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It is shown that in the inelastic scattering of intermediate-energy electrons through large angles in 
noncrystalline matter a new coherent effect should exist. It is due to the interference of electron 
wave fields, each of which is associated with one of the possible realizations of the process of 
multiple elastic scattering of an electron and electron scattering with excitation of some state of 
the medium. The effect leads to the appearance of an additional (in comparison with the case of 
elastic scattering) dependence of the cross section for scattering of electrons by the medium as a 
whole on their scattering angle. This additional angular dependence corresponds to weak 
localization of the inelastically scattered electrons. In its physical nature, the new phenomenon is 
similar to the phenomenon of weak Anderson localization, but differs essentially from it in that 
the presnece of an act of inelastic scattering is a necessary condition for the existence of the new 
type of weak localization. Unlike weak localization of the Anderson type, the new phenomenon 
occurs in a rather wide range ofscattering angles of the order of y/w, where y is the frequency of 
electron collisions and fiw is the energy lost by the electron. 

1. INTRODUCTION 

Recent years have been characterized by a sharp 
growth of interest in the phenomenon of weak localization of 
waves-a phenomenon manifested in the coherent amplifi- 
cation of waves that are elastically scattered almost precisely 
backward in disordered media. This has been facilitated by 
the understanding that has emerged of the generality of ef- 
fects of this kind in the case of waves of the most varied types 
(electron, electromagnetic, and even sound) with Anderson 
localization of electrons in disordered The direct 
experimental confirmation of the existance of weak localiza- 
tion of light9-l6 and the appearance of similar coherent ef- 
fects in the theory of electronic conduction, including such a 
beautiful phenomenon as negative anomalous magnetore- 
s i ~ t a n c e , ' ~ - ~ ~  has made the study of all manifestations of the 
phenomenon of weak localization an urgent problem. The 
existence of a similar phenomenon may be suspected even in 
as t rophys i~s ,~~**~ although in this case other explanations of 
the effect may also exist. Most recently, there has been a 
tendency to seek effects involving the weak localization of 
waves of diverse types, including longitudinal electromag- 
netic waves in artificially created incommensurate layer sys- 
t e m ~ , ~ ~ , ~ ~  surface  wave^,'^-^' and so on. The relationship of 
the weak-localization effect to the symmetry of scattering 
processes under time reversal was noted in Refs. 7 and 32. 

Besides the searches for new systems in which weak 
localization can exist, work is being done in the direction of a 
more accurate theoretical description of the phenomenon of 
weak localization. In the description of the weak localization 
of fast electrons or light two assumptions are usually made. 
First, multiple scattering is usually described in a scheme in 
which the collisions are reduced to multiple forward scatter- 
ing and single scattering through a large angle,5.33 or the 
diffusion approximation is used.3.21.34-37 Second, the scatter- 
ing at each individual scatterer is usually assumed to be iso- 
tropic. A treatment that went beyond the diffusion approxi- 
mation was given in Ref. 11 and 38. In the latter paper, an 
attempt was also made to take into account the influence of 

inelastic processes on the weak localization of elastically 
scattered particles in an object of finite thickness. As regards 
the assumption that each individual elastic scattering is iso- 
tropic, an analysis of the real significance of this assumption 
has not yet been performed, to our knowledge. 

All of these papers have been concerned with weak lo- 
calization of elastically scattered particles. The actual local- 
ization in the disordered medium has been attributed to a 
coherent process in which the next act of elastic scattering 
begins before the previous one has ended. In the case of back- 
ward scattering of electromagnetic waves, this corresponds 
to double passage of the wave through one and the same 
region with irregularly positioned scatterew6 In the back- 
ward scattering of electrons, there is interference of electron 
waves passing through the same scatterers in a different se- 
q ~ e n c e . ~ , ' ~  

Weak localization is manifested principally in an in- 
crease of the elastic backward scattering in an extremely nar- 
row range of solid angles the order of A / I ,  where A is the 
wavelength of the electron wave or light wave and I  is mean 
free path of the electrons or photons. In any case, it has been 
assumed that the role of inelastic processes in weak localiza- 
tion is secondary and even negative, since it is assumed that 
the existence of inelastic scattering reduces the probability of 
coherent processes. 

