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Propagation of collision drift waves transverse to the plane plasma layer in a sheared magnetic 
field is discussed. It is shown that, depending on the plasma parameters, amplification or 
absorption of waves occurs in the vicinity of the magnetic surface on which the longitudinal 
component of the wave vector vanishes. The process is associated with the formation of magnetic 
islands on this surface caused by a wave passing through it and it is accompanied by changes in the 
profiles of the density, temperature and magnetic field shear near this surface. The wave energies 
are changed owing to the variation of the thermal energy of the plasma. For instance, wave 
amplification is caused by plasma expansion along the direction of the gradient. 

One of the most significant factors in understanding the 
dynamics of drift turbulence is the concept of the "source" 
and the "sink" of the energy of the drift oscillations. 

The energy exchange between the oscillations and the 
plasma for drift turbulence is typically assumed to be a bulk 
process, that is, conditions prevail in a certain volume such 
that at each point of it the wave starts to grow (or to dimin- 
ish) at a certain rate. Processes of a different type, however, 
can occur in inhomogeneous media in which a wave propa- 
gates in the direction of inhomogeneity and loses or absorbs 
energy in the vicinity of a certain point (or a surface in the 
three-dimensional case). This local energy exchange be- 
tween a wave and the medium can be illustrated by the fol- 
lowing effects. They include the absorption of oscillations 
near the resonance points in plane-parallel flows of an ideal 
fluid, which is stable if the velocity profile has no inflection 
points (the Rayleigh theorem), ',* the absorption and ampli- 
fication of electromagnetic waves near points where the re- 
fraction index tends to in fin it^,^ and similar phenomena oc- 
curring when waves of other types propagate in p l a ~ m a . ~  

The present study demonstrates that a similar process 
of local energy exchange between the wave and the medium 
occurs also for the drift waves propagating in a plasma in a 
sheared magnetic field. We can give the following qualitative 
description of this process. A long-wavelength electrostatic 
drift wave (k,p, 4 1, p, = ( T / M ,  ) "'/w,, propagates in a 
plasma slab where To = To (x), no = no (x),  and 
B = (0, By (x), B, ). The shear gives rise to a variation of 
the angle between the external magnetic field and the wave 
vector along the axis x, that is, the longitudinal component 
of the wave vector, kll , is a function of x. A perturbation of 
the magnetic field cannot be ignored for small kIl and there- 
fore the propagation of waves in the region where kll is small 
must be described with the equations for the drift Alfven 
waves. At the resonant surface x = x, on which kIl vanishes 
the solutions of these equations exhibit a singularity in which 
the current along the magnetic field grows without bound. 
This means that additional effects must be taken into consi- 
deration near this surface which limit this singularity. If the 
wave frequency is lower than the electron collision frequen- 
cy, o < Y,,  then we must take into account the fact that the 
electric and heat conductivities along the magnetic field are 
finite. For o > Y, a more significant contribution is made by 
the kinetic effects, and the kinetic description of the longitu- 
dinal electron motion must be employed in the range 

w/kll > V,,. When the dissipation processes are taken into 
consideration we obtain energy exchange between the wave 
and the plasma, that is, amplification or absorption of the 
wave. 

Note that the above process has much in common with 
the development of the drift tearing mode"' and is described 
by the same equations. By analogy with spontaneous and 
stimulated light emission we may refer to it as the drift tear- 
ing mode stimulated by the drift wave. The ion sound effects 
giving rise to "shear" attenuation8 are not taken into consi- 
deration. 

An analysis of the local processes of amplification and 
absorption typically encounters some mathematical difficul- 
ties since it involves solving differential equations with vari- 
able coefficients. Since the dissipation processes are weak we 
can employ the technique of matched asymptotic expan- 
s i o n ~ , ~  that is, we can ignore dissipation in the region outside 
a thin dissipation layer and then we can match the resulting 
solution with the solution describing the dissipation region. 
This technique simplifies the problem considerably but does 
not solve it entirely in the case under consideration. There- 
fore, additional assumptions must be made to solve the prob- 
lem. 

