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Theoretical results derived here point to the existence of stable microscopic gas bubbles 
(bubbstons) in solutions consisting of a liquid, a gas, and a small electrolyte impurity. The radius 
of the bubbstons is found as a function of the properties of the solution. The spontaneous 
appearance of bubbstons is analyzed semiquantitatively as a phase transition in an open system. 
The electrical and kinetic properties of these entities are studied. An electrolytic solution with 
suspended bubbstons-a disperse medium-is shown to be unstable with respect to a coagulation 
resulting in the formation of clusters. The ideas developed in this paper are used to interpret 
certain effects in acoustic and optical cavitation and also in the process by which gas bubbles form 
in the initial stage of the heating of a liquid (far from boiling). 

1. INTRODUCTION 

A long-standing problem in cavitation research is find- 
ing an explanation for the presence of stable microscopic gas 
bubbles in a pure liquid, free of any microscopic solid inclu- 
sions. In a sufficiently high concentration, these bubbles nu- 
cleate cavitation. That such formations must be present fol- 
lows from the numerous classic studies of cavitation which 
have shown that the rupture strength of real liquids (i.e., 
that negative pressurep* which causes cavitation) is always 
substantially lower (by at least an order of magnitude) than 
the molecular strength,  an"^- lo4 atm (a is the sur- 
face tension, and n is the density of the liquid particles), even 
if the liquids are thoroughly purified beforehand. The only 
possible reason for this lowering of the threshold would be 
the existence of stable gas bubbles in the liquid. Although 
this idea has become generally accepted, it does not yet have 
a solid theoretical foundation. 

Two basic questions remain unanswered: (a )  How can 
these bubbles of free gas form in a continuous medium (a 
liquid) containing a dissolved gas (e.g., air in water)?" (b)  
If such a bubble has appeared, how can it remain stable? 

The first question naturally arises if the liquid is not in a 
superheated state and is not subjected to a negative pressure 
p -p*. In the opposite case, vapor bubbles may appear spon- 
taneously in the liquid, as the result of thermal motion, and 
may act as nucleating centers of a new phase, which may in 
turn serve as nucleating centers for cavitation' or for laser 
breakdown. Far from the boiling point of the liquid, how- 
ever, the probability for the formation of vapor nucleating 
regions is exceedingly low, so the question remains open. 

The second question was first raised theoretically by 
Epstein and Plesset,' who showed that a free-gas bubble 
which appears in an equilibrium liquid-gas solution cannot 
be stable: It will always dissolve, since a solution which is at 
equilibrium (with respect to the external pressure) is super- 
saturated with respect to the gas pressure inside the bubble, 
p ,  = p + 2a/R (p is the external pressure, which is close to 
the hydrostatic pressure, and R is the bubble radius) .2' 

The possible presence of surface-active agents in real 
liquids (primarily, water) does not eliminate the question of 
the stability of the bubbles (as many authors have attempted 
to do qualitatively), since an admixture of a surface-active 
agent can only reduce the value of a .  In other words, it can 
only reduce the rate at which the bubble dissolves; it cannot 

prevent the complete disappearance of the bubble. Experi- 
ments carried out back in the early part of this century (see 
Ref. 3 and the bibliography there) showed that there are 
electric charges at the surface of water (in particular, on the 
surface of an air bubble). Their origin was explained qualita- 
tively in Ref. 4 as resulting from a selective adsorption of 
ions from the water onto the bubble surface. However, this 
idea of selective adsorption has not been pursued to the ex- 
tent necessary. In a study of the ion theory of bubble stabili- 
zation, Akulichev3 used only the very fact that there may be 
an electric charge Q on the surface of a bubble. An expres- 
sion was derived for the stable radius by requiring a balance 
between the surface-tension pressure 2a/R and the negative 
electrostatic pressure 2.rro2/& = Q '/8mR (a = Q /4vR 
is the surface charge density, and E is the dielectric constant 
of the liquid). That expression is 

The magnitude of the charge Q was not determined in Ref. 3, 
so the stabilization problem went unresolved. 

In the present paper we are concerned primarily with a 
quantitative development of the idea of selective adsorption 
of ions on the surface of a bubble. This further study makes it 
possible to relate the charge Q and thus, according to ( 1 ), 
the radius of a stable bubble, R,, to the properties of a solu- 
tion consisting of a liquid, a gas, and a small impurity of an 
electrolyte. It follows from the results found below that sta- 
ble microscopic bubbles with radii R, - 10-100 b; can exist 
in a liquid-gas solution if an "ionogenic" surface-active 
agent (i.e., one which dissociates into ions) with a sufficient- 
ly high adsorption energy is present, even if in only trace 
amounts (in a concentration SO. 1 ppm). A stable micro- 
scopic bubble consists of the gas bubble itself (the "core") 
and a spherical sheath of ions which cancels the charge of the 
bubble, Q. This stable core-plus-sheath formation might be 
thought of as an independent particle, which we will call a 
"bubbston" (from the English "bubble stabilized by ions"). 