In this paper we show that, in addition to the usual weak 
localization that has been discussed hitherto, there should 
exist a new type of weak localization of electrons, which 
involves an inelastic process in an essential way but for 
which the origin of the inelasticity is of no importance. We 
consider three mechanisms of inelastic scattering-excita- 
tion of plasmons and of transverse electromagnetic waves by 
an electron in the medium, and also excitation and ioniza- 
tion of individual atoms. Summation over all final states of 
the excited medium for a fixed value of the energy fiw of the 
excitation is assumed. Certain differences in the localization 
of electrons for different mechanisms of inelastic scattering 
exist, but it turns out that, nevertheless, the common fea- 
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tures of this effect are dominant. In all cases, the scattering is 
greatest in the region of scattering angles close to ~ / 2 ,  and 
the effect is manifested in a considerably wider range of an- 
gles than in the case of ordinary localization. Whereas in the 
elastic channel the range of such angles is of the order ofA /I, 
in our case it is of the order of y/w = (A /I) (E /&), where y 
is the electron-collision frequency and E is the electron ener- 
gy. Apart from its purely physical interest, the latter circum- 
stance is also important in that it makes the experimental 
observation of such localization of comparatively fast elec- 
trons much more realistic than it is for ordinary localization. 

We do not assume isotropy of scattering of electrons by 
the scattering centers, the role of which, in our case, is played 
by atoms in a noncrystalline solid. The angular and energy 
dependence of the inelastic scattering is determined by a re- 
alistic interaction Hamiltonian. 

The energy of an electron incident on the medium is 
assumed to be high enough for the possible excitation of, e.g., 
plasmons or atoms. At the same time, this energy should not 
be too high, since we are concerned with the interference of 
electron waves. There exists a region of so-called intermedi- 
ate energies, for which the scattering of electrons through 
large angles by the atoms constituting the medium, with a 
comparatively small loss of energy, occurs in such a way that 
the electron trajectory is determined by a single scattering of 
the electron through a large angle and multiple scattering 
through small angles.3941 The corresponding energies lie in 
the range from one hundred eV to 1.5 keV (Ref. 39). This 
scheme of the process, in which in the elastic scattering one 
takes into account multiple collisions of the electron with 
scattering through small angles and single scattering 
through large angles is the one we use. It has also been ap- 
plied in the theory of conventional weak lo~alization.~ 

The final aim of the work of the work is to show that 
there should exist a new universal (independent of the na- 
ture of the inelasticity) phenomenon, which can be regarded 
as weak localization of electrons in disordered media in the 
inelastic-scattering channel. 

2. PROBABILITY OF PLASMON EMISSION DURING MOTION 
OF AN INTERMEDIATE-ENERGY ELECTRON IN A 
DISORDERED MEDIUM 

The operator of the energy of interaction of an electron 
with the medium consists of two terms: 

h 

where Ha is the operator of the energy of interaction with the 
atoms of the medium: 

in which V(r - r, ) is the operator of the interaction of the 
electron with atom I. The sum in (2)  is taken over all the 
atoms. The operator Hi describes the interaction with the 
electrons of the medium, and determines the electric polar- 
ization of the medium that arises under the action of the 
moving electron. In the case of plasmons we have 

where $(r)  is the operator of the potential of the electric 
field of the electrons capable of taking part in plasma oscilla- 

tions and p ( r )  is the operator of the charge density of the 
moving electron. 

The initial state of the system (moving electron plus 
medium) is characterized by the wave funcion I n,p), where 
n describes the set of quantum numbers of the medium in the 
initial state and p is the momentum of the incident electron. 
The final state of the whole system is described by the wave 
function Im, p - Q),  where Q is the total momentum trans- 
ferred to the medium. 

The probability of a transition of the system in unit time 
from one state to another with transfer of momentum Q 
from the incident electron to the medium and with transition 
of the medium from state n to state m has the form (in this 
section, as a rule, we take f i  = 1 ) 

In (4)  we have the T-matrix 

in which 

h 

Here, H,, is the operator of the energy of the electron and 
medium without allowance for their interaction; 

is the corresponding Green's function. Henceforth, we as- 
sume that En = 0. 

h 

Bearing in mind that the operator Hi thezorn approxi- 
mation is sufficient, while for the operator Ha the theory 
should go beyond the Born approximation, we can write the 
transition amplitude in the form 

T , , . , , ~  = (m.  P-QI Rad.+bp-~,p~ 1 pl. m)(m.  p'l Ri In. P")  

h 

where Ga denotes the Green's function 

We introduce the notation (m ,p '~g i  In,pp) 
= Ti (mn,q), where q = p" - p' is the momentum trans- 

ferred to the electron system of the medium. Here it has been 
assumed that Ti (mn,p1,p" ) = Ti (mn,q), which is true in 
the case of plasmons. 