Most importantly, two restrictions are applied to the 
wave frequency. On the one hand, only the collisional case is 
treated, with w < Y,. On the other hand, the width of the 
"Alfven" layer in which w/kl, > c, holds is assumed to be 
larger than the width of the dissipation layer. Under these 
conditions it is simpler to find the solution in the vicinity of 
the resonant surface. The regime under which these condi- 
tions are satisfied for the drift tearing mode is known as the 
semicollisional regime.4 

The ion temperature is assumed to be zero. This as- 
sumption is explained by the fact that when a wave propa- 
gates toward the resonant surface in a plasma with param- 
eters typical of thermonuclear fusion devices the transverse 
component of the wave vector varies from k,p, 4 1  to 
k,p, ) 1. In the case T, z Ti the effects caused by the Larmor 
motion of ions can be correctly taken into account only if the 
differential equations are replaced with a fairly complicated 
system of integrodifferential equations." 

Finally, another condition applied to the wave vector 
implies that at large distances from the resonant surface k, 
must be much greater than ky . 

Note that the above assumptions are determined not so 
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much by the physical considerations as by the mathematical 
difficulties encountered in the solution of a more general 
problem. It may be expected that the qualitative results are 
not changed when we eliminate the last two assumptions. 
We shall discuss this question in more detail in the Conclu- 
sion. 

The structure of this paper is as follows. The first sec- 
tion presents the derivation of the equations describing the 
process. In the second section we employ the technique of 
matched asymptotic solutions to derive a solution describing 
the propagation of the drift wave across the resonant sur- 
face. In the third section the equations for the quantities of 
second order in amplitude averaged over the wave period are 
analyzed. The analysis indicates the sources (sinks) of the 
energy determining amplification (absorption) of the 
waves. In the Conclusion the results and their applicability 
ranges are discussed. 

1. MAIN EQUATIONS 

Consider a long-wavelength electrostatic drift wave 
propagating in a plasma slab where all unperturbed param- 
eters depend only on the coordinate x. Take the frame of 
reference to be that in which the direction of the x axis is 
opposite to the direction of the density gradient, while the z 
axis is perpendicular to the wave vector. The unperturbed 
magnetic field has the form B = B,(e, + e,x/L, ). We con- 
sider wave propagation in the vicinity of the resonance sur- 
facex = 0 on which the component kil = k,,x/L, of the wave 
vector along the magnetic field vanishes. For Ix/L, ( > V*/C,~, 
where v* = - (dn/dx) T/nMiw,, and c, = (T/Mi ) ' I 2 ,  

the motion of ions along the magnetic field makes a signifi- 
cant contribution and the drift wave is converted into an ion- 
sound wave. Below we shall ignore the longitudinal motion 
of ions, that is, we consider only the range of (x/L, ( < u*/c,.  
Since typically we have v*/c, 1 we ignore the effects of the 
second and higher orders in x/L,. 

As noted in the introduction in this paper, we have con- 
sidered only the case w < v, and therefore we can describe 
the electron motion with the hydrodynamic equations:" 

Here vi l  and El l  are the components of the electron velocity 
and the electric field along the magnetic field, 

We have omitted the inertial term in (1.2) because it is 
small (of order w/v,) in comparison with the first term in 
RII  . As is typically done for the drift Alfven waves, in a plas- 
ma with a small parameter b' (here p = 8rnT/B  2, we may 
ignore the longitudinal component of the perturbed magnet- 

ic field and describe the transverse components in terms of 
the longitudinal component of the vector potential: 

B=[vA,, ell]= [VALl, e,l.  

We express CI I  and Ell in terms of All and the potential p 
of the electric field: 

We introduce the dimensionless quantities 

x -x/p., tt=taBi, n'=n/no (O), T'=T/To (0) , 

lP=eqdTo (01, Ailf=AHec~/cT0 (01, 

where 

p,=c./ost, u3m~eB~lcM, c A = B ~ / ( ~ ~ ~ ( O ~ ) . ' ~ .  

