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An asymptotically exact expression is derived for the densi typ(~)  of localized states of a particle 
in ad-dimensional random field. It is shown that in the continuum approximation the pre- 
exponential factor in the expression f o r p ( ~ )  is the inverse of the product of the root-mean-square 
variations of the potential energy and the volume corresponding to concentration fluctuations 
close to the optimum, is fairly large, and is especially important in the Poisson section of the 
localized-state spectrum, where the exponent i n p ( ~ )  increases fairly slowly with the binding 
energy E. Allowing for the discreteness of the centers in deriving an asymptotically exact 
expression forp ( E )  causes (a )  an increase in the binding energy by a second-order correction that 
appears when one allows for the potential of individual scatterers and (b)  an increase i n p ( ~ ) .  If 
the particle space is three-dimensional and the scatterers are weak, allowing for the discreteness of 
the latter results in a significant renormalization of the boundary of the localized-state spectrum. 
p vs. E dependence in the random three-dimensional field of centers with an attractive potential 
u ( r )  cc r ' exp( - Qr) is also calculated. Comparison of the results with those of the extensively 
cited research of Halperin and Lax based on the use of the Gaussian and continuum 
approximations defines the applicability range for these approximations. It is revealed that for 
such a potential the Gaussian approximation is applicable only for extremely small E .  In heavily 
doped semiconductors the approximation almost always strongly underestimatesp(e) in the 
"tails" of the density ofstates, especially for large E. On the other hand, the effect of the 
discreteness of the centers proves important in the region of small E. 

1. INTRODUCTION 

This paper is devoted to finding the density p ( ~ )  of 
strongly localized states in the field of randomly distributed 
scattering centers. We are speaking of states with a binding 
energy E so high that the overwhelming contribution top(&) 
is provided by the ground states of particles localized on 
large, and therefore infrequent, center fluctuations. The 
characteristic scale over which the wave function of these 
states decreases is much smaller than the distance between 
the fluctuations, which means that the states can be consid- 
ered independent. In studies of the "tails" of the density of 
states this problem has been solved in a number of papers, 
among which the basic ones are Refs. 1-4 (see also Refs. 5 
and 6). At their base lies the so-called optimal-fluctuation 
method. The most general account of this method is given in 
Ref. 4, where it is used in the continuum approximation to 
derive expressions that define for an arbitrary random field 
the expontentially small density of statesp ( E )  with logarith- 
mic accuracy (without the pre-exponential factor). The lat- 
ter was found in the three-dimensional case numerically in 
Ref. 1 only for Gaussian fluctuations of centers with the 
potential u ( r )  cc ( l /r)  e -  Qr. 

To find p ( ~ )  with absolute accuracy one must go be- 
yond the framework of the optimal-fluctuation equation, 
which describes states created by the continuum fluctu- 
ations of the scatterer concentration, and allow for the dis- 
creteness of these scatterers. Approaches to this problem 
have been developed in Refs. 2 and 3 only for Gaussian fluc- 
tuations. Development of the approach suggested in Ref. 2, 
applicable only for a random field of the "white noise" type, 
which is generated by the Gaussian fluctuations of point 
scatterers, u ( r )  cc S(r ) ,  made it possible to obtain an expres- 
sion f o r p ( ~ )  in the two- and three-dimensional cases that is 
exact in the limit of high binding The approach 

suggested in Ref. 3 can be applied to centers with a potential 
of a fairly arbitrary shape, but it provides only an approxi- 
mate description of p ( a )  with unknown accuracy. In this 
paper we derive an asymptotically exact (as in Refs. 2 and 8)  
expression for p ( ~ )  for uncorrelated fluctuations without 
resorting to such abstractions as a point potential of a center 
or the Gaussian nature of fluctuations, abstractions that 
strongly distort the physics of the process in real situations 
(see Sec. 4 of Ref. 10) and in some cases are totally inappro- 
~ r i a t e . ~  In Sec. 2 the density of states p ( ~ )  is calculated in 
the continuum approximation and the pre-exponential fac- 
tor in p ( ~ )  is shown to be fairly large, increasing with the 
binding energy and the number of dimensions of the scat- 
terer space. In Sec. 3 we derive the final asymptotically exact 
expression for p ( ~ ) ,  which surpasses the result obtained in 
the continuum approximation more, the smaller the overlap 
of the potentials of the centers and the smaller the character- 
istic radii of the potentials as compared to the radius of the 
wave function. Finally, in Sec. 4 we show how greatly the 
results of the numerical calculation with 
~ ( r )  cc r ' exp( - Qr) of Ref. 1 are modified owing to rejec- 
tion of the Gaussian approximation and allowance for the 
discreteness of the centers. 

2. THE DENSITY OF STATES IN THE CONTINUUM 
APPROXIMATION 

Consider the localization of a particle in a field of ran- 
domly distributed scatterers such that the particle's poten- 
tial energy at point r of the space R caused by the presence of 
a center at point 1 of space L is equal to u ( r  - 1). The particle 
space R and the scatterer space L do not necessarily coincide 
(say, in heterostructures of different types) and may even be 
of different dimensions." Calculations of p ( E )  are simpli- 
fied by employing the method of successive approximations. 
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We use this method to find the probability density of states 
P(E) equal to4 

Here lj stands for the coordinates of the centers, the angle 
brackets designate averaging over all the l,'s, and E, ( l j)  is 
the energy of the ground state described by the Schrodinger 
equation 

with .F = NSd lu(r - 11, and N the average center concen- 
tration (i.e., the energy is reckoned from the average-poten- 
tial level). We select the initial continuum fluctuation ti, (1) 
generating the potential V, ( r )  = Sd 16, (1)u ( r  - 1) in such 
a manner that the ground-state energy of a particle of mass m 
is E: 

