
the same from one system to another. This would then fur- 
nish a natural way to improve upon a previous stability crite- 
rion,'.'' namely the minimum of 2Tr/T,, where Tr and T, 
are the total radial and transverse kinetic energies of stars in 
the system. For self-consistent equilibria, this ratio must ob- 
viously bear a simple relation to T,/I W ,  I. Under those 
("normal") circumstances in which a,, -a, and R,, =a,,  
this improvement in the stability criterion is not essential. 
But there are examples of anomalously slow precession that 
are extremely important in practice. Above all, these include 
systems with quasiradial orbits. 

We encounter this same anomaly, however, when most 
of the particles in a system have orbits that are almost closed. 
This is the case, for instance near the center of a stellar sys- 
tem in which the gravitational potential is approximately 
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quadratic. This, incidentally, is why "rounded" orbits, in 
addition to quasiradial, can participate in the formation of 
the central bar of a spiral galaxy. Although the integral equa- 
tions (8)  and (9)  that we introduced in Sec. 2 were used 
above (63.1 ) only for highly eccentric orbits, they also apply 
to bar formation in the general case. 

Orbits are also almost closed (i.e., they are approxi- 
mately Keplerian ellipses) when a large mass is present at 
the center of a system. Specifically, this would be the case in 
the immediate vicinity of a massive object (a  black hole, for 
example) at the center of a galaxy. Processes taking place in 
the neighborhood of such objects, which probably have a 
direct bearing on galactic nuclear activity, are a research 
topic in their own right. Other examples-thin planetary 
rings and ring galaxies-are briefly taken up in Sec. 4. 

The most obvious (and most striking) manifestation of 
radial orbit instability in spherical systems is the formation 
of elliptical galaxies. The aggregate observational data on 
the latter can be simply and naturally accounted for5 by 
imagining that they were produced in the collapse of a 
spherical star cluster (initially far from equilibrium) accom- 
panied by radial orbit instability. 

The basic facts are as follows. Above all else, the surface 
brightnesses I ( r )  [and therefore, presumably, the surface 
densities u ( r )  ] of elliptical galaxies are described surpris- 
ingly well by a single function-one that depends on neither 
the size nor the mass of the galaxy: 

I ( r )  a exp [ - 7.67(r/r,)'I4] , 

where re is the radius containing half the emitted light. This 
is the well-known r'I4 law of de Vauco~ leu r s .~~  Next, the 
distribution of galaxies as a function of the ratio of semiaxes 
c/a has a characteristic maximum near c/a = 0.5-0.6.22 El- 
liptical galaxies, even those that are quite oblate, rotate very 
slowly, with the kinetic energy of rotation being only a small 
fraction of the potential (gravitational) energy.23 Also wor- 
thy of note is the radially elongated nature of the dominant 
stellar orbits in these galaxies. 

The "experimental" density distributions obtained by 
numerically modeling the collapse of systems of gravitating 
particles conform quite well to the de Vaucouleurs law, and 
they thus correspond to reality only when the initial state of 
the collapsing system is sufficiently "cold," i.e., the virial 
ratio V = 2T/I W I 4 1 ( T is the initial kinetic energy of the 
system and W is its initial potential energy; at equilibrium, 
V = 1 ) This is a highly ambiguous result, as it is precisely 
in cold collapse that radial orbit instability should develop 
most naturally. The fact that it does develop in such numeri- 
cal experiments has been specially checked and confirmed. 
This was demonstrated directly in Ref. 24: the rms particle 
angular momentum increased, the degree of anisotropy in 
the system decreased, etc. 

Furthermore, computer modeling has shown6 that c/a 
= 0.5-0.6 in typical systems obtained in collapse from a 

cold initial state, which exactly corresponds to the location 
of the maximum in the distribution of the apparent flatten- 
ing of elliptical galaxies.22 Upon more detailed comparison, 
good qualitative agreement has also been found25 between 
the distribution of c/a in real elliptical galaxies and in sys- 
tems obtained via numerical modeling. The slow rotation 
and the radially elongated dominant orbits are also a com- 
pletely natural outcome of collapse from an almost spherical 

initial configuration. We note that previously proposed sce- 
narios for the formation of elliptical galaxies (after their 
negligible rotation had been d i s ~ o v e r e d ~ ~ )  were based on the 
assumption that they retained some residual anisotropy, left 
over from their original much more substantial (and scarce- 
ly realistic) anisotropy. What makes the present scheme so 
attractive is that anisotropy develops in and of itself during 
contraction and as stars acquire radial motion, which in turn 
leads to large-scale instability-i.e., the development of an 
essentially ellipsoidal triaxial system from an initially 
spherical cluster. 

4. LOW-FREQUENCY MODES IN RING AND DISK SYSTEMS 
WITH QUASICIRCULAR ORBITS 

The integral equations (8)  and (9)  are suitable for de- 
scribing low-frequency modes (with iS = w - rnfi,, - w,, 
An,, ) in systems with quasicircular orbits4' under two con- 
ditions (see Sec. 2): w,  (R,,  and An,, ( R,. Those condi- 
tions are obviously satisfied in the thin rings encircling the 
giant planets (Saturn, Uranus), for example. What is per- 
haps more surprising is that they are also met rather accu- 
rately by normal spiral galaxies. The first of the two condi- 
tions corresponds to the fact that only a relatively small 
fraction of the total mass of a spiral galaxy plays an active 
role in perturbations-namely, matter concentrated in the 
flattest and coldest subsystems (and here following quasicir- 
cular orbits). The precession rate of such quasicircular or- 
bits is given by 

Q,, ( 1 . )  =Q?-Q1/2=52(r) --x ( r )  12. 

where R ( r )  is the angular velocity of a star in a circular orbit 
at a distance r from the center, and x ( r )  = [4R2 + rdf12/ 
dr] ' I2  is the epicyclic frequency. A spiral galaxy undergoes 
rigid-body rotation near the center, and far from the center it 
is most often R ( r )  a l / r  (although almost-rigid-body rota- 
tion does extend out to the observable limits for many galax- 
ies). For approximately rigid-body rotation, the second con- 
dition is a trivial consequence, since then not only do we 
have R,, 4 R ,, but even R,, 4 R,  for the rate itself. If R a l /r  
far from the center, then R,, z (1 - 2-'I2)R, i.e., 
R,, =:0.3R2 z 0.20 ,, so that even the more restrictive form 
of condition 2 can be assumed to be approximately satisfied 
(when An,, is replaced by R,, ). 