Therefore, the transition amplitude is 

where the function 

describes the scattering of the electron by the atoms. The 
first term in ( 1 1 ) corresponds to the electron-scattering pro- 
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cess in which there is no scattering by atoms and only a 
plasmon with momentum q is excited. The second term cor- 
responds to a process that begins with scattering by atoms 
and ends with excitation of plasmons. The third term corre- 
sponds to the process in which the events occur in the oppo- 
site order. The fourth term corresponds to a process in which 
the emission of a plasmon occurs between scatterings of the 
electron by atoms. If we are not interested in small-angle 
scattering by the medium as a whole, the first term can be 
omitted. 

It follows from (4) and ( 10) that the transition proba- 
bility dw(Q,w) per unit time, averaged over the initial and 
summed over the final states of the medium, has the form 

where me is the electron mass. This formula is valid if for the 
electrons we take the disorder of the medium into account 
while the electric field of the plasmon we assume the medium 
to be entirely uniform. The quantity 

is due to Ti (mn,q) T t  (mn,ql) and is the probability per unit 
time of emission of a plasmon with momentum q in the uni- 
form medium and without allowance for the interaction of 
the electron with the atoms of the medium; dCIQ in ( 12) is 
the solid-angle element within which the electron scattered 
in the medium leaves the medium; w = E, - E, - Q,  and 
V is the normalization volume. 

We have 

The term J contains a term associated with the presence in 
( 1 1 ) of the last term, which describes the emission of a plas- 
mon between scatterings of the electron by atoms. One can 

p - q  s-9 p-4 

/ f-\ p x - x - x  ~ 2 2 ~ ~  
5 

FIG. 1.  Third-order diagrams in the scattering of electrons by atoms. A 
wavy line corresponds to a plasmon. Dashed lines link one and the same 
atom. 

convince oneself that the quantity J can be omitted if only 
one collision with scattering through a large angle occurs. 

The function ( 13), and hence the transition probability 
( 12), must be averaged over the positions of the randomly 
situated atoms. As usual, on the diagrams corresponding to 
Eq. ( 12) we shall use a dashed line to link two vertices (de- 
noted by crosses) pertaining to the same atom. The lowest- 
order diagrams capable of describing weak localization are 
diagrams of third order in the amplitude with respect to the 
electron-electron interaction. These diagrams are depicted 
in Fig. 1. The lower parts of the diagrams correspond to the 
analytical expression that is the complex conjugate of the 
expression equivalent to the upper parts. A wavy line corre- 
sponds to a plasmon. It can be seen from the way the dashed 
lines are drawn that the large-angle scattering of an electron 
by atoms is incoherent. 

If the conditions u 4 N, and Not u2 12 4 1 are fulfilled 
(U is the amplitude for scattering by one atom and No is the 
concentration of atoms), we can disregard diagrams with 
intersections of dashed lines and with two lines emerging 
from one vertex.42 This, in particular, implies that the usual 
weak localization, corresponding to allowance for the "fan" 
diagrams7.17 that describe only elastic scattering, is not taken 
into account because the regions of angles for the ordinary 
weak localization and for the new type of localization are 
essentially nonoverlapping. If we assume that 
uz4a (p2  + a2)-' (where a-'- cm) and 
N, - cm, then for 2 - 10W9 cm (which corre- 
sponds to intermediate electron energies) both of the above 
inequalities are fulfilled. We note, finally, that the diagrams 
of Figs. l c  and Id correspond to the principle (valid in the 
theory of ordinary lo~alization'~) that a change of the direc- 
tion of motion of the electron in the lower parts of the dia- 
grams transforms these diagrams into "ladder" diagrams, 
albeit with "steps" of a different nature. 

We note also that from the form of the diagrams and 
from ( 13) it follows that the role of the damping in the elec- 
tron Green's functions should be played by the exact 
vertex y. 