Equations (2) and (3) imply that in first-order perturbation 
theory 

Substituting this into ( 1 ), we arrive at the following expres- 
sion for the uncorrelated distributions of centers after aver- 
aging over all the 1,'s: 

m 

dk 
P, (6)- JZ;,-p{ii Jdlgie(l)lEie(1)+Nl +N 

- m 

withg, (1) = Sdr$; ( r )u ( r  - 1). The points of maxima and 
minima of the integrand in (4) ,  A,, are solutions of the fol- 
lowing equation: 

When u ( r )  does not change sign and, hence, g, (1) does not 
either, among the A, there is always a unique imaginary 
point A, = - ia corresponding to a maximum, in view of 
the condition that f,, (1) + N >  0. For E negative, when 
Sd lg, (1)6, (1) < 0  is negative, a is always positive. For 
many-particle fluctuations (for greater details see below), 
the neighborhood of point A, provides the main contribution 
to the integral in (4) .  Evaluating this integral by the method 
of steepest descents, we find that 

When states with high binding energies are involved, 
P, ( E )  is determined primarily by the value of the expression 
within the braces on the right-hand side of (5) .  Denoting 
this expression by S ( E , ~ ) ,  introducing the notation 
f =r,,r(e - a g , e ( ' )  - 
P -  1 ) and 66, elfE - fiE , and writing the 

equation for a in the form 

we can use (5)  to find the following two expressions for 
S(&,6): 

The first expression reveals that S ( E , ~ )  is the increase in 
entropy caused by the continuum fluctuation lfE (I), while 
the second expression combined with the fact that 6, + N is 
positive and In( 1 + x )  - x is negative for - 1 <x < im- 
plies that S ( E , ~ )  is smaller than the increase in entropy 
caused by the fluctuation f,, (I),  that is, the probability of a 
fluctuation 6, (1) forming is always higher than that of any 
initial fluctuation f,, (1) if 66, (1)+0. 

For the Schrodinger equation (3)  with a potential V,& 
generated by fluctuation Cf, instead of l,, , the ground-state 
binding energy exceeds I&/, that is, the energy E corresponds 
to VfE for $,, ( r ) ,  while the exact wave functions yields the 
greatest binding energy. The binding energy I E I is generated 
by a fluctuation smaller than gfi (I),  say N(e - a'g""' - I ) ,  
with a > a ,  > 0 (the value of a ,  is found from the solution of 
the Schrodinger equation), a binding energy corresponding 
to a probability density greater than P, (E). Using this fluc- 
tuation instead off,, ( l ) ,  we can again derive (5)  and obtain 
a higher value of the probability density, say P, (E) and an 
expression for the fluctuation that realizes P, (E). Each time 
this procedure is repeated, the value of P,, (E)  increases. Its 
limit in the class of continuum fluctuations, F(E),  is attained 
at an initial fluctuation 2, (1) such that 65, (1) = 0. This im- 
plies that 

c .  (1) =N{exp [Fag, (1) I- 11, ( 6 )  

where Fi is a parameter determined as a result of solving the 
system ofequations (6)-(8). The value o f F ( ~ )  is then given 
by the following equation: 

The system of equations (6)-(8) can be written as fol- 
lows: 
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This is the equation of an optimal fluctuation (an optimal 
wave function) derived in Ref. 4. Equations (9) and ( 10) 
are valid if the fluctuation is of a many-particle origin, or 

and if it is relatively infrequent, or 

Here 5, rn Nl t ,  Z,  = Jd 1{, ( l ) ,  I< is the characteristic size of 
the optimal fluctuation, and d the number of dimensions of 
space L. 

Deriving Eqs. (9)  and ( 10) by the method of successive 
approximations reveals that the continuum approach is 
equivalent to allowing for the contribution of discrete scat- 
terers to the binding energy in the first-order perturbation 
theory setting. This makes it possible to simplify the calcula- 
tion of p (E)  considerably: 

with E, (1, ) the energy eigenvalues of the single-particle 
Schrodinger equation corresponding to the set of quantum 
numbers s, and V, the volume of the L-space. As before, we 
allow only for the ground-state contribution. As a quantum 
number we take L,, the centroid of the fluctuation localizing 
the particle (the definition of L, is given below). Hence 
~ ~ ( 1 , )  =E,,(L,,~,) in (13).Below,incalculatingp(~) inthe 
continuum approximation we use the wave functions 
& (r  - L, ) corresponding to the optimal fluctuation 
iE (1 - L, ) and allow for the contribution of centers to E, (1, ) 
in first-order perturbation theory. Since for a translation- 
invariant space L the integral Jd lz, (1 - L, )g, (1 - L, ) is 
independent of L,, we have 

and Eq. ( 13 ) assumes the form 

The values of L, are found by minimizing E, (L, ,lj ) for given 
I,. Below, as in Ref. 1, they are found from the condition 

Of course, with such a definition of L, the contribution to 
P(E) from ( 14) is provided not only by the optimal-fluctu- 
ation centering points, which correspond to the absolute 
maxima in the binding energy generated by the centers in the 
given fluctuation, but also by the "superfluous" centering 
points corresponding to "saddles" and local maxima in the 
binding energy. However, the contribution of the second 
type of points to P(E) is exponentially small, since at the 
superfluous points only excessively localized fluctuations 
generate a state with energy E. 