For the spread in stellar precession rates, which make 
the most important contribution to the perturbation, the ac- 
curacy with which condition 2 is satisfied can be improved. 
There is no need for remote orbits to satisfy it, in general, at 
least in calculating the eigenfrequencies of spiral modes, if 
the spirals themselves are merely a response of the outlying 
regions of the galaxy to a self-sustaining bar mode at the 
center. All previous theories of spiral structure have yielded 
galactic spiral arms that rotate anomalously slowly. For the 
Milky Way, for example, all Rp fall in the range =: 1 1 to =: 25 
km/s.kpc. Even the latter (highest) estimate is manifestly 
lower than the typical rotation rates of stars, fl=:R2, and 
furthermore, than their radial frequencies x = R ,  > R, with 
R ( r  = T;z 5 kpc) =: 45 km/s. kpc. In return, the values of R, 
in the indicated range fit the typical orbital values R,, quite 
well. 

To close, let us deal with the separability of the m = 1 
mode in the thin rings of planets or ring galaxies with mas- 
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sive nuclei. We can calculate II (I , I r )  from (8') ,  making use 
of the orbital equations in the epicyclic approximation: 

r=R+p sin wl=R+6,, 
cp=w,+ (2QlxR)p cos w,=w,+6?, 

wherep = [21,/x(R) I is the size of an epicycle (the ana- 
log of the Larmor radius for a plasma in a magnetic field), 
and R is the radius at which its center lies (p  < R ) . Since 

8i~~?=z~'~'-w~=ticp- (13~'-6.), 8rp=rp1-cp. 

we have 

l-I (1,I') 

=2n J d ~ ,  d w l l  exp [-im~u,'+irnw,-irn (ti1'-6:) I/,,, (r, r ' ) ,  

 or systems consisting of general orbits that share similar values of a,, 
(somewhat of an artificial situation, apart from a system with almost 
radial orbits), it is nevertheless possible to give both a criterion for insta- 
bility, (a /dL + fipr a /aE) a,, > O), and a simplified version of the inte- 
gral equation (8)  In the form (9),  which is only slightly different from 
(12). 

"For example, we have y(m) cc milz in a disk with m, 1, and for a cylin- 
der there is almost no m dependence at all. Equation ( 10) for the func- 
tion ll simplifies when m $1, since then J ,  =2S(r - r')/m2 for a cylin- 
der and J ,  =S( r  - rt)/m for a disk. Thus, one of the integrations in 
( 10) can be dispensed with. The asymptotic expressions for J ,  are most 
conveniently derived directly from Poisson's equation, assuming that 
m2@,/?% Id 2@1/d?I, Ir-ld@l/drl in the latter. 

3'In the present context, this was apparently first pointed out in Ref. 20. 
4'We point out that these equations can also be reconciled with odd-m 

~erturbations_of systems that have nonsingular @,(r) if we redefine the 
 function^=@ to be ~ $ @ d w , / 4 ~ ,  and take the integral over w, in (8') 
from 0 to 437 while multiplying the right-hand side of (8) by 1/2. 

where Jm (r,rr) has been defined in accordance with (10') 
using the Green's function r for a disk, i.e., (7" ) . Expanding 
Jm (R + S,,R ' + S; ) and exp[ - im(S; -S2 ) ]  as power 
series in S,, S; , S,, and S; out to second order, it can easily be 
shown that the lowest order in p for the function II corre- 
sponds precisely to the m = 1 mode, with 

1 d2J,,, (R, R') , a' aJ,,, (I<, H ' )  
T -7 

2x'R aR 

I? dl,,, ( R ,  R ' )  +- 
1 aR' (31) 

where 

of=  [ ? I , ' h  (R')]"'. O'=Q(R ' ) ,  x'--s(R'). 

This expression holds not only for a thin disk, but also for a 
disk in the field of a massive central object, for example. In 
the present case, however, there is a simple analytic expres- 
sion for the function Jm z In I R - R ' 1/2n-R, and the leading 
term in square brackets on the right-hand side of Eq. ( 3  1 ) is 
the dominant one. Because of the logarithmic singularity of 
Jm (R,R ') at R ZR ', a region near R ' = R of width 
AR ' = N(p + p f ) ,  N$- 1 must be excised when integrating 
over d l ;  = dR 'd12(R ')/dR ', which makes the derivations 
somewhat more difficult (for example, Eq. ( 3  1 ) can only be 
usedfor IR ' - R ( > AR '). Wehavedemonstratedaboveonly 
that the m = 1 mode is special for the case under considera- 
tion. This may relate to the advent of just this mode during 
formation of the thin elliptical ringlets around Saturn and 
Uranus that were discovered by the two Voyager spacecraft. 
Similar phenomena are encountered in ring galaxies as well: 
noncentral nuclei, and instances in which the nucleus 
touches the ring. The latter represent the final state resulting 
from the development of the m = 1 unstable mode. 
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