The dependence of dw(Q,w) on the vector Q (i.e., on 
the scattering angle ,y for scattering of the electron by the 
medium as a whole) is determined by two factors. First, this 
dependence is connected directly with the dashed lines link- 
ing the upper solid line to the lower solid line in each dia- 
gram. These lines give rise to the existence of a factor 
1 u ( Q  - q) l 2  that is the same for all diagrams. Since we have 
Q) q, we may assume that this factor has the form 1 u ( Q )  1 2. 
This would also be the angular dependence ifjust incoherent 
elastic scattering were present. Second, the electron Green's 
functions depend on Q. If, after integration over all direc- 
tions of the vector q (which corresponds to summation over 
the final states of the medium), on which the electron 
Green's functions also depend, the dependence on Q that 
arises from the fact that the vector Q appears in the electron 
Green's functions remains, then this implies the appearance 
of an additional angular dependence, existing in the inelas- 
tic-scattering channel. Since, as a rule, this additional de- 
pendence is nonmonotonic, we may speak of the appearance 
of weak localization of the scattered electrons in this chan- 
nel. 

The diagrams depicted in Fig. 1 correspond to the func- 
tion IB 1' 
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so that the differential transition probability is 

The first term inside the symbol of the square of the 
absolute value in ( 15 ) corresponds to a process which begins 
with the excitation of a plasmon and ends with a scattering of 
the electron through a large angle. The second term corre- 
sponds to a process with the opposite order of events. It can 
be seen from the structure of the diagrams that the Born 
probability for large-angle scattering of the electron can be 
replaced by the exact probability. 

3. COHERENCE EFFECTS IN THE SCATTERING OF 
ELECTRONS BY ATOMS AND BY A PLASMON 

Neglecting terms of order w / E ,  we rewrite Eq. ( 15) in 
the form 

Here, v' = (p  - Q ) / m ,  is the velocity of the electron in the 
final state. We denote by the symbol S (and study in more 
detail) the factor 

that multiplies the quantity N,m,p 1 u (Q)  1 *. We draw atten- 
tion particularly to the dependence of the quantity S o n  the 
electron-scattering angle X. Going over from summation to 
integration, we write 

rn 

where 

For what follows, the dependence of ( 19) on the anglex has 
decisive significance. 

We consider two limiting ways of describing the proba- 
bility of excitation of a plasmon in a uniform electron gas. 
First, we assume that the shape of the plasma-resonance line 
is determined by the plasmon dispersion. In this case, 

This formula differs from the simplest one in that the disper- 
sion of the plasmon frequency has been taken into account in 
it. The coefficient M has the order of magnitude of u,/wp, 
where u, is a velocity of the order of the Fermi velocity and 
wp is the plasma frequency. Substituting (20) into (18), we 
obtain 

The presence of the 0 symbol here means that w > u p .  
Next, in Y, we take the integral over the angles a,. As 

a result of the calculations, we obtain the explicit form of the 
function Y 

4n{ ( q u : o ) + a r c t g ( y )  9 ( q ,  o , ~ ) =  - arctg - 
9"Y 

X ~ n [  
O , Z - ~ ~ U ~  cos x+qv[2w,2 ( 1  - cos X) -qZv2 sin2 XI 'h 

0:-q2u2 cos X - q v [ 2 0 e z ( ~  - cos X) -q2v2 sin2 XI % 111 

In this formula, w, = w - i y  and 

The limiting case of the motion of an electron in a uni- 
form electron gas, when the collisions of electrons with 
atoms do not affect the excitation of plasmons, corresponds 
to a small value of the parameter y/w.  In this case, in (22) 
the term containing the logarithm, which is entirely due to 
interference, vanishes. The function Y ceases to depend on 
the electron-scattering anglex and tends to the limit 

4n qu+o 
lim 9 + - (arctg - + arctg - qu-o 1. (23) 
1'0 PVY r Y 

The sum of the arctangents is nonzero only if qu - w > 0, so 
that, with this condition and in the limit of small y, 

It is obvious that this limit corresponds to those colli- 
sions of the electron with atoms and with a plasmon that can 
be regarded as consecutive, so that a collision begins only 
after the previous one has ended. A plasmon is then emitted 
in the Cherenkov manner, as indicated by the condition 
q u - w > o .  