Using the definition of L, , we can simplify Eq. ( 14) : 

xfi [E dl, "gC(lJ) ] d c t z  vl ,vl i&(l , )) .  (15) 
1 

Then, expanding the delta function in Fourier integrals in /1 
and k and averaging over all the I,'s, we find 

where we have retained only the leading terms that emerge 
as a result of averaging the determinant. The other terms are 
small in view of the multiparticle nature of 5, (1) [see condi- 
tion ( 1 1 ) ] and, hence, the weak correlation of the co-factors 
in each term of the expansion of the determinant. In further 
calculations we allow for the fact that under condition ( 1 1 ) 
the main contribution to the integral is provided by small 
values of k and therefore retain in the exponent only terms of 
the lowest (second) order in k. The integral with respect to/Z 
in ( 16) can easily be evaluated, since the weak (algebraic) 
dependence on A of the pre-exponential factor in the inte- 
grand and condition ( 11 ) suggest that the principal saddle 
point differs little from - ia [see the discussion related to 
the derivation of Eq. (5)  1. Going over to the major axes in 
the space L, in terms of which the quadratic form J d l  (z, + N) ca2s,/al,al, 1 - ~ d  i(g, + N) (ag,/ari) 
(ag,/al, ) is diagonal, and integrating with respect to k, we 
obtain 

where F(E) is defined in (9 ) ,  and 

For a spherically symmetric potential and mass this formula 
acquires the following form after integration with respect to 
the angle variables: 

Let us examine the behavior of the pre-exponential fac- 
tor in P(E) (the behavior of the exponent, first derived in 
Ref. 4, has been studied extensively in Ref. 6).  This factor is 
equal to the product ofp, (E)  and the pre-exponential factor 
in ( 9 ) ,  with the latter having the dimensions of inverse ener- 
gy, c c ~ ~  '. A physical estimate of E~ yields 
E~ - Jg, Id-, where g, is the characteristic value of 
g, (1) in the optimal-fluctuation volume, which means that 
E~ is the mean-square fluctuation of the potential energy in 
clusters of centers that are close to the optimal fluctuation 
and consist of approximately Z, + Z, centers. Here E~ is 
much lower than IZ,g, I, the potential energy in the optimal 

1038 Sov. Phys. JETP 73 (6). December 1991 N. M. Storonskii and B. I. Fuks 1038 



fluctuation, since for infrequent many-particle fluctuations 
Z: is always much higher than E, + Z, . A similar estimate 
ofp, (E)  shows t h a t p i  ' ( E )  - [l5(7i, + Z, ) / Z f  )"2]d, that 
is, the pre-exponential factor i n p ( ~ )  contains not the char- 
acteristic volume of an optimal fluctuation but a far smaller 
mean-square fluctuation of this volume. Thus, the pre-expo- 
nential factor in P(E) can be estimated as 

. addition to the ( l i I ~ , g , I )  - ' [Z f / (E ,  + z , ) ] ( ~ + ' ) ' *  In 
characteristic energy and volume, it contains a large factor 
[Zf /(E, + Z, ) ] ' d +  Ill2, which increases with the binding 
energy all the faster the higher the number of dimensions of 
space L. 

3. ALLOWING FOR THE DISCRETENESS OF THE 
SCATTERING CENTERS 

To find an asymptotically exact expression forp(s)  we 
must go beyond the framework of the continuum approach, 
namely, we must allow for the contribution of second-order 
correction terms to the energy of the ground state in the 
Schrodinger equation (2)  (by doing so, we take into account 
the effect of the potential of a separate center on the wave 
function of the state, i.e., the discreteness of the centers). 
Using the optimal fluctuation is, (I), which in the continu- 
um approximation (see Sec. 2)  defines a density of states 
with energy E' such that the average value of the second- 
order correction to the energy of these states, - r ( ~ ' ) ,  is 
equal to E - E' [the value of T(E') is found below], the ener- 
gies EL and the wave functions $E,m ( r )  of the time-indepen- 
dent states of the Schrodinger equation, whose potential 
generates gE, (1) (for this reason, E; = E' and ), 

from Eq. (2)  we obtain 

The contribution of the second-order correction to (19), 
which depends on lj is always small when condition ( 12) is 
met (see below). However, the relatively small variations of 
the large exponent in p(e) ,  which emerge after ( 19) is sub- 
stituted into ( 13), increase p ( ~ )  significantly. 

Combining this with ( 19), we can write Eq. ( 15) as 
follows: 

where g,,, = $dr$,,eSm u(r  - 1). TO calculate p ( ~ ) ,  we 
generalize the method developed in Ref. 2 and expand the 
arguments of the delta functions in Eq. (20) in a complete 
system of functions orthogonal in L with a weight function zE, (1) + N, to which end we consider the eigenfunctions 
X, ( r )  that vanish at infinity and the eigenvalues y, of the 

following integro-differential equation: 

with K(r,r, ) = .fd ~[z, ,  (I) + N ] u(r  - I)u(r,  - 1). It can 
be demonstrated that the eigenfunction of the ground state, 
xo ( r ) ,  is proportional to 4, ( r )  and that yo = 0 and is non- 
degenerate. The remaining y, are real [hence, all the X, ( r )  
can be selected real] and positive. Equation (2 1 ) has a d-fold 
degenerate eigenvalue y, = 1. The wave function X, (r)  cor- 
responding to this eigenvalue is proportional to (r)/dr,, 
where the r, are the components of r parallel to the transla- 
tion-invariant space L. 

Let us introduce the functions h,(I) 
= Jdr*,, ( r ) ~ ,  ( r )u ( r  - 1). Equation (21) implies that for 
y, #% the functions h, and h, are mutually orthogonal 
with a weight function i,, + N. The functions h, (1) belong- 
ing to a degenerate eigenvalue can be orthogonalized by ap- 
propriate choice; for instance, the functions 
h, (1) = Jdr*,, ( r ) ~ ,  ( r )u ( r  - 1) -a&, (l)/dl, can be mutu- 
ally orthogonalized if the 1, are directed along the major axes 
introduced in deriving Eq. ( 17). We normalize the X, (r) in 
such a manner that the system of orthogonal functions h, (1) 
becomes orthonormal: 

J dI[E8, (I) + N l  hn (l)hp (1) = b n p -  (22) 