We will also examine the question of the spontaneous 
appearance of bubbstons. Here we mean a nonequilibrium 
phase transition in an open system: the appearance of a dissi- 
pative structure in the form of a spherical cavity in a contin- 
uous medium. We conclude the paper with a discussion of 
certain mechanical and electrical properties of bubbstons. 
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This discussion leads to an interpretation of many experi- 
mental facts. 

To conclude this Introduction, we note that we will be 
drawing on such concepts as a hydrophobic or hydrophilic 
nature of ions and a negative and positive hydrotaxis, respec- 
tively. Although these concepts and their physical meaning 
were introduced in connection with aqueous electrolytic so- 
lutions (Ref. 5, for example), they are general in nature. The 
results derived below can be regarded as valid for a broad 
range of liquid solvents. In speaking in terms of an aqueous 
electrolytic solution, we are implying no more than that two 
types of ions can exist simultaneously in the solution: hydro- 
phobic ions, with an adsorption energy which is high (in 
comparison with kT), and hydrophilic ions, with a low ad- 
sorption energy. 

2. STABILIZATION OF FREE-GAS BUBBLES IN DILUTE 
ELECTROLYTIC SOLUTIONS 

Let us consider a gas bubble in a dilute aqueous electro- 
lytic solution, which we assume to be binary, symmetric, and 
singly charged. We assume that the electrolyte concentrate 
is quite low (we will be more specific regarding the restric- 
tion on the average ion density no in the discussion below). 
The solution is at a temperature T and under an external 
pressure p. It has the equilibrium concentration (corre- 
sponding to the given Tandp) of dissolved gas. We further- 
more assume that the ions of one type (for definiteness, the 
positive ions) have hydrophobic properties and are thus sur- 
face-active, with an adsorption energy U at the bubble sur- 
face which is quite large in comparison with kT. In contrast, 
we assume that the ions of the other type have hydrophilic 
properties (and, correspondingly, U <  kT) . 

In polar liquids with a large value of E (e.g., water), an 
ionogenic nature of a surface-active agent is more the rule 
than the exception. Because of their surface-active proper- 
ties, positive ions adsorb on the surface of a bubble. As a 
result, a positive electric charge forms on the bubble, with 
some charge density a .  The state of the bubble is generally 
unstable, and its radius R and charge density a vary in time. 
Corresponding to a stable state are both a mechanical equi- 
librium and a diffusion equilibrium of the bubble with the 
solution. At mechanical equilibrium, the gas pressure inside 
the bubble, p ,  , is equal to the pressure at the bubble surface: 
p ,  = p  + 2a/R - 2.no2/& (we are assuming that the hydro- 
static pressure is equal to the external pressure). The time 
scale of the relaxation to this equilibrium is 
rM - R /(pl /p) (this is the Rayleigh formula; p is the 
density of the liquid). In mechanical equilibrium, however, 
the gas density inside the bubble and also the surface density 
of adsorbed ions are generally not in equilibrium with, re- 
spectively, the volume densities of gas and positive ions dis- 
solved in the liquid, and we have 2a/R # 2n-a'/&. This equi- 
librium is reached thanks to diffusion of gas molecules 
across the surface of the bubble and diffusion of ions to the 
surface of the bubble. The time scale of the first of these 
processes is R '/D, and that ofthe second is R '/D,, where D 
is the diffusion coefficient of the gas molecules, and D, is an 
effective diffusion coefficient ofthe ions. The latter diffusion 
coefficient incorporates the retardation of the process due to 
the Coulomb repulsion of ions from the bubble surface [see 
(5) 1. The time scale for reaching diffusive equilibrium is 

T, -R 2 / ~ E - ~ M ( ~  /DE) (p,/p) 1 / 2 % ~ M ,  

since the condition R > D,/(P, /p) I/' always holds [since 
we have D, < D - I O - ~  cm2/s, and (pl/p)'/2-103 cm/s]. 
We can therefore assume that diffusive relaxation processes 
are always occurring in mechanical equilibrium. 

In the stable state of the bubble, the equality 
2a/R = 2.rra2/.5 is satisfied, and the diffusion flux of positive 
ions toward the bubble (the adsorption flux) becomes bal- 
anced by the desorption flux. The flux density of the desorp- 
tion of ions is7 

~ D = Y V O  exp ( -UIkT) ,  (2)  

where y = a/& is the surface density of adsorbed ions, and 
vo = 1/r0 is the frequency at which an adsorbed ion oscil- 
lates around its temporary equilibrium position. 

The adsorption flux density is 

where n = n ( r )  is the density of positive ions at a distance r 
from the center of the bubble, and Di is the diffusion coeffi- 
cient for these ions. For solutions which are sufficiently di- 
lute (more on this below), this diffusion coefficient is ap- 
proximately the same as the diffusion coefficient for neutral 
particles, D. On the basis of the Boltzmann law, we can write 
the ion density as n ( r )  = noexp ( - ep  /kT), where 
p = p ( r )  is the electric potential which is set up in the solu- 
tion around the positively charged bubble. This picture [for 
n ( r )  ] is of course valid only for sufficiently dilute solutions, 
for which the average energy of the Coulomb interaction of 
an ion with its nearest neighbor [e2n1/3( r ) /~]  is small in 
comparison with the energy of the interaction of this ion 
with the electric field ep(r) .  Since this condition should be 
satisfied for ions with charges of both signs, it can be written 

n, ,<(&p/e) '  exp ( - ( e c p ( / k T ) .  (4)  

As we will see below, for the problem at hand, this condition 
on no is more restrictive than the usual condition that the 
"gas of ions" be ideal, no < ( ~ k T / e ' ) ~ .  