Then we omit the prime sign from the dimensionless 
parameters and rewrite ( 1.1 )-( 1.3) in the form 

where 

The operator d /dz is the gradient in the direction of the 
magnetic field, expressed in units of wBi/c,. Note that in this 
frame of reference we have a /dz = 0. 

The nonlinear equations ( 1.4)-( 1.6) will be employed 
in the third section to derive the equations of second order in 
the amplitude. Another equation is derived immediately in 
the linearized form. This equation is the condition of charge 
conservation, div j = 0. The ion temperature is always as- 
sumed to be zero and we have 

c a 
div j, = div (emr),  where vl = - -- 

~a,$ at V ~ c p  

is the additional inertial term in the drift velocity of ions. As 
a result we obtain the following dimensionless expression: 
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We linearize of ( 1.4)-( 1.6) and write the perturbed 
parameters as @ = @ (x)  exp ( - iwt + ikyy) . We assume 
that in the dissipation range the unperturbed current veloc- 
ity AAo/no is much smaller than the phase velocity w/kll of 
the wave along the magnetic field. When we eliminate n (x)  
and T(x) from the equations we obtain 

where 

Let us analyze ( 1.9) in more detail. If we ignore the 
dissipation effects and let T,I tend to zero, ( 1.9) will have the 
following form, which is typical for drift Alfven waves: 

For the drift waves with lkll /wI ) 1 (written in terms of 
dimensional units this condition is equivalent to 
I kll /wl) c, ' ) we may ignore A, which is much smaller than 
@kil /w. Then ( 1.8) and ( 1.10) yield the following equation 
describing electrostatic drift waves: 

The coefficients in ( 1.1 1 ) no longer depend on kll and 
for w: = const a solution of this equation is a set of plane 
waves. 

The dissipation terms in ( 1.9) depend on the finite elec- 
trical conductivity of the plasma (the term i7AA ) and the 
finite heat conductivity in the direction of the magnetic field. 
It can be easily seen that both effects become significant for 

< (wT,I ) ' / ' /~  i;. We assume below that the width of the 
dissipation layer, A, = ( w v )  '12/k i; , is small in comparison 
with the width of the "Alfven region," A, = w/k i;, that is, 

This condition is compatible with the condition w(v, 
(which has the form w 4 v,/wBi in dimensionless variables) 
only if the plasma is sufficiently hot, that is, P )  m/M.  

Note that ( 1.8) and ( 1.9) differ from the equations of 
Ref. 7, which describe the semicollisional regime of the drift 
tearing mode, only in small terms related to the time-depen- 
dent thermal force, which can be ignored in the case under 
consideration. 

2. SOLUTION OF THE LINEARIZED EQUATIONS DESCRIBING 
SCATTERING OFTHE DRIFT WAVE 

External solution. We ignore dissipation and find the 
solution outside the dissipation layer. Eliminating A from 
(1.8) and (1.10) weobtain 

If we assume d/dx) ky and ignore the second term in (2.1 ) 
we can readily derive a solution of this equation: 

where 

Here Jv + ,,, (f) ,  Yv + ,,, ( f )  and H :';2',,, ( 5 )  are the Bessel 
functions of the first, second, and third kinds, 
S - 3/2,, + ,,, ( f )  is the Lommel function,12 and f = k, 1x1. 
For the sake of definiteness the point f = 0 is taken as the 
lower limit of integration in (2.2), which is permissible for 
Y<l.  