Equation (21 ) can be reduced to an integral equation 
by employing the Green's function a ( r , r ,  ) of the Schro- 
dinger equation 

which has the form 

Combining Eqs. (21) and (23) yields 

~ u l t i ~ l ~ i n ~  both sides of this equation by 
$F, ( r )u( r  - 1) and integrating with respect to r, we obtain 
an integral equation in the space L: 

and b, = ~dr$:, ( r ) ~ ,  ( r ) ~ ,  ( r ) .  The symmetric kernel 
r ( l , l ,  ) is positive definite in the class of functions tending to 
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zero at infinity [this can be proved by employing Eq. (25) 
and the fact that the system of functions $E,m,r, is complete]. 
For this reason, the functions h ,  (1) with n> 1, which are 
eigenfunctions of the projection of r ( l , l l  ) on the subspace 
L ' orthogonal to ha (1) with a weight function gE, + N, con- 
stitute a complete system in L '. Hence, the system of func- 
tions h ,  (1) with n>O is complete in L, and from Eqs. (22) 
and (24) it follows that 

d 

1 
r ( l , l t )  = - { ~ h ~ ( l ) h ~ ( l ~ ) + ~  2a hi(l)ht(ll) 

r=l 

where c is a constant and we have allowed for the fact that 
b, = 0, that is, ~ d r $ ~ ,  ) = 0, and b, = 1. 

By employing (25) and (26) the terms in (20) can be 
expressed in terms of the functions h ,  (1). Allowing for the 
fact that i d  l(ZE, + N) hi = 0 and introducing the notation 
G = [Jd l(gE, + N)g:, ] 'I2 and K, = [ i d  l(gE, + N) 
(dgE,/ali)'] "', we obtain 

It can be demonstrated that under condition ( 12) the fluctu- 
ations that provide the main contribution top(&)  differ little 
from gE, (1) and that the saddle point of the integral with 
respect to A, is close to - iEG. Replacing the variable A, in 
(27) with A, - iEG, allowing for the above-stated and the 
fact that i d  l(gc, + N) (a 2gc,/dl,dl, ) is a diagonal matrix, 
and averaging over I, and integrating with respect to A,, s,, 
and so, we obtain 

1 ds, s 1 
xexp(---) Jmexp[-*(i - - ) ] = P ( E ' ) M ~ ( & ' ) ~  

Y. 

wherep(&') is given by (17), and 

[since ZE, (1) realizes the maximum in the probability of 
states with energy E', all deviations from this maximum pro- 
portional to h ,  (1) with n)d + 1 correspond to values of y, 
greater than unity]. From the definition of E' given earlier it 

follows that E is related to E' through the equation 

h 

where r ( l , l l  ) is the projection of kernel T(l,ll ) onto the 
space of functions h ,  (1) orthogonal, with the weight func- 
tion gE, (1) + N, to ha (1) and h ,  (1) and specified by the fol- 
lowing equation [see Eq. (26) 1 : 

There is no way in which one can find all the y,  in 
general form, but it is possible to calculate MI  (E')  with a 
specified accuracy. To this end we introduce the coefficients 

h h h 

with rp ( l , l l  1 = Sd12 [gE,(12) + N ] r ( 1 , 1 2 ) r p ~ 1  (12,1, 1. 
Then 

Since Tp decreases asp grows (because y ,  > 1 for n>d + 1 ), 
in concrete calculations, after evaluating several first Tp, we 
can provide a two-sided (upper and lower) estimate of 
MI  ( E ' ) .  Estimating by Eq. (3  1) the s first Tp from TI to T,, 
whose value is smaller than unity, for Tp with p > s we can 
provide an upper estimate: Tp < T:" (this inequality follows 
from the definition of Tp ), and then, since T, < 1, from (32) 
we obtain 

The accuracy of the two-sided estimate of MI  (E') increases 
with s, since Tb/:;+ I '  < Ti/'. 

It can be shown that allowing for second- and higher- 
order corrections to the energy of a state has little effect on 
P(E) in the case of the infrequent multicenter fluctuations 
[see Eqs. ( 11) and ( 12) 1, that is, Eq. (28) [together with 
(29) and (30) or (33)]  is asymptotically exact. 

Equations (28) and (30) suggest that the increase in 
P ( E )  brought on by allowing for the discreteness of the 
centers reflects the decrease in the absolute value of the argu- 
ment inp(a l )  and the appearance of a factor M I  (E') > 1. If 
r2(&') 1 a In p ( ~ ' ) / a ~ ' ~ j  < 1 (which for infrequent fluctu- 
ations is a more stringent condition than T (E') < I E ' ~  ), Eq. 
(28) simplifies since E ZE': 
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To analyze M(E)  we first use a simple method for deriv- 
ing an expression for I?(&'), a method that explzins the ap- 
pearance in (30) of the projection of the kernel, r ( l , l ,  ), and 
enables T(E') to be represented in a form suitable for phys- 
ical estimates. The average value of the second-order correc- 
tion to the ground-state energy for fluctuations close to the 
optimal is 

Here 6V(r) = Sd lu(r  - l)S{(l), c ( r , r ,  ) has been defined 
earlier, and the important quantities Sc(1) 
= 2,6(1 - 1, ) - $,, (1) - N are the small variations of con- 

centration i,, (1) + N correlated by the conditions that the 
energy and quantum number L, be constant, that is, 
Id@,. (1)6{(1) = 0 and Sdl[dg,, (l)/dli]6{(1) = 0. 
Hence, 

with &'(I) the random variations of $,, (1) + N, or 

~ < ' ( 1 ) ~ ~ ' ( 1 ,  ) = [$,, (I) + N ]S(1 - l1 ). This yields an 
expression for r ( ~ ' )  equivalent to (30): 

with 

Now let us estimate I?(&') for the case where the char- 
acteristic scales of the wave function and the center potential 
are close (and E'ZE). 