Determining the potential p ( r )  is the classic Debye- 
Hiickel problem738 (see Sec. 4 for more details). However, 
we do not need to solve this problem in order to calculate 
(dn/dr) , = under condition (4) ,  since we need to know the 
distribution p ( r )  only near the surface of the bubble, where 
this distribution is 4n-R 'a/&r. AS a result, we find the follow- 
ing expression for the adsorption flux density from ( 3 ) :  

On the basis of (2)  and (5) ,  the equality j,, = j, estab- 
lishes a relationship between the stable value Ro of the radius 
and the stable value of the surface density, yo: 

where 

A simultaneous solution of Eq. (6)  and the equation 
2a/R0 = 27ieZd/& yields the relationships between the sta- 
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ble values Ro and yo, on the one hand, and the parameters of 
the medium, on the other: 

In the stable state, the total number of adsorbed ions is 

In using these expressions one should bear in mind that the 
coefficient a generally depends on the density y, with 
da/dy < 0 (Refs. 6 and 8) .  As we know, even a small admix- 
ture of a surface-active agent can lower the value of a by a 
factor of 2 or 3. 

It can be seen from (6)-(9) that a stabilization is possi- 
ble only if the adsorption energy is sufficiently high; i.e., 
there is a threshold in U. The threshold value, Uo, is found 
from the condition R, = Romin, where Romin is the mini- 
mum radius at which a bubble could be stable. This mini- 
mum radius is naturally found from the equation 
Nmin = (4n-R imin/3)p/kT, where Nmin is the smallest num- 
ber of gas molecules which a stable bubble must contain. As 
we will see below, this threshold is an extremely weak func- 
tion of the specific value of Nmin (it varies as N 25 I), so we 
can set N,,, - 1 in numerical estimates. From (7)  and (8),  
we find the following expression for the threshold absorp- 
tion energy Uo : 

where 

It follows from the condition U > U, and from ( 6) and ( 10) 
that 

We turn now to condition (4) ,  which imposes a limit on 
the ion density. From (6)  and ( 7 )  we have 

Substituting this result into (4), we find the condition 

Note that this condition on no is the condition under which 
our quantitative results in (6)-(9) are valid; it is not the 
condition for the occurrence of the gas-bubble stabilization 
itself. 

Let us look at some estimates for an aqueous solution. 
The quantities A and A are extremely weak functions of the 
properties of the medium. For example, a change in the con- 
centration of the electrolyte, no, by an order of magnitude 
changes Uo by 2.3kT, which is about 60 meV- 1.4 kcal/ 
mole at room temperature. Over the entire temperature in- 

terval 273 K < T <  373 K ,  for an electrolyte concentration of 
0.03 ppm (no = 1015 ~ m - ~ ) ,  for p = 1 atm, for D = 
cm2/s, for T, = 10-l2 S, and for a = 25 erg/cm2, we have 
(highly accurately) A = 0.45 eV = 10.3 kcal/mole and 
A = 18.4. At T =  273 K the threshold energy is Uo = 0.88 
eV = 20 kcal/mole; at T = 373 K it is U, = 1.04 eV = 24 
kcal/mole. 

With U = 1 eV = 23 kcal/mole and T = 300 K, 
we find the radius R, =20  A and the density 
yo - 1014 cm-2<n:'3 - 1015 cm-2 (n, is the density of wa- 
ter particles). The total number of adsorbed ions is N,, -- 50. 
It is easy to verify that condition ( 13) holds in this case (the 
right side is - 1016 cm - 3).  

With R, = 20 A and at a pressurep = 1 atm, there is, 
on the average, only one molecule of dissolved gas inside a 
stable bubble [ N  = (4n-/3) R ip/kT=. 1) 1. Such a bubble is 
a sort of trap for single molecules. As the molecule collides 
with the bubble wall, at a frequency uT/2R0, it transfers a 
momentum 2mluT[(uT/2Ro)/4n-R i ]  = kT/(4n-R :/3), 
equal to the external pressurep to a unit area of the bubble 
wall per unit time ( o ,  is the average thermal velocity of the 
molecule, and m, is its mass). In our estimates, the value 
R, = 20 b; was found at an ion density no - loi5 cm 3. With 
increasing density no (under otherwise equal conditions), 
the stable radius R, should increase. In the process, how- 
ever, condition ( 13)-the condition under which our quan- 
titative results are valid-may be violated (again, this is not 
the condition for the stabilization effect itself). 