Figures 2 and 3 depict the function 9 (x), normalized 
to its value at x = r, for various values of the parameters 
z = qu/w and b = y/w.  From now on we call this the local- 
ization function. For a given electron energy the parameter 
z = qu/w can be regarded as the quantity determining the 
energy lost by the electron to excitation of a plasmon. For 
z> 1 Cherenkov emission of a plasmon is possible. If we have 
z < 1, a plasmon cannot be emitted in the Cherenkov man- 
ner, and the energy loss is due to bremsstrahlung emission of 
longitudinal electromagnetic waves.43 The curves in Fig. 5 
correspond to this case. 

It follows from Fig. 2 that in the deep "pre-Cherenkov" 

329 Sov. Phys. JETP 74 (2), February 1992 . Libenson etal. 329 



FIG. 2. Localization functions for bremsstrahlung excitation of a plasmon 
in the case when the dispersion of the plasmon frequency is more impor- 
tant than the plasmon damping (qv/w = 0.5); b = y/o = 0.1 (curve 1); 
b = 0.3 (curve 2); b = 0.5 (curve 3). 

region, when the very possibility of emission of a plasmon is 
due entirely to the fact that the collision with the plasmon 
begins before the scattering of the electron by atoms has end- 
ed (or, on the other hand, ends after the collision of the 
electron with an atom has begun), localization occurs only 
for a comparatively small ratio y/o. For large values of y the 
interference is great, but localization does not set in. 

With increase of the ratio qv/w weak localization be- 
comes more pronounced (Fig. 3 ) ,  and scattering through 
small angles is found to be prominent. Weak localization 
turns out to be most strongly pronounced for z)l ,  i.e., at 
frequencies at which Cherenkov emission of plasmons be- 
comes possible. In addition, it is necessary that y/o be 
smaller than unity. The dominant scattering of electrons in 
this case occurs in a direction close t ox  =:.rr/2. For z > 1 clear 
weak localization appears in the region of angles of order 
100-120", the localization maximum being reached at 
y/w-0.3 (Fig. 4).  

The integral (over the plasmon frequencies) curve 
3 ( ~ ) / 3  (X = r) (Fig. 5) also shows weak localization of 

FIG. 3. Localization functions at the threshold for Cherenkov excitation 
of a plasmon (qu/o = 1);  b = 0.1 (curve 1); b = 0.3 (curve 2);  b = 0.5 
(curve 3). The dispersion of the plasmon is assumed to be more important 
than its damping. 

FIG. 4. Localization functions in the region of Cherenkov excitation of a 
plasmon (qv/o = 2). The curves, 1,2, and 3 correspond to the same val- 
ues of the parameter b = x/o as in Fig. 3. 

plasmons in the region of angles x =: 120- 140". The degree of 
coherence, defined as the ratio ofthe term in (22) containing 
the logarithm to the sum of the arctangents also depends on 
the angle x (Fig. 6). 

In the other limiting case, when the shape of the plasma- 
resonance line is determined by the damping of the plasmon, 
the probability (20) should be replaced by the quantity 

(here, r is the plasmon damping). In accordance with ( 18 ) 
and (19), this implies that the localization function can be 
represented by the integral 

q" 

d9 q v f o  qu-0) F ,  ( x )  = J- {arctg -- + arctg --- 
0 Q Y Y 

FIG. 5. Integral (over the frequency) localization curve for excitation of a 
plasmon (in conditions when the dispersion is more important than the 
damping of the plasmon) and u/u, = 5; b = y/o = 0.3 (curve 1); b = 0.5 
(curve 2); b = 0.8 (curve 3). 
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where Tph (p,,p,) is the photon-emission amplitude: 

FIG. 6. Degree of coherence as a function of scattering angle, in the case 
when v/u, = 5 and y / w  = 0.5; w / w p  = 1.01 (curve 1 ); w / w p  = 1.05 
(curve 2); o / w p  = 1 .1  (curve 3 ). 

where q, is the momentum cutoff at which Landau damping 
of the plasmons appears. This function of X, normalized to 
its value at x = T, has been obtained by numerical integra- 
tion, and is depicted in Fig. 7. As can be seen, when the 
electron loses energy equal to the plasmon energy, all the 
localization function are asymmetric and scattering through 
the largest angles is suppressed. The maxima of all these 
functions lie in the range 60" <X < 120". 