In the Gaussian situation, that is, 
N%C, (1) z - ZZg, ( l ) ~ ,  both *, ( r )  andE, (1) havethesame 
characteristic scale, I, zJfi2/( - 2 m ~ )  , and 
z2 (I, ,I, ) z u (I, ). An estimate of I j t ,  ( r )  from the normaliza- 
tion condition yields $: =I; d. Combining this with (23), 
we find that SSdrdr, ?;(r,r, )*,, (r)*,, ( r l  ) m 2ml f/fi2. The 
number of centers in an optimal fluctuation can be estimated 
by the condition E Z  Z, u (I, ) . These estimated combined 
with Eq. (35) yield I?(&) z /EIE, /Z~,  that is, r ( ~ )  is small 
as long as E, <Z f . Allowing for T ( E )  results in the a state 
with energy E generating a fluctuation involving Z, - AZ 
centers, with AZ = pFi,/Z,, and p a dimensionless param- 
eter depending on the shape of the potential of a center. 
From this and from the fact that In P, ( Z )  -- - Z2/27i we 
find that 

that is, allowing for the discreteness of the centers increases 
p ( ~ )  @-fold. 

When the asymptotic behavior is Poisson-like 
( N <  i, z ~e - "'"' ) , the characteristic radius I5 of cE (1) is 
the smallest (from the expansion of g, (1) as I- 0 it follows 
that l5 z I, [ - 52, (0)  ] - -- 1, 1n - 'I2 (z,/E, ) and Eq. 
( 3 5 ) simplifies: 

In view of the strong correlation of the fluctuations, the ef- 
fective potential ii(r,O) at r z l ,  is small [see Eq. (36) 1. An 
estimate yields ( I ,  0 z ( / I  )2u(l, ) and hence 
r ( ~ )  z ( & I /  [Z, 1n2(~,/7i, ) 1. From this, proceeding as in 
the Gaussian case, we find that AZ = 0 In - (Z, /i?, ), and 
since In P, ( Z )  z - Z ln(Z/ii)  for Z$Z, we have In 
M(E) zAZ ln(Z,/E, ) = fi In - '(Z,/ii, ), that is, in the 
limit of large values of E the effect of the discreteness of 
centers vanishes. 

For states generated by infrequent multicenter fluctu- 
ations [provided conditions ( 11) and ( 12) are met] Eq. 
(34) always holds true in the one-dimensional case, while 
for particle spaces R of higher dimensions it holds true for 
the random field of strong scatterers. But if the scatterers are 
weak, or 1 > m ( u, la2/fi2, where u, is the characteristic po- 
tential of a center and a is the radius of the potential, for such 
particle spaces Eq. (34) is valid only for (&(>fi2/ma2 (for 
1, <a) ,  although in this case the localization of a particle at 
infrequent fluctuations may also occur when 1.5 <fi2/ma2. 
The difference in the results obtained through the discrete 
and continuum approaches [between p (E)  and 6 ( E )  ] grows 
as ( E I  decreases because of the increase in the ratio 
I'(E')/(E'~. For instance, in the three-dimensional case, 
T(E') tends to the limit r ( 0 )  as E'-0. This limit can easily 
be found from Eq. (35), allowing for the fact that I,, co as 
&I-0 like ( & ' I  and for / r  - r ,  ( -0 8 ( r , r ,  ) tends [see 
Eq. (23) ] to the infinitely increasing Green's function of the 
Laplace equation, m (2di21r - r ,  I ) - '. For centers with a 
rapidly decreasing potential, Sdru(r) = w, and bound 
states, ~ d r * f ,  ( r )  = 1, as E' - 0 (ignoring corrections that are 

small as long as I E ' I  < /ZI = N /w/ and 4-4 I ) ,  we 
obtain from Eq. (35) the following: 

r (0) 

where up = Sdru (r)exp (ipr ). Thus, in the three-dimension- 
al case the edge of the spectrum of localized states with 
1% m 1 u, I a2/fi2 (i.e., in conditions corresponding to the ab- 
sence of bound states on an isolated center) lies below the 
average level of the potential by r (0)  , a quantity determined 
by the potential of a center and infinite in the "white noise" 
approximation2~3.8~9 (at a = 0). It can be demonstrated that 
if conditions ( 1  1)  and (12) are met, 
I r(&') - r ( 0 )  l / ( ~ ' l  < 1. Measuring the energy from the 
edge of the spectrum of localized states, 2 = E + T(O), and 
allowing for the closeness of E and E', from Eq. (30) we 
obtain E'z.? + r ( 2 )  - r ( 0 ) ,  which together with (28) 
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yields 

For 1 >) m 1 u, la2/fi2 this formula, in contrast to (34), holds 
true in the entire energy range corresponding to conditions 
( 1 1 ) and ( 12). (A  detailed analysis of the three-dimensional 
situation is done in Sec. 4.) In the two-dimensional case the 
energy range agrees with ( 11) and ( 12) provided that not 
only m(ol/fi24 1 but also Na2(mlwl )/fi2)2< 1. Here, too, 
expression (38 ) is asymptotically exact for all energies 
agreeing with conditions ( 11 ) and ( 12) (in the limit of point 
centers this leads to the results of Refs. 7 and 8)  provided 
that T(E,) issubstituted for r ( 0 )  in (38) and in renormaliz- 
ing the energy, where E, is the energy that in the continuum 
approximation corresponds to the beginning of the spectrum 
of states generated by infrequent multicenter fluctuations. 
[There are two reasons why T(0 )  cannot be used here: for- 
mally because this quantity is divergent, T(&) 
a ln(fi2/ma21~I ), and physically because in the two-dimen- 
sional case, in contrast to the three-dimensional, and with 
mlol/fi24 1, an isolated center still binds a particle, al- 
though exponentially weakly.] The reason for the higher 
accuracy of (38) in comparison to (34) is that 
ldr(&,)/d&,I<l even though l ~ ~ ( & , ) / I & , / .  