If the adsorption energy U is given, we can speak of a 
critical temperature Tc: For T <  T,, stable gas bubbles exist 
in the solution, while for T >  Tc they do not. The tempera- 
ture Tc = T, ( U,no,p) is found from the following equation, 
according to ( 10) : 

U-A 
kTc = - 

A (T.1 ' 
where 

A (To) =In ( e k T , l 4 ~ D n ~ e ~ z ~ ) .  

The analysis above was based on the assumption that 
the medium initially contains a gas bubble in mechanical 
equilibrium. We turn now to the problem in which a bubble 
appears spontaneously in a liquid electrolytic solution. 

3. SPONTANEOUS APPEARANCE OF FREE-GAS BUBBLES 

The problem which we take up here is the problem of a 
nonequilibrium phase transition accompanied by the forma- 
tion of structure: a gas bubble in a continuous medium. Like 
other problems of self-organization in open systems, this 
problem is very difficult to deal with on a rigorous quantita- 
tive level. The results below should be regarded as merely 
estimates, which (we believe) support the validity of the 
qualitative physical arguments on which our solution of the 
problem is based. A fundamental idea here is that the sponta- 
neous appearance of a cavity-a gas bubble-in an electro- 
lytic solution is a process which includes a stage in which a 
droplet of ion condensate forms in the solution. After this 
droplet reaches a certain size, it becomes unstable: It begins 
to "evaporate," and the volume of solution which it occupies 
becomes filled with the dissolved gas. 

We consider a positive (hydrophobic) ion surrounded 
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by water molecules (water is the solvent). The hydrophobic 
properties of an ion not only determine its ability to undergo 
adsorption on a water surface but also give rise to so-called 
negative hydrotaxis.' This hydrotaxis is seen in the circum- 
stance that the potential barrier between water molecules 
becomes lower in the immediate vicinity of the ion, and these 
ions become more mobile. Their density near the ion turns 
out to be lower than the density in pure water. More rigor- 
ously, we could say that the distance from the ion to the first 
peak on the radial profile of the water molecules is greater 
than the corresponding distance in the case of pure water. 
This difference should in turn lead to the existence, near the 
positive ion, of a potential well for a negative ion having 
hydrophilic properties (and positive hydrotaxis). 

The random diffusion of such an ion near the positive 
ion should give rise to a stable neutral ion dimer in the solu- 
tion. The same arguments lead to the conclusion that the 
subsequent diffusion of ions to this dimer should cause the 
latter to grow i.e., condensation of ions accompanied by the 
formation of a neutral droplet. The reason why this droplet 
is neutral is that each negative ion occupies a position on the 
surface of the droplet in the potential well formed by a posi- 
tive ion which has already condensed. The heat of condensa- 
tion released in the process is dissipated in the surrounding 
liquid. Since the average energy of the Coulomb interaction 
of the ions in the droplet is zero, energy does not accumulate 
in the droplet. 

These arguments remain valid as long as the dimensions 
of the droplet are sufficiently small, and an interface has not 
yet formed between the solution and the droplet. Denoting 
by R,, the radius of the droplet, we see that the formation of 
an interface corresponds to the condition R,, %n, where 
n,, is the density of ions in the droplet (we are assuming that 
the volumes per ion for the ions of the different types are 
comparable in magnitude). The droplet becomes unstable: 
Positive ions of the droplet begin to adsorb on the interface. 
As a result, the negative change inside the droplet is no long- 
er canceled, and the Coulomb field which arises in the drop- 
let repels the negative ions beyond the interface: The droplet 
begins to "evaporate." The evaporation rate is limited by the 
diffusion of the positive ions of the droplet to the surface, 
with a time scale R &/D.  However, the region which has 
been freed of ions should be filled with dissolved gas over the 
same time scale. This process-the evaporation of the drop- 
let accompanied by a simultaneous filling of the cavity with 
gas-should cause a gas-bubble structure to appear, a nu- 
cleating region in mechanical equilibrium. The radius of the 
nucleating region which has arisen, R,, should be deter- 
mined by minimizing the thermodynamic potential 

4nRJ (eN)z 
W (R) =4nRaa+~  - + - 

3 2eR . 
The first term of this sum is the surface energy of the nucleat- 
ing region, the second is the energy of the gas in this nucleat- 
ing region, and the third is the energy of the electric field of 
the nucleating region, which carries a charge eN, where 
N = (45-/6) n,, .R i, is the number of positive ions in the 
droplet. From the equation d W/dR = 0 we find 

[here we have used p(2a/Rn ; see ( 17) 1. Since the rate at 

which the droplet evaporates and the rate at which it be- 
comes filled with gas are on the same order of magnitude, we 
can assume R, =R,,. Substituting this approximation into 
( 16), we find a final expression for the radius of the nucleat- 
ing region: 

[here 2a/pRn - (a2e2n;,/&p3) % 1 1. The number of posi- 
tive ions which accumulate in the droplet before it decays 
(before evaporation begins) is given by 

With n,, ~ 3 -  lo2' c m 3 ,  for water, we thus find R, ~ 3 0  A 
and N, -- 140 ions. 