For large 1x1 the asymptotic solution of (2.2) has the 
form 

m--C, exp[i(k,lxJ-nv/2)] 
-c~exp~-i(k~(z(-nv/2)l-C~l(k,jx() 
+n-'"r ('I2-vI2)r (v/2+ 1) [C, exp (-inv/2) +Cz exp(inv/2) 
-2-3n-'hC3 sin (nv) r (42)  r (-v/2-'1,) ] +C,, (2.5) 

where r ( z )  is the gamma function. For small 1x1 it is more 
convenient to use the following asymptotic expression for 
the function A: 

x 
A - -{ [Cj exp (-inv) + C, exp (inv) ]6,/ 1 v+, 

1x1 

+ 2 - a n - " C 3 r ( - ~ / 2 - ' / , ) r ( ~ / 2 )  
[-sin (nv/2)6,1z IV+'+cos(nvy2)6r I ~ l - ' l )  
+C,xl z 1 k, 'k , / [o  (1-v) (2+v) 1 +C4k<xlo, 

kll' n'" (v+ 1) 
"= 7 2 cos (nv) r (v+~/.) ( + ) v  , 

~ I I '  n'I2v 62=- (y . 
o 2 cos (nv) r ('/,-v) 

The last two terms in (2.6) correspond to regular solutions 
near the resonant surface, where the dissipation effects can 
be ignored. Hence, the constants C ,+ and C z  appearing in 
the solution of (2.2) and (2.3) for x > 0 and the constants 
C ; and C ,  for x < 0 are related by the following expres- 
sions: 
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Let us now consider (2.5 ) . For @ - const we have A - x  and 
therefore we must take the constant in ( 2 . 5 )  to be equal to 
zero for x > 0  and x  < 0  in order to obtain a solution bounded 
at infinity. Using these conditions we can express C, in terms 
of the drift-wave amplitudes: 

c ,+ = -c,- = 
4n" 

sin (nv )  r ( d 2 )  r ( - v /2 - ' l z )  

We see that the asymptotic approximation for the solu- 
tion under consideration at large distances from,the reso- 
nant surface consists of electrostatic drift waves with the 
amplitudes C ,  and C2 and the magnetohydrodynamic 
asymptotic solution described by @ - C, / ( k ,  lx 1 ) and 
A -  ( k l l  / a ) @ .  When we take into consideration the second 
term in ( 2 . 1 )  the latter becomes exponential, rather than 
algebraic: A - ( kll  / w ) @ -  exp( - k,, 1x1 ). The time depend- 
ence of the perturbed quantities has been taken in the form of 
exp( - iwt )  and therefore the phase velocity of the C ,  wave 
is directed away from the resonant surface and that of the C2 
wave is directed towards the resonant surface. But since the 
x  component of the group velocity for the potential drift 
waves has a sign opposite the sign of the x component of the 
phase velocity, 

do 2k2 w -=--- 
dk* l+k2 k, ' 

in the first case the wave packet propagates towards the reso- 
nant surface and in the second case away from it. The C,  
wave will accordingly be referred to as the wave incident on 
the resonant surface and the C, wave as the wave propagat- 
ing away from it. 

Internalsolution. Let us find a solution in the vicinity of 
the resonance surface to which the asymptotic solution 
( 2 . 6 )  with non-integer exponents can be matched. In the 
range 1x1 4 A, = w/k  we have for this solution 
@ - Ak,, / w  < A  and k,, 4 d  /ax .  Then we obtain from ( 1.9)  

Let us introduce a new variable f  = x / A ,  where 
A, = ( 0 7 7 )  ' l 2 / k  i. Then we can rewrite ( 2 . 8 )  as 

where 

a,,, 5 { l+az+a(  * [ ( l+az+a4)z  - 4azl ")/2az, 

while v is given by ( 2 . 4 ) .  This equation has the solution 

A=D, (~2- iaf) -v12$(a,  q, v/2,  v/2+1, 'I,, v + , h  b21 (bLial ) )  
+Dzt (EZ-ial) -'v+'"2$ (a,  q,, v/2+'/2, 

~ / 2 + ~ / ~ ,  'I2, v+,/*, bzl(b2-iar) ), (2 .10)  

where 

and the function $ ( a ,  q, a,p, y, 6, z )  is a solution of the Heun 
equation, l 3  

d2$ z(z-1)  (2-a)- +[ (a+fl+1)z2 
d z2 

which for la 1 > 1 can be written as a power series converging 
for I z ~  < 1 :  