4. P(E) IN THE RANDOM FIELD OF CENTERS WITH 
u(r) = (e2/xf)e- Or 

A similar problem has been solved in Ref. 1 in the Gaus- 
sian and continuum approximations. Following Ref. 1, we 
introduce the dimensionless energy (measured in units of 
EQ = fi2Q 2/2m ) and the dimensionless length (measured in 
units of Q - I ) ,  Then Eq. ( 10) for the dimensionless optimal 
wave function $, normalized by the condition 
$;drr '$* ( r )  = 1, becomes 

P&?(Z) { N  J s r  z [ erp ( - N d  ) - l ] - ~ ) l p ( r ) = ~ ,  

where 

Equation (32) contains two dimensionless parameters, E 
and N, = 6N/e4a; [here a', = fi2x2/me2 and 
N = ( 4 ~ / 3 )  Nai  1,  on which $(r) andp depend. The param- 
eter ,u is chosen in such a manner that in the Gaussian 
asymptotic limit (as N, - oo ) both $(r)  andp  depend only 
on E. Following Ref. 1, we introduce the parameter 
6 = N, /Qa, and represent formulas (34), ( 17), ( 18a), and 
(19) as 

For ~ ( r )  = ~ ( r )  the coefficients T, (E) ,  which determine 
M ( E )  [see Eqs. (33) and (34) 1, can be written as 

where 

The functions f, ( r )  for n >  1 [f, ( r )  =$(r) ] are solutions of 
the equation 

= 

that satisfy the boundary condition f, (0) = 0. The coeffi- 
cients u, (r,l) of the expansion of the orthogonalized poten- 
tial ii(r,l) in Legendre polynomials [see Eq. ( 3 6 ) ]  for 
u ( r  - 1) = exp( - / r  - l / ) / / r  - 11 aret2 

a s ( r  1) 
n r , ) = - n n +  r n ( )  for n32. 

4.1. The density of states in the continuum approximation 

Solving Eq. (39) numerically by the method of succes- 
sive approximations and substituting the obtained $(r) and 
p into (41) and (42), we find the universal functions 
b(E,N, ) and a(E,N, ) in terms of which p ( E )  can be ex- 
pressed via Eq. (40). The results of these calculations at 
N, = lo2, 10, 1, lop ' ,  l o p 2  are presented in Figs. 1 and 2 
(curves 2-6, respectively). For the sake of comparison we 
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FIG. 1. The energy dependence of b(E,N, ) calculated via Eq. (41 ) for 
N, + m (curve I),  N, = 10' (curve 2 ) ,  10 (curve 3),  1 (curve 4), 1 0 '  
(curve Z), and lo-' (curve 6 ) .  

also give the functions b (E)  and a (E) (curves I) obtained in 
Ref. 1 in the Gaussian approximation [see Eqs. (41) and 
(42) as N, - CO.  Figures 1 and 2 show that the Gaussian 
approximation provides fairly good accuracy in calculating 
p (E)  only when E < 0. IN,.  Inaccuracies increase with E, 
and for E > 0. lN, the Gaussian statistics strongly underesti- 
mates p(E) .  The thing is that for infrequent states 
b(E,N, )/2{ is much larger than unity and, therefore, even a 
slight variation in b(E,N, ) has a strong effect onp(E),  with 
Fig. 1 clearly demonstrating that b(E) exceeds b(E,N, ) 
considerably when E >  N, . Substantial deviations from the 
Gaussian pattern are clearly seen in Fig. 3, where the func- 
tions nNl (El  = d lnb(E,N, )/d In E are presented for dif- 
ferent values of N, , including the case where N, -. w , which 
corresponds to the Gaussian curve n(E)  
= d In b(E)/d In E. (The numbering of the curves in Fig. 
3 is the same as in Figs. 1 and 2.) We see that even for very 
large values of N, the values of n,, (E) for all E 's are consid- 
erably smaller than 2, which value corresponds to the classi- 
cal localization of a particle in the field of Gaussian fluctu- 
ations. Moreover, curves 2-4 suggest that in a heavily doped 

FIG. 2. The energy dependence of a(E,N, ) calculated via Eq. (42). The 
values of N, and the numbering of the curves are the same as in Fig. 1. 

FIG. 3. The energy dependence of n,, ( E )  = d In b(E,N, ) /d  In E. The 
values of N, and the numbering of the curves are the same as in Fig. 2. 

semiconductor with realistic values of N, ( 1 < N, < 10 be- 
cause in such a heavily doped semiconductor, according to 
Ref. 5, Q = (2/a, ) (9N /4.ir2) - I/' and N, = (.ir/4) 
(21~/3) I/'% zR the value of n,l(E, in the "tail" of the 
density of states [for E > (TN, /61/2) ' I h )  ] is close to unity 
for values of E of practical interest, which agrees with the 
experimental data of Ref. 3. The presence of maxima in the 
nNl vs Ecurves with N, ) 1 reflects the interplay between two 
tendencies: on the one hand, for Gaussian fluctuations n (E) 
grows with E (as the scale of the wave function decreases in 
comparison to the fluctuation scale), and, on the other, the 
optimal fluctuations for E > 1 are of the hybrid type, as in a 
Coulomb field.'' To put it differently, there are small-scale 
Poisson clusters of centers inside large-scale Gaussian fluc- 
tuations. The contribution of Gaussian fluctuations to the 
binding energy decreases for large values of E, while that of 
Poisson clusters, for which n(E)  drops as E grows, in- 
creases. Hence, in the limit E- co (E>) 1,N, ), Figs. 1 and 2 
define p ,,,,,,, (E)  in a random Coulomb field. 

We start by analyzing the behavior of a(E,N, ) for 
E > 1, where the characteristic radius of the wave function, 
1, z (fi2/2m&) 'I2, is smaller than Q - '. (For an analysis of 
the behavior of the exponent see Refs. 6 and 10.) Using the 
estimate of the preexponential factor i n p ( ~ )  made in Sec. 2, 
for d = 3 we have 

For E >  1 in the Gaussian approximation (E, $ZE ), the ra- 
dius I, of an optimal fluctuation is approximately Q - ', the 
volume Vc is (4.ir/3) Q - 3, the average number of centers 6, 
in such a fluctuation is NVc, the effective potential of the 
center, g,, is roughly e2Q /x, and the fluctuation of the num- 
ber of centers, Z,, is related to energy through the formula 
~z:Z,g,. Combining this with Eq. (43) yields 
p, = (27/16n-)(Q3E 36 -'/EQ ), that is [see Eq. (4011, 
a(E,N, ) =: E 3/2. In the Poisson case (2, >) 7iE ) we still have 
&=Z,gE, but gE is much higher: gE =:e2/xl,. Here Ic 
zl, In - (Z,/E, ) (see Sec. 2) .  Substituting these rela- 
tions into (43), we find that a(E,N, ) 
-- (3/16n) N: [E ln(E 2/N, ) ] 3/2. The resulting expres- 
sions for a(E,N, ) describe the corresponding asymptotic 
behavior of the curves in Fig. 2 fairly well. 