The radius of a nucleating region, R, , does not depend 
explicitly on either the temperature or the density of the 
electrolyte. The rate at which nucleating regions form (i.e., 
the number of these regions which appear per unit time per 
unit volume), on the other hand, should depend on these 
parameters. Determining this rate is a kinetic problem, 
which we will not go into. If, at a given temperature Tand a 
given electrolyte density no, the radius R,, of a bubble which 
has appeared spontaneously is greater than (or, on the con- 
trary, less than) the stable radius R, ( T,n, ), the balance be- 
tween the process of adsorption and desorption of positive 
ions will be disrupted. As a result, the bubble will reach dif- 
fusive equilibrium, and its radius will become equal to 
R, ( T,n, ). In other words, the bubble will become stable. In 
this manner, a bubbston forms. 

4. CERTAIN PROPERTIES OF BUBBSTONS 

a )  Electricalproperties. A bubbston consists of a stable 
gas microbubble (a  core) which carries a charge 
Qo = 45-R ;y,e on its surface and which is surrounded by a 
spherical sheath of ions with a charge density p ( r ) ,  which 
has a canceling charge Q,. As a result, the bubbston as a 
whole is neutral: 

Q,+4n 1 p (r) r2 dr=O. 
% 

We will say that a bubbston is positive (negative) if the 
charge Q, is greater than (less than) zero. Outside the core 
there is a spherically symmetric electric field. Denoting the 
potential of this field by p ( r ) ,  we can write the charge distri- 
bution in the sheath as 

p (r) =-en,[exp (ecp/kT) -exp, (-ecplkT) 1 ,  r>/ R,. (20) 

The potential p ( r )  itself must satisfy the Poisson equation 

With a given value at r = R, it must vanish at infinity. The 
validity of representation (20) and thus of Eq. (21) is obvi- 
ously restricted by conditions (4)  and ( 13); i.e., the solution 
must be sufficiently dilute. 

Equation (21 ) can be solved easily under the condition 
ep/kT< 1 Tor, more rigorously, under the condition 
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( 1/6) (ep / k ~ )  g 1 1. This solution was first carried 
out by Debye and Hii~kel. ' ,~ In this case we have 
p ( r )  = - 2n0e2p /kT = - (&/4.rr)p(r)/a2, where 

and the solution of Eq. (21 ) is7 

It is easy to verify that neutrality condition ( 19) is satisfied 
for this solution. The Debye radius a determines the thick- 
ness of the ion sheath. For an aqueous solution with 
no-1015 c m 3  this radius would be a-3.10W5 cm, so we 
would have (Ro/a) - 

The solution (23) does not, on the other hand, describe 
the potential of the bubbston for r)Ro. Specifically, we see 
from (23) that we have p,,, = p(R, ) = 4rR0 y ,e /~  and 
epma,/kT= UF/kT> A/kT [here we have used Eqs. (6) ,  
( l o ) ,  and (21)l.  Since we have A/kT> 1, the ratio ep /kT 
near the core of the bubbston is always greater than unity, so 
the actual potential distribution in this region should differ 
from (23). It is easy to show that for highly dilute solutions, 
for which the ratio Ro/a is small, a Debye-Hiickel solution 
of the form (23) always describes the peripheral part of the 
bubbston potential p ( r ) .  With decreasing value of the ratio 
Ro/a, the total thickness of the ion sheath tends toward the 
Debye radius a. Actually, there is generally a third length 
scale in this problem (in addition to R, and a ) ,  a ,  > R, . This 
third length scale is such that the total charge Q, of the core 
and of the adjacent layer of the ion sheath, R, ,<r<a,, i.e., the 
charge 

% 

Q , = Q ~ + ~ Z  J p(r)r'dr (24) 
% 

is so small that the potential distribution at r >  a ,  satisfies 
the condition ep  / kTg  1. It must therefore be of the form 

The relationship between a ,  and Ql can be established from 
the condition ep(a,  )/kT = 1, i.e., from the equation 

Since Q, < Q,, the right side of this equation is smaller than 
4rRO y0e2/&kTa = (UF/kT) ( Ro/a).  We thus find that at 
(Ro/a) < (kT/UF) ( - 1/30) the right side of (26) is less 
than one, so we have a ,  /a - eQ, /&kTa 9 1. Substituting 
a ,  = eQ, /&kT into the right side of (24), we find an equa- 
tion which relates Q, and Q,. Once we know this relation- 
ship, we have completely determined the bubbston potential 
profile at r>a, . 

There is the interesting question of the interaction of 
bubbstons with each other and with the wall of the vessel. 
Let us consider two bubbstons, one at the point r = 0 (this 
will be the "first" bubbston), and one at r = 1. The volume 
density of the ponderomotive forces exerted on the sheath of 
the second bubbston by the first bubbston is 

where r, = (1 + r - 2rl cos8, ) and 8, is the angle be- 
tween r and 1. Imposing the assumption 1 2  2a, so that the 
sheaths of the bubbstons do not overlap substantially, we can 
assume that p ( r )  and p( r ,  ) refer to the peripheral parts of 
the sheaths. We can thus writep(r, ) = - ( ~ / 4 r ) p (  r, )/a2, 
and we can find p ( r )  from expression (25). As a result, we 
find the following expression f for the force (a ,  /a g 1 ) : 

This force is directed toward the center of the first bubbston; 
i.e., the first bubbston attracts the second. 