4. COHERENCE EFFECT IN THE CASE WHEN THE 
INELASTICITY IS DUE TO THE GENERATION OF 
TRANSVERSE ELECTROMAGNETIC WAVES 

We wrote the scattering amplitude in the case of genera- 
tion of plasmons in the form ( 10). In the case of generation 
of photons the scattering amplitude takes the form 

FIG. 7. Localization functions for excitation of a plasmon in conditions 
when the damping of the plasmon is more important than the dispersion of 
its frequency. Curve 1 )  v/u, = 3, y / w  = 0.1; curve 2) u/v, = 3, y/  
w = 0.3; curve 3) u/v, = 3 ,  y / w  = 0.5; curve 4) u/u, = 7 ,  y / w  = 0.3. 

Here, q, w, and e, ,  are the wave vector, frequency, and po- 
larization vector of the emitted photon, E (w ) is the dielectric 
permittivity of the medium, and Vis the normalization vol- 
ume. 

The calculation of the probability dwph of scattering of 
an electron with an energy loss equal to the energy of the 
emitted photon is performed in the same way as was done in 
the case of emission of a plasmon. After averaging over the 
positions of the atoms of the medium, we obtain 

( (P-Q+q)e.,Jmec 
. + 

o-qv'-iy qv-o-iy 

We integrate over the angles of emission of the photon 
and sum over its polarizations. It is obvious that, as in the 
case of plasmons, after integration over the angles character- 
izing the direction of the vector q, the scattering anglex can 
appear only in the terms containing the product 
(a - qv + iy)- ' (0  - qv' - iy)-l. Bearing this in mind, 
we obtain 

{?'-:; b2d 

B-11 [arctg lfB + arctg - 
b b 

b b b [ p2 - cos2 ( ~ / 2 )  1 ' 
+2 - (arctg - + arctg - )+ Re [ (, 

P I +mP P-1 sin ( ~ / 2 )  

sin (x/2) 
1.n 

[p2 - cosZ(x/2) 1"' + sin ( ~ / 2 )  + 
[ pZ - C O S ~ ( X / ~ ~ )  ] Ih pz - cosZ ( ~ / 2 )  1'' - sin ( ~ / 2 )  11 

V d o  d3Q 
XG (EP-Ep-~-Ao) 

(2nti)" 

Here, b = y/w, p = u/vph, up, = c / E ' ' ~  ( a ) ,  and 
p = (1 + ib)/p. In the calculations we have taken into ac- 
count that v - v' 4 v. 

An estimate of the quantity dwph gives 

where dw,, is the differential probability of elastic scattering 
of the electron through a large angle. 

It follows from (30) that weak localization depends on 
two parameters: b = y/w and the ratio of the velocity of the 
electron to the phase velocity of the photon. Figure 8 shows 
curves that demonstrate the angular dependence of the fac- 
tor in curly brackets in the expression (30). The values of 
this factor, as in the case of plasmons, are normalized to its 
value at x = T. From Fig. 8 we can draw the following con- 
clusions: 
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FIG. 8 .  Localization functions for excitation of  a photon. Curves 1 
( p = 0 . 9 ) , 2  ( p =  1.1),and3 ( p =  1.5)correspondtoy/w =0.2,curves 
4 ( /3=0.9) ,  5 ( p =  1 . 1 ) ,  and 6 ( p =  1.5) correspond to y/w = 1 ,  and 
curve 7 corresponds to y / o  = 5 .  

1 ) In the case of strong interference, when b- 1, local- 
ization is suppressed for all values of 0. 

2) For b 5: 1, the character of the localization is deter- 
mined by the quantity 0 .  Fo r0  < 1 the localization function 
is weakly expressed, while for0 2 1 the localization is sharp- 
ly expressed. The case0 5 1 corresponds to fulfillment of the 
condition for the existence of Cherenkov radiation. 

3 ) It follows from (30) that the angle at which the char- 
acteristic inflection appears in the localization function is 
determined by the condition 

The condition (32) is equivalent to the equation 

in which 19, is the Cherenkov angle. Thus, localization cor- 
responds to an electron-scattering anglex equal to twice the 
Cherenkov angle. Since the cause of the localization is the 
interference of processes that can be regarded as a forward 
and a reverse process, the condition (33) has an intuitive 
character. 