To analyze the behavior of p(E) for E <  1, when 
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I, % Q - I ,  we examine how a random field of centers with an 
attractive potential of finite amplitude uo inside a sphere of a 
small radius a (u, < (fi2/2ma) 2, since only with such a rela- 
tionship between the characteristic potential and radius of a 
center is the condition met that the scatterers be quasipoint- 
like, a < I, ) and zero amplitude outside of the sphere gener- 
ates states with a small binding energy E <  (fi2/2ma2) reck- 
oned from E = 4rNa3u,/3. In the Gaussian case (2, <ii, or 
E <Z), the wave function and the optimal fluctuation are 
concentrated inside spheres of equal radius I,. Hence, 

$'z [(4r/3)12 ] ' = ( 3 / 4 r ) ( 2 r n ~ / f i ~ ) ~ / ~ ,  
gE = Sdru(r)lCI2 ( r )  =.uoa3/Ii = u, ( 2 m ~ a ~ / f i ~ ) ~ / ' ,  

Z, = ~ / g , ,  and ii, = 4 d  :/3. To estimate the exponent in 
P(E)  with logarithmic accuracy, we employ the fact that In 
P,, (Z) = Z2/2n for Z<n.  Substituting ZE for Z and ii, for 
n, we obtain In P(E) = (3/8r)(l/~a~u~)&(fi~/2ma~)~/~. 
In terms of the dimensionless variables E = 2ma2&/fi2, 
Nl = 8rNa5muo/fi2, and f = 2N,ma2uo/fi2 we have In 
P(E)  = - b(E)/2c= - 3@/2< for E<N,  , 1. The 
curves 1-4 in Fig. 1 yield a close value, b(E) - 3 a .  Em- 
ploying Eq. (43) and the above estimates of g,, Z,, ii,, and 

vc -4r1;/3, we find that p , ( ~ )  
= (N/u i  ) (fi2~/2ma2)3/2 (4rNa3/3) 3. Now we define 

a(E,N, as we did in (43), namely, p,(E) 
= (2m/fi2ac2)a(E,N, ), so a(E,N,)  = (3/4r)E3/'. The 

curves 1-5 in Fig. 2 yield a(E,N, ) = 0.35E 3'2. 

The results are the same if we put u ( r )  = - wS(r) in 
Eq. (101, with w = - Jdru(r),  thus transforming Eq. (10) 
into 

+ {No[e~p(aollj ,~(r)) - 4 1  -E)$, (r) =0, (44) 

and substitute the $, ( r )  and a found by solving Eq. (39) 
[with exp(aw$: ( r ) ]  - 1 replaced by a@$% ( r ) ]  in the 
Gaussian limit, for the appropriate quantities in Eqs. ( 17), 
( 19), and ( 18a). These simplifications reduce the random 
field to the "white noise" form with a potential-fluctuation 
correlator equal to y&(r - r ,  1, with y = Nu2 (see Refs. 8 
and 9).  

A totally different physical pattern arises in the Poisson 
section of the "tail" of the density of states (for 2, % T i ,  or 
E% N, or Nw < E ) .  Formally this is already manifested in the 
fact that the solutions to Eq. (44) that retain their sign and 
vanish as r +  oo exist only for ~<Nw/18.7, that is, deep 
"within" the Gaussian section. The reason for this is clari- 
fied by the method of successive approximations. It seems 
that when E > Nd18.7, in the region of small values of r 
there appears a peak in $(r) that becomes steeper with each 
successive iteration, superposed on a smooth wave function 
with a characteristic scale of (fi2/2m&) This peak leads to 
an ever stronger and narrower peak in the center density 
c, (r).  The process can be restricted only if we assume the 
radius of the center's action to be small but finite. For this 
reason, in the three-dimensional case with E > Nw/18.7, or 
E >  N, /18.7, it is impossible to pass from quasipointlike 
scatterers to the limit of point scatterers [from the integro- 
differential equation equation ( 10) to the differential equa- 
tion (44) l, a n d p ( ~ )  depends not only on w but also on the 
shape of the potential of a center. 

Hence, with E% N, the optimal fluctuation is created 
by a cluster of centers lying mainly within a sphere of radius 
a. States with binding energies &<fi2/2ma2 create clusters 
with Z, centers (corresponding to a potential well of depth 
u zZ, uo ), with Z, exceeding only slightly the value Z, nec- 
essary for a bound state to appear. For a spherical potential 
well of radius a and depth u, the binding energy for 
&<fi2/2ma2 depends on the depth via the law 
E = (r2/4)uc [ (u/u, ) - 1 ] ' (see Ref. 13), with 
uc = dfi2/8ma2. This leads to the following estimate: 
Z, = Z, + ~ ( Z , E / U ~  ) 'I2, where Zc = uc/uo. Combining 
this estimate and the Poisson formula In P, (Z) = 
- Z In ( Z  /en) for Z % n, allowing for the fact that Z, - Zc 
<Zc and ii, = 4rNa3/3, and going over to dimensionless 
variables, we find that In P(E) = - b(E, N, )/2f 
= - (d /4e )Nl  l n [ ( l  + 8 @ / d ) / ~ , ]  for N , < E < l .  