The first term in ( 2 . 10 )  is an even function of f  and the 
second term is an odd function. For any real values of the 
variablec the absolute value of the argument of the functions 
in ( 2 . 10 )  is smaller than unity, that is, the entire real axis is 
in the circle of convergence for the series (2.11 ) after the 
transformation z  = 5 2 / ( f  * - ial ) has been performed. To 
match the solution ( 2 . 10 )  to the external solution we must 
consider the asymptotic representation of ( 2 . 10 )  for 
f  -+ + co. It can be found with the use of the invariance 
properties of the Heun equation.13 Let us write down two 
linearly independent solutions of the Heun equation in the 
vicinity of the point z = 1 .  In the intersection of the circles 

I z )  < 1 and I Z  - 1 I < a - 1 the function (2.11 ) can be written 
as a linear combination of these solutions: 

$(a,  q, a, B, y ,  6 ,  z )=E[(1-z) ' - '$(a~,  qe, a-6+1, 
fl-6+1, 2-6, a+p-y-6+l, (I-z)a,)+B$(a, ,  q,, a, p, 6, 
a+$-7-6+1, ( 1 - z ) a s ) ) ,  ( 2 . 12 )  

where 

and E and B are constants which may depend on all the 
parameters of the function $. In order to determine these 
constants we must find values of the functions ( 2 . 12 )  at two 
different points. Unfortunately this can not be done analyti- 
cally and thus we had to perform numerical summation of 
the series ( 2.1 1 ) . 

Equation ( 2 . 1 2 )  suggests that for z -  1 we have 

Denote by B, and El the values of the constants B and E for 
the sets of parameters in the first term of ( 2 . 10 )  and by B2 
and E2 these constants for the set of parameters in the sec- 
ond term. Then for If ( = Ix l /A , )  1 we obtain 
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where 
Di=DIEc e x p  [ i n  (v/2+'14) ] a,-v-'hAD-v-'r 
$*=BI exp  [ - in(v /2+'14)  ] (u , '"A~)~ '+ ' .  

A significant disadvantage of the solution (2.10) is the 
need to perform numerical summation of the series in order 
to find the asymptotic solution for large )< 1. It is useful to 
derive a simpler and clearer solution by analyzing a special 
case of the equation (2.9). Let us assume that the following 
condition is satisfied for the wave frequency: 

Then we obtain from (2.9)  
a z A  

( f z - i a , ) -  - v ( v + 1 )  A=O. (2.15) 
at2 

Note that a similar equation can be derived from (2.8) ,  
where the terms dependent on the finite heat conductivity in 
the direction of the magnetic field must be eliminated. It is 
therefore useful to analyze the solutions of the equation 
(2.15) in order to understand the contributions made by 
each of the dissipation effects to the process under considera- 
tion. 

The solution of (2.15) may be expressed in terms of the 
associated Legendre functions P 1. ( x )  : 

A=(x~-~)"[G,P~'(x)+G~Pv'(-x)], 

 fa,-" e x p ( - i n / 4 ) .  (2.16) 

For large < we obtain the following asymptotic representa- 
tion for this solution: 

A - { G ,  exp [ ~ i n ( v + l ) / 2 ] + G ~  exp  [ * i n ( v + l ) / 2 ] ) y , I x l t +  
+ { G ,  exp(* i n v l 2 )  + G z  e x p ( T i n v / 2 ) ) y z l x l - ' ,  

where (2.17) 

y,= [ I ' ( V + ' / ~ ) / ~ I ' ( V ) ]  z-% [2AD-'a,-"' e x p ( i n / 4 ) ]  I+', 

y2= [ r ( - v - ' / , ) / 2 r ( - ~ - l ) ] n - +  [2Ao-'a,-u exp(in14) I-', 

and the upper sign in the exponential factors corresponds to 
the positive x while the lower sign corresponds to the nega- 
tive x. If we represent (2.17) as a sum of even and odd func- 
tions we can readily show that in the special case described 
by (2.14) we have for the constants in (2.13) : 

B,=- cotan ( n v I 2 ) ~  r(--*/m~) 2-i-2v 

r ( - v - i ) r  ( v + * / ~ )  1 

(2.18) 
B,= t a n Z ( n v / 2 )  B,. 