5. COHERENCE EFFECT IN THE CASE WHEN THE 
INELASTICITY IS DUE TO EXCITATION OF ELECTRONS IN 
ATOMS AND IONIZATION OF ATOMS 

In this case, in accordance with Ref. 44, the probability 
of inelastic scattering by one individual atom can be written 
in the form 

Here, r, is the position vector of each individual electron in 
one atom, is the wave function of this electron, and d~ is 
the volume element in which the atomic electrons are found. 
The summation over a corresponds to summation over the 
electrons of the atom. 

In such electron scattering the principal role is played 
by collisions leading to scattering of the electron through 
small angles,44 when the momentum transfer q g  l/a, where 
a is a length of the order of the atomic size. In this case, the 
matrix element in the atomic wave functions @ in (34) can 
be written in the dipole approximation, so that 

where dm, is a matrix element of the operator of the dipole- 
moment vector. 

Substituting (35) into ( 12) and ( 17), we see that in this 
case ( 18) takes the form 

1 4  em, 
s(w,x)=- (2n)3 . - N . v ( ~ )  3 ~ d . . ~ ~ j d q l ( q , ~ , ~ ) ,  

0 

in which the function has, as before, the form ( 19). 
If the energy lost is such that ionization of the atoms is 

also possible (and, therefore, momentum transfers q 2 a-  ' 
must also be taken into account), the square of the absolute 
value of the matrix element in the atomic wave functions 
that appears in ( 35 ) can be represented conveniently in the 
form 

in which qi = e2Z/I d,,, 12, where Z is the atomic number. 
This formula must be regarded as an interpolation formula 
that ensures the true asymptotic values of the squared mag- 
nitude of the matrix element for small and comparatively 
large q. For the smallest momentum transfers the matrix 
element (37), in accordance with (35), is proportional to 1/ 
q2. For relatively large q it should not depend on q, in accor- 
dance with the fact that the differential cross section for 
Rutherford scattering by each of the atomic electrons has a 
dependence on the energy loss of the form dw/w2. 

Now, the existence of weak localization should corre- 
spond to a dependence of the factor F2 on the anglex of the 
form 

qv+o " dq {srctg - qv-0 
F2 (x) = ( 4 a ~ e ~ ) ~ Z  - + arctg - 

YV 0 9(q2+9,2) 7 7 

[?In( 
Pz (z)+ [0 (z)  +z sin (x/2) 1' 
PZ(z)+[O (z)-z sin(x/2) l2 ) 
0 (z) +z sin ( ~ / 2 )  

-~(z) (a rc tg .  
P (z) 

- arctg 0 (z) -2 sin ( ~ / 2 )  
P(z) 

Here, z = qv/w, z, = q,v/w - v/v, , and 
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FIG. 9. Localization functions for excitation and ionization of atoms 
(q,v/o = 7); y/o = 0.1 (curve 1); y/o = 0.5 (curve 2). 

The function ( 3 8 ) ,  normalized in the usual way, is de- 
picted in Fig. 9. A characteristic feature of weak localization 
associated with the excitation and ionization of atoms is the 
fact that the localization function tends to unity a t x  = 0 and 
x = 7. 

6. CONCLUSION 

It has been found that inelastic collisions not only limit 
the actual number of elastic scattering events when there is 
localization in the elastic channel, but also lead to weak lo- 
calization of a new type in the inelastic-scattering channel. 
Although the amplitude of the localization curve in the 
space of the angles is smaller in the case of inelastic scatter- 
ing than in the case of elastic scattering, the angular width of 
the region of localization in the inelastic-scattering channel 
is greater than in the elastic-scattering channel, so that the 
area under the corresponding curve may be no smaller than 
in the case of ordinary weak localization. 

The new type of localization is universal in the sense 
that it occurs for any mechanism of electron-energy loss, and 
the position of the maximum of the localization function 
depends only little on the type of inelastic process. At the 
same time, the shape of the localization curve when collec- 
tive excitations and one-electron excitations of the disor- 
dered medium are excited depends on the type of excitation, 
and can be used as a method for identifying the character of 
the energy loss. Weak localization in the inelastic-scattering 
channel must be expected in the case of scattering of inter- 
mediate-energy electrons incident obliquely on a disordered 
medium. 

In conclusion, the authors express their gratitude to 
0. A. Batalina for assistance in the computer calculations. 
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