The problem of the interaction ofa bubbston with a wall 
can be solved by the well-known image method from electro- 
s t a t i c ~ . ~  It is easy to show that the interaction of a positive 
bubbston with a metal wall at a distance h is equivalent to the 
interaction of the same bubbston with a negative bubbston at 
a distance 2h. In other words, the bubbston should be re- 
pelled from such a wall. If the wall is an insulator and has a 
dielectric constant &I(<&, the interaction with the wall is 
equivalent to an interaction with a bubbston of the same sign 
(at twice the distance). In other words, the bubbston is at- 
tracted toward such a wall. 

The conclusions which we have reached regarding the 
directions of the interaction forces hold for distances I and h 
such that there are no perturbations of the bubbston sheaths. 
As these distances decrease, and the sheaths become per- 
turbed, the interaction should always reduce to a repulsion, 
according to the Le Chatelier-Brown principle. 

Let us also take a brief look at the effect of static exter- 
nal electric fields on a bubbston. A bubbston should remain 
stable in the face of such external agents as long as the field of 
the bubbston core, Eo = 4.rryOe/&, is strong in comparison 
with the external field E. For an aqueous solution with 
yo-loL4 cm-2, the core field is Eo = 4.rryoe/~z2- lo6 
V/cm. If EgE, ,  a bubbston may-while remaining stable 
overall-lose its electrical neutrality as the result of the "de- 
tachment" of some outer (peripheral) ions of the sheath. We 
can thus speak in terms of an "ionization" of the bubbston. A 
ponderomotive force ZeE ( Z  is the charge state) should be 
exerted by the external field on an "ionized" bubbston. This 
force should in turn give rise to an electrophoresis. 

6 )  Kineticproperties. During the mechanical motion of 
a bubbston, its ion sheath should in general be perturbed by 
viscous forces. A factor acting to stabilize the structure of 
the sheath is the electrostrictive pressure p,,, (r) ,  which re- 
sults from the presence of an electric field" 
Eo ( r )  = - dp /d r  in the sheath. This pressure is 
pStr = YE (r) ,  Y = ( 1/8.rr) (pd~/dp) .  If the bubbston ve- 
locities are sufficiently low, the perturbation of the sheath is 
negligible. The necessary condition here is that the gradient 
of the viscous stress be small in comparison with the gradient 
of the electrostrictive pressure. As was shown above, the 
sheath thickness is always determined by the Debye radius a 
in sufficient dilute solutions, so the condition under which a 
bubbston will retain its structure as it moves at a velocity u 
can be written .17u/a2 gp,,,/a or 
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where rl is the viscosity of the solution. Assuming 
E, -Eo (R,) = 47ryoe/& for an aqueous solution, we find 
the condition u & lo3 cm/s. We will assume below that this 
condition holds, and we will treat the motion of the bubbston 
as the motion of a liquid droplet of radius a (which has the 
same viscosity as the solution itself). The condition on the 
velocity u which we have found means that the Reynolds 
number Re =pua/.l;l is small (p  is the density of the solu- 
tion). 

Also acting on the bubbston are the buoyant force 
FA = (477/3) R ipg (gis the acceleration due to gravity) and 
the gravitational force F, = 47rR y,gM /NA ( M  is the mo- 
lecular weight of the positive ions, and NA is Avogadro's 
number). The total force is thus 

With R, ~ 2 0  A, yo E lOI4 cm - 2, and p=: 1 g/cm3, we find 
the ratio 3My0/R0pNA =:M/400. In other words, for 
M < 400, the bubbstons should float up to the surface of the 
vessel. The velocity at which they do so, u,, can be deter- 
mined by setting the Stokes friction force F,, = 57rpvauo 
(see Ref. 1 1 ) equal to the force F. This velocity is found to be 

where B = 1/57r~a is the mobility of the bubbstons, and 
Y = r]/p is the kinematic viscosity of the solution. For an 
aqueous solution with R, ~ 2 0  A this velocity turns out to be 
u, - 10- I '  cm/s (here we have set R,/a- 10- 2 ) .  Actually, 
however, bubbstons may float up much more rapidly. The 
reason is that a disperse medium-in our case, the electrolyt- 
ic solution with suspended bubbstons-is unstable against a 
coagulation effect, i.e., coalescence of bubbstons resulting in 
the construction of larger formations: bubbston clusters. 
The possible existence of such clusters was first pointed out 
in a study" of optical cavitation. Since bubbstons attract 
each other, each event in which bubbstons come close to 
each other should be effective; i.e., the coagulation should be 
"fast" coagulation.I2 