Matching of the external and internal solutions. Let us 
compare the asymptotic behavior of the external and inter- 
nal solutions in the range AD ( 1x1 ( A, in order to find the 
relationship between their arbitrary constants. Assume that 
we have C , = 0, that is, the wave is incident on the plane 
x = 0 from the direction of positive x .  When we equate the 
coefficients with the same powers in (2.6)  and (2.13) for 
x > 0 and x < 0, take (2.7)  into consideration and eliminate 
the constants b, and b , ,  we can determine the relative ener- 
gies of the reflected and transmitted waves: 

1 C2+IC,+)z= ( ( 6 , - 6 , )  sin ~ U ) ~ / Z ,  (2.19) 
--- 

JCz-/C,+(a={[(1+.6,6z)cos a- ( 6 , + 6 z ) ~ ~ ~  2 a I 2  

+ ( 1  - 6 , 6 , )  sinz a )  12, (2.20) 
Here we have 

Z= ( 1+@,2-2@, cos a )  (1+@22-2@, cos a ) ,  
a = n  ( ~ / 2 + ' / ~ ) ,  6,=6, t g Z ( n v 1 2 )  B I I B 2 ,  
6,=B, (a, '"ADk,/2) ( l + l / v )  r ( 1 1 z - ~ ) l r ( ~ + 7 2 ) .  

Figures 1-3 show the relative energy variation 
AE= IC, t /C,+12+ IC ; /C ,+ j2 -  1 as a function of the 
squared wave vector k = wz/w - 1 for different values of 
the parameters w*,/w,*, v / w  and ( w / k  )'=: 2 f l ( L , / ~ ,  )2. If 
the magnetic field shear is not too small ( v  < 1 / 2 )  wave am- 
plification takes place for small temperature gradients. As 
the parameter w*,/w: grows (Fig. 1 )  wave amplification is 
replaced with wave absorption. A change in the parameter 
v / w  (see Fig. 2 )  produces only a slight effect on the growth 
of AE, while an increase in v / w  increases the absolute mag- 
nitude of the absorption or amplification. 

Figure 4 shows the relative energies of the reflected and 
transmitted waves for two values of the parameter w*,/w,*. It 
can be seen from the plots that for A E  > 0 almost the entire 
energy is concentrated in the transmitted wave. When am- 
plification gives way to absorption the amplitude of the re- 
flected wave grows and can become greater than the ampli- 
tude of the transmitted wave. In the special case described by 
(2.14) we have 8, = 8, and the amplitude of the reflected 
wave is identically equal to zero. These results suggest that 
partial reflection of the wave is caused by a perturbation of 
the longitudinal temperature gradient owing due to finite 
longitudinal heat conductivity. 

3. CHANGE IN THE PLASMA PARAMETERS IN THE 
DISSIPATION LAYER 

Let us determine the changes in the magnetic field and 
the density and pressure of the plasma caused by the wave. 
To do this we must analyze Eqs. ( 1.4)-( 1.6) to second order 
in the amplitude. When we average these equations over the 
wave period we obtain the required expressions describing 
the rate of growth of the additional terms for the initial plas- 
ma parameters. For simplicity we assume v < 1/2. Under 
these circumstances the energy exchange between the plas- 

FIG. 1 .  Relative energy variation AE as a function o f  k = o r / w  - 1 for 
( o / k  ;l)' = 1, 7/0 = 0.1, and o r / w z  = 0 (curve 1 ) ;  0.2 (curve 2 ) ;  0.4 
(curve 3); 1 (curve 4 ) .  
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FIG. 2. Relative energy variation AE as a function of k = o:/o - 1 for 
(w/k ii ) 2  = 1, of/o: = 0.2 and q /o  = 0.05 (curve I); 0.1 (curve 2 ) ;  0.2 
(curve 3 ) ;  0.3 (curve 4 ) .  

