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The magnetic structure near a surface is analyzed in the Hubbard model, which is solved in the 
approximation of a self-consistent field for a semi-infinite metal. A new method is proposed. It is 
based on a calculation of the magnetic response of a semi-infinite metal to uniform and 
nonuniform magnetic perturbations. It becomes possible to study the effect of a magnetic field on 
a semi-infinite metal and to describe the magnetic structure of the surface layers of a Cr (001 ) 
surface. At certain values of the parameters of the model, the surface magnetic moment is 
antiparallel to the bulk magnetic moment. The calculated results agree qualitatively with 
experimental results on FeNi, ( 11 1 ) and Gd (0001 ) surfaces, on which this effect was recently 
observed. 

1. INTRODUCTION 

In this paper we examine the magnetic structure which 
forms near the surface of a metal, and which is nonuniform 
along the normal to this surface, on the basis of the Hubbard 
model. We solve the problem in the self-consistent-field ap- 
proximation for a semi-infinite crystal. This study was 
stimulated by some recent experiments on surfaces of a Per- 
malloy-like alloy FeNi, ( 11 1 ) (Ref. 1 ) and Gd (0001) 
(Ref. 2), which were carried out with the help of spin-polar- 
ized electrons and the Kerr magnetooptic effect. 

According to the results of those experiments, the sur- 
face magnetization of these metals is antiparallel to the mag- 
netization of the inner regions of the sample at T S  T,,, 
where T,, is the bulk value of the Curie temperature, 860 K 
for FeNi, and 293 K for Gd. When the temperature is 
lowered, the moment of the FeNi, ( 11 1 ) surface rotates to 
an orientation parallel to the moment of the interior at a 
certain temperature To = 730 K. For Gd (0001 ), according 
to the data of Ref. 3, an antiparallel orientation of the mo- 
ments of the surface and inner atomic layers persists down to 
200 K (the lowest temperature reached in those experi- 
ments). At T >  T,,, these metals retain a long-range ferro- 
magnetic order at these faces down to the "surface Curie 
temperature" T,,, which is 1050 + 20 K for FeNi, ( 11 1 ) 
and 3 15 K for Gd (0001 ) . A long-range ferromagnetic order 
at the surface of a nonmagnetic metal is fairly common and is 
termed "surface ferromagneti~m.""~ It occurs for the Tb 
(Ref. 9), Cr (Refs. 10 and l l ) ,  and V (Refs. 12 and 13) 
surfaces. The presence of at least a short-range ferromagne- 
tic order in a surface layer has been established14 for certain 
Ni faces. 

Experiments2 on Gd (0001 ), which were also carried 
out with adsorbed gases (hydrogen and oxygen) present, in 
amounts less than 1 L (langmuir), indicate that the surface 
magnetic effects outlined above disappear completely at the 
same temperatures. This result led Weller et ~ 1 . ~  to conclude 
that magnetic effects