Let us estimate the equilibrium density n, of bubbstons 
with radii R, (i.e., the number of bubbstons per unit volume 
of the solution). Denoting by n, the density of dissolved gas 
molecules in the saturation state, and denoting by S the rela- 
tive amount of free gas in the overall gas content of the liq- 
uid, we have Sn, = (p/kT) (4n-/3) Ronb. From Henry's law 
we have n, = K(T)p/kT, where K(T)  is the Henry coeffi- 
cient. For n, we then find 

For air in an aqueous solution under normal conditions we 
would have K = 0.02; with R, E20 A, we would find 
n, = 6 .  10I7.S ( ~ m - ~ ) .  A wide range of values has been re- 
ported for the coefficient S in the literature: from to 

(Ref. 13). We can shrink this range substantially by 
making use of the obvious condition n, & ( 1/2a) 3. For an 
aqueous solution with an electrolyte density no - 1015 cm -3, 
we would thus have n, 43.10" cm-'. In the estimates be- 
low, we assume S- lo-' and n, - 10'' c m 3 .  

Let us calculate the coagulation time 0 for bubbstons 
having an initial density n,, for a process resulting in the 
formation of clusters of N, individual bubbstons. In a unit 
volume of the medium we single out m & n, arbitrary bubb- 
stons, and we examine the kinetics of their growth as clus- 
ters, as the result of the coagulation of the other bubbstons 
on them. The diffusion flux density of bubbstons to the sur- 
face of a growing cluster is 
jd = (Dl /R) [ (n, - PmR 3/a3) 1, where R = R ( t )  is the 
instantaneous radius of the cluster, Dl  = RTB = kT/5rr,ova 
is the Brownian diffusion coefficient of the bubbstons, the 
quantity P(R /a) determines the number of bubbstons in a 
cluster at a given instant, and the coefficient 0 (which is less 
than one) is determined by just how compactly the cluster of 
bubbstons is packed (in the hard-sphere model, for spheres 
of radius a, we would have0 = 0.74 in the case of the closest 
packing). The rate of growth of the cluster volume, 
(d/dt) (4n-R 3/3) is equal to the total flux of bubbstons to 
the surface of the cluster, jd477R ', multiplied by the volume 
per bubbston, 47ra3/30. As a result we find the equation 

where 

The initial condition in Eq. (32) is x (0)  = (pm/n, ) & 1. 
At t > 0, the quantity x tends monotonically toward its maxi- 
mum value x,,, = (Dm/n, ) 1/3Rm,x/a = 1. This value cor- 
responds to a number N, = P(Rm,, /a) = n,/m of bubb- 
stons in a cluster at the point at which complete coagulation 
of all the remaining bubbstons has occurred on the m bubb- 
stons which we have singled out. The time scale for the at- 
tainment of this complete coagulation is the time e given by 
(33). This time can be written in the two equivalent ways 
8 =  0 , , , ( t~ , )N,~/~  = e 1 / 2 ( m ) N ~ 1 / 3 , w h e r e N b  istobeun- 
derstood as the maximum number of bubbstons in a cluster 
(i.e., N, = n,/m) , and the time 

PV 
€It,, (n) = - 

kTn 

is the coagulation time introduced by Smoluchowski, over 
which the initial density of disperse particles, n, decreases by 
half.I2 From these expressions we find 8&0,,, (m);  i.e., the 
further growth of clusters as a result of their coagulation 
with each other can be ignored. 

The velocity u, with which a cluster of N, bubbstons 
floats up can be determined by equating the Archimedes 
force (427-R :/3)pgN, to the friction force Ffrlc = 5~p;ovRuo, 
where R = a ( N,/fl) 'I3. The coefficient 6 2 1 is the correc- 
tion in the Stokes formula for the deviation of the surface of 
the cluster from an ideal sphere. We find 

A comparison of (35) with (30) shows that the velocity with 
which a cluster floats up is greater than the velocity of an 
individual bubbston by a factor of about N 2,/3. 
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The bubbstons which are floating up carry gas dissolved 
in the liquid up to the surface of the liquid. As a result, there 
should be a vertical gradient of the total concentration of 
dissolved gas in the liquid. This gradient should be directed 
upward. The corresponding diffusive flux of gas should be 
directed downward. The steady-state (equilibrium) condi- 
tions are evidently reached when, in the course of the diffu- 
sion of gas to a depth h in the vessel, the only clusters which 
manage to form are those whose floating-up time is large in 
comparison with the diffusion time h '/D (we are of course 
assuming here that the time scale for the spontaneous forma- 
tion of the bubbstons themselves is short in comparison with 
all the other time scales of this problem). From the relation 
h */D - (pl//kTnb ) N y3 we thus find an expression (valid in 
order of magnitude) for the steady-state (equilibrium) 
number of bubbstons in a cluster, N z : 

The time scale for the floating up of such bubbstons, h /uo, 
is, according to (35), 

and the ratio of this time to the diffusion time h ' / D  is 

With h- 1 cm, Ro ~ 2 0  A, and Ro/a- 10- 2,  we find this 
ratio to be - 30 (i.e., the condition for a steady state is satis- 
fied), and the time scale for the floating up of clusters is 
- 3. lo6 s- 1 month. The equilibrium number of bubbstons 
in a cluster, according to (36), N,, - lo7, and the equilibrium 
cluster radius is Roc, = a ( N  t/P) - 5.10 - cm. The den- 
sity of such clusters is m-nb/N: - lo4 cm-'. 