ma and the wave is concentrated near the resonant surface 
and therefore we may limit the analysis to the region of 
1x1 4 ha. Since in this region we have @ < A ,  k, <a /ax, and 
AAo/no 4w/kll we obtain after averaging (here and below 
angle brackets denote averages) 

n, dA1 3To 
- ( - - - ) - ( { ~ , , " n ~ + a , ~ ~ ) )  no ay ax nu , (3.2) 

3 a -- aA,  A d ,  d(noTo)  
2 at ( Z z ~ o + n o ~ 2 ) - 2 q ~ ~ O ~ 2 = ( - - -  ay  no 

8 s  

+ ( ( s n , + ~ . ) $ % )  no +s< (AA,) '>+ 

) ) + < { A , , . . . } > .  

(3.3. 

The subscripts 0, 1, and 2 refer to quantities of the zeroth, 
first and second orders, respectively, in the wave amplitude 
and the expression ({A, ,...I) in (3.3) denotes all terms of 
this type. These terms are not significant for further analysis 
since after averaging they are converted to the form 
(8 / a x )  ( ... ) and do not contribute to the integral over x. 

A comparison of the appropriate terms in (3.2) and 
(3.3) indicates that the change in the magnetic energy 
b'W,/at = - J(AAoaA,/~t)dx is smaller by a factor 
AAokil /now( 1 than the change in the thermal energy. This 
means that amplification and absorption of the waves are 

FIG. 3. Relative energy variation AE as a function of k = w:/o - 1 for 
(o/k i ) 2  = 0.2, v/w = 0.1, and of/o: = 0.2 (curve I ) ;  1 (curve 2 ) ;  2 
(curve 3 ) ;  3 (curve 4 ) .  

FIG. 4. Relative energies of the transmitted (solid lines 1 and 2) and the 
reflected (dashed lines 1' and 2') waves for (w/k i )' = 1, q /o  = 0.1, and 
o*,/m; = 0.2 (curves I, 1'); I (curve 2, 2'). 

determined by the change in the thermal energy of the plas- 
ma in the dissipation layer. 

The first two terms on the right-hand side of (3.3) give 
the work of the pressure forces (to within terms of the form 
{A, . . .I and signs) while the third and fourth terms give the 
work of the friction force and the thermal force, respectively. 
Their sum gives the work of the wave field 
GI1 Ell ) = (AA, JA, /at ). To analyze their respective contri- 
butions we should consider not only their sum but also each 
of them separately. 

Take the solution of the linear problem in the region of 
1x1 4 A, in the form 

Then (2.9) yields 

cpe (g)  -cp (b) = arctan (ai/G2) + arctan (azlf" - arctan ( g / t a )  . 

We can derive from the linearized equations ( 1.4) and ( 1.5) 

Using (3.4)-(3.7) we obtain 

9 sin (cp,-cp)- -- 
a, 2 ' 
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aAt pA2 AA, - = - o - sin (9,-cp), 
at 2 

where 

Substituting (3 .4H3.7)  into the equation (3.1 ) which 
describes the change in the plasma density in the dissipation 
layer we obtain 

an, a pA2 
- - - -[K. - sin (q.-q) 1. 
at as 2 

When the temperature gradient is small, Iw*, 1 <w: - w, 
and wave amplification occurs, the expressions ( 3.9 )- 
(3.11) are of order (a:/~ - 1) 4 1 relative to (3.8). The 
change in the thermal energy of the plasma in this case is 
then caused by the work done by the unperturbed plasma 
pressure. As the parameter w*,/w: grows and wave amplifi- 
cation is replaced with wave absorption the quantities 
(3.8)-(3.11) have the same order of magnitude. 