The consequent expression for b(E,N, ) agrees well with the 
curve pattern in Figs. 1 and 3 in the N, < E <  1 range. If we 
now substitute into Eq. (43) the above expression for Z,, V .  
= 4ra3/3, and g, zu , ,  we find a(E,N, ) = (3r/16) N, 
( 1 + 8*/2), which corresponds to the pattern of curves 5 
and 6 in  Fig. 2 for N, <E < 1. 

4.2. Allowing for discreteness 

Figure 4 illustrates the behavior of the discreteness fac- 
tor M(E) ,  which leads to an increase in p (E) .  For E > 1, 
when because of the singularity of u ( r )  as r-+O the scale of 
the wave function is close to the characteristic scale of the 
center potential, the value of M(E)  is moderate and de- 
creases as E grows. This agrees with the analysis of the be- 
havior of M(E)  carried out in Sec. 3 and relating to the case 
of E > 1 for the given u ( r ) .  

The behavior of M ( E )  for E <  1 can be explained as 
follows. In the case of Gaussian fluctuations of the quasi- 
pointlike centers, the effect of discreteness on p ( E )  is pri- 
marily reduced to the energy scale being shifted by T (0 )  
(see Sec. 3).  Hence,p(E) z F [ E  - r ( 0 )  1. For the u ( r )  con- 
sidered we use (37) to obtain T(O) = 4rmNe4/fi2x2Q, and 
p (E)  z p ( E  - c) .  The expression (34) for M(E)  has been 
derived for the case of relatively small second-order correc- 

FIG. 4. The energy dependence of the discreteness factor Mand the renor- 
rnalized discreteness factor Mcalculated for N, = 10 (curves I and la), 1 
(curves 2 and 2 a ) ,  1 0  ' (curves 3 and 3a), and 10 * (curves 4 and 4a). 
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tions, which is equivalent to E being much higher than 5 and 
is possible only if << 1. Above we have seen that 
P(E - f )  =: exp ( - 3 d m - / 2 5 )  for E< 1, N, . Retaining 
in the exponent the first two terms of the series expansion in 
powers of J/E, we find that p (E )  zp(E  - f )  
~ p ( ~ ) e x ~ ( 3 / 4 @ ) ,  and it is this behavior, In 
M(E) ~ 3 / 4 @ ,  that is observed in Fig. 4 for E< 1, N, . 
Hence, a description ofp(E) via Eq. (39) and Figs. 1,2, and 
4 is correct to within logarithmic accuracy for E$f and to 
within absolute accuracy under a more stringent condition, 
E, f "'. 

If the energy is measured from the true edge of the spec- 
trum of localized states and Eq. (38) is used instead of Eq. 
(39), p (E )  can be determined with absolute accuracy start- 
ing with much lower energy values that coincide with the 
beginning of the infrequent-state range (i.e., for E,f 2). 
Equation (38) in terms of dimensionless variables and with 
the renormalized energy E = 2m [ E  - T (0) ] /fi2Q as- 
sumes the form 

The curves illustrating the behavior of M ( E )  for different 
values of N, are depicted in Fig. 4. They reflect the interplay 
between two factors that influence the ratio 
T(E)/T(O) = TI /,uN,. A physical explanation of why the 
energy of a particle decreases (the appearance of a second- 
order correction T ( E )  ) when one allows for the discreteness 
of the attractive centers is that each such center additionally 
"pulls" the wave function of the continuum approximation 
onto itself, with the result that the interaction of the center 
and the wave function becomes more effective. As E + 0, the 
value of s(E) tends to a limit, since an increase in the num- 
ber of centers in the optimal-fluctuation volume 
(Ti, =: Nl a E - 3/2)  in the zeroth approximation is com- 
pletely balanced by the reduction ( cc a3/l 2 ) in the contribu- 
tion of an individual center. Allowing for small corrections 
shows that T (E)  decreases as E grows but remains much 
smaller than N, or 1 [in the Gaussian limit 
1 - T(E)/T(O) -@I, since in this case the correction to 
the wave function $, ( r )  introduced by the field of an isolat- 
ed center decreases because of an increase in the "elasticity" 
of $, ( r ) .  For this reason In k ( ~ )  is negative for E< 1, N, . 
As E-0 the value of M(E) tends to the limit 
M(0) = e-1.55 = 0-21 _+ 0.01. It can be demonstrated that 
this limit, in contrast to T(O), is independent of the shape of 
the center potential. Hence, for all quasipointlike scatterers 
(i.e., for 2ma2u,/fi2g 1 ) in the limit of infrequent Gaussian 

fluctuations we have 

The expression on the right-hand side was obtained earlier in 
Ref. 8 for a random field with a potential-fluctuations corre- 
lator equal to y6(r - r ,  ). 

On the other hand, T(E)/T(O) grows with E as the 
concentration of centers in the optimal-fluctuation volume 
increases ( a (Ti, + 2, ) / E ,  = 1 + E/N,  ). In other words, 
the effect of this factor is stronger the smaller the value of N, 
and the greater the value of E (see curves la-4a in Fig. 4 ) .  

The quantity MI  (E), which introduces a distinction 
betweenp(E) (obtained as a result of exact averaging) and 
p ( E  ') (the continuum density of states with a shifted argu- 
ment),thatis,p(E) = p ( E r ) M ,  ( E ' )  andE = E' + r ( E  '), 
enters into the coefficients M ( E )  and S ( E )  as a cofactor. 
Calculations show that M I  (E) monotonically increases as E 
decreases, from the value M, ( C O )  = 1 to the value 
MI  (0) = e0.45 =: 1.57, that is, replacing p ( s )  with P(E') re- 
duces the density of states only slightly. 

Finally, we note that in carrying out two-sided esti- 
mates of M(E)  and M I  (E) [see Eq. (33) ] we had to calcu- 
late no more than the first three coefficients T, (E) .  The 
accuracy of determining M(E)  and k ( ~ )  in some cases was 
much higher than one percent and exceeded the accuracy of 
the asymptotic expression for p (E)  . 

The authors are grateful to M. E. Raikh and R. A. Suris 
for helpful discussions. 
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