Clusters can of course also form at the walls of the ves- 
sel, which attract bubbstons. The number of bubbstons in 
such "wall" clusters may be substantially greater than Nz.  

5. CONCLUSION 

We believe that the results found here can serve as a 
starting point for reaching a more profound understanding 
of many physical phenomena which occur in liquids. We are 
referring primarily to such phenomena as cavitation and la- 
ser breakdown of liquids. The theory of acoustic cavitation 
has been developed in some detail (see, for example, the re- 
v i e w ~ ' ~ . ' ~  ). That theory leads to results which agree qualita- 
tively with experimental data (in terms of the thresholds for 
the onset of cavitation in water) only if one assumes that 
when the sound is first applied to the liquid the liquid al- 
ready contains gas bubbles, nucleating regions with radii 
R 2 3.10 - cm. However, the time scale for such bubbles to 
float up to the surface is h /uo - 10 h. It is thus not possible to 
explain the presence of such bubbles in water which has been 
purified and left to stand for several days (these are the con- 
ditions to which the experimental data refer). It was suggest- 
ed in Ref. 11 that the nucleating regions for cavitation are 
clusters which form from stable microscopic gas bubbles and 

that the cavitation cavity itself forms as the result of a rapid 
coalescence of these microscopic bubbles, stimulated by an 
external agent (sound or light). 

The results derived above put this idea of a "cluster 
mechanism" for cavitation in a more concrete form. Accord- 
ing to these results, the cavitation nucleating regions may be 
bubbston clusters which exist stably in liquid-gas solutions 
containing traces of ionogenic surface-active agents (a typi- 
cal example of such a medium is distilled water). The appli- 
cation of sound to a cluster stimulates (in the negative-pres- 
sure phase) rapid coalescence of the cluster, resulting in the 
formation of a gas bubble with a radius R,  = R,(N 0, ) ' I 3 .  

For an aqueous solution under normal conditions, this radi- 
us would be =; 5. cm. The acoustic field itself thus 
creates the initial gas bubbles required for the development 
of cavitation cavities. In optical cavitation, for laser pulses in 
the nanosecond range, the leading mechanism appears to be 
a laser breakdown which occurs initially in individual bubb- 
stons of a cluster. This process again leads to a rapid coales- 
cence of the cluster. The bubbston-cluster mechanism also 
gives us a natural interpretation of the results of experiments 
in which the cavitation strength of distilled water has been 
observed to increase when the water was held in a static 
electric field for a long time.I5 The increase in strength is 
attributed to the removal of clusters from the region to 
which the field is applied, because of the electrophoresis of 
clusters caused by the ionization of bubbstons by the exter- 
nal electric field. Arguments regarding the bubbston-cluster 
structure of a liquid also provide a natural explanation for 
the picture of the appearance of gas bubbles floating upward 
in the initial stage of the heating of a liquid, in which the 
temperature of the liquid is far from the boiling point, and 
the probability for the formation of vapor bubbles is low. The 
widely accepted explanation for this effect, which is based 
entirely on the one fact that the solubility of gases in a liquid 
decreases as the temperature of the liquid rises (the Henry 
coefficient K decreases with T), is unsatisfactory, in our 
opinion. Our primary objection is that that explanation still 
requires the existence of stable microscopic bubbles as nu- 
cleating regions. These nucleating regions must be present if 
diffusion processes are to arise and to lead to a decrease in 
the concentration of dissolved gas. There are reasons to be- 
lieve that a temperature increase may also stimulate a coales- 
cence of clusters, resulting in the formation of the necessary 
nucleating regions. [The reason for this coalescence might 
be (first) an increase in the pressure inside individual bubb- 
stons of a cluster or (second) a mutual perturbation of the 
ion sheaths of bubbstons, because of the increase in the De- 
bye radius with increasing temperature; see (22) . I  This 
"thermal coalescence" should arise first at the walls of the 
vessel in which the liquid is heated, because these walls are at 
a higher temperature, and also because in the wall clusters 
the number Nb may be much greater than N z .  Correspond- 
ingly, of course, we observe the formation of gas bubbles in 
the initial stage of the heating of a liquid. 

Finally, we repeat that the theory for the stabilization of 
gas bubbles derived above is valid only for dilute electrolytic 
solutions, in which the ion density no satisfies condition (4 )  
or ( 13) (for aqueous solutions under normal conditions we 
would have no 5 1015 cm - ') . For many problems, this limi- 
tation is too restrictive. It would thus be very interesting to 
generalize this theory to the case of less dilute solutions. 
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It is of course being assumed here that the liquid is in a steady state, and 
no source is introducing free gas into the liquid (there is no gas-bubble 
generator). 

2' If the initial radius of the bubble is sufficiently large, the bubble may 
float up to the surface of the liquid before it has had time to dissolve. 
This is what is usually observed when free gas bubbles are deliberately 
introduced into a liquid. 
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