Let us consider the the phase shift pc - p between AA , 
and A ,  as a function of (. For small w*, when 0 <g < a,  + a, 
the phase shift is always positive, it equals ?r/2 for ( = 0 and 
tends to zero as I f  1 grows. Accordingly, the flux 
r, = ( 1/2) k,pA sin (p, - p) everywhere has a direction 
opposite to that of the density gradient, the work of the un- 
perturbed pressure is positive, and the work of the wave field 
given by (3.12) is negative. The change in the thermal ener- 
gy of the plasma, 

is also negative under these conditions. As the temperature 
gradient grows g becomes greater than a ,  + a, and for large 
I[ I the phase shift becomes negative. Ifin (3.14) the integral 
over the region in which p, - p < 0 holds is greater than the 
integral over the region in which pc - p > 0 holds, then the 
total change in the thermal energy of the plasma is positive 
and the wave is amplified rather than absorbed. 

We see that for small parameters @*,/a: wave amplifi- 
cation is determined by the outward expansion of the plasma 
while the magnetic field structure in the dissipation layer is 
disrupted. For higher values of the parameter w*,/w: we find 
regions at the external boundaries of the dissipation layer 
where the work of the wave field is positive. As a result the 
total change in the thermal energy of the plasma may be- 
come positive and, accordingly, wave absorption occurs. 

CONCLUSION 

The paper analyzes the local energy exchange between a 
plasma and a drift wave in the vicinity of a magnetic surface 
on which the longitudinal component of the wave vector 
vanishes. In the absende of dissipation the wave exhibits a 
singularity on this surface (the current along the magnetic 
field diverges). Therefore, the presence of a small dissipation 
produces a significant change in the wave energy. The mag- 
netic field in the vicinity of the resonance magnetic surface 
through when a wave passes through it exhibits asymmetric 
magnetic islands [related to the odd function in (2.10) 1. 
The fluxes of heat and particles along the perturbed magnet- 
ic field give rise to nonvanishing mean fluxes along the direc- 

tion of the inhomogeneity. If the magnetic field shear is not 
too small ( Y  < 1/2) amplification occurs for small tempera- 
ture gradients owing to plasma expansion in the dissipation 
layer. As the temperature gradient grows, wave amplifica- 
tion is replaced with wave absorption while the thermal en- 
ergy of plasma in the dissipation layer increases. 

We have made some additional assumptions to simplify 
the analysis. Let us see how the results are altered if we re- 
move some of the assumptions. 

The process of wave scattering for k: - k must not 
differ significantly from that analyzed above for k : 4 k 
since in the Alfven layer 1x1 < A, inside which the wave and 
the plasma exchange energy we observe a decrease in the 
characteristic scale of variation of the magnetic field along 
thex axis, so that the terms proportional to k : become insig- 
nificant. 

The results also must not change significantly if we take 
into consideration the finite ion temperature, since the pro- 
cesses inside the Alfven layer depend primarily on the elec- 
tron dynamics and the ion motion has only a weak effect on 
them. The effect of the ion Larmor motion on the growth 
rate of the drift tearing mode has been analyzed elsewhere." 

The characteristic transverse dimension of the density 
perturbations occurring in tokamaks is typically compara- 
ble to L,v*/c,. Therefore analysis of the processes involving 
linear drift waves in the vicinity of the resonance surface 
must take into account the ion sound effects, which have 
been shown1k16 to make a significant contribution for 
I k I  / >w~/c , .  In most tokamaks, however, the drift perturba- 
tions are highly nonlinear and the velocity of transverse mo- 
tion in them is comparable to the diamagnetic drift veloc- 
ity." For such perturbations (which may be referred to as 
eddies) the processes near the resonance surface are spatial- 
ly separated from those at 1 kli  I>wZ/cs and thus it is reason- 
able to treat them separately. 

In conclusion, note that an important feature of the ef- 
fect analyzed in this paper is that the processes of amplifica- 
tion and absorption of the drift waves in the vicinity of the 
resonant magnetic surface depend on the characteristic di- 
mensions over which the density, plasma temperature, and 
magnetic field shear vary and, in turn, affect these param- 
eters. This feature may be of interest in connection with the 
self-organization of plasma. I s  

I am grateful to V. I. Petviashvili, 0. P. Pogutse, and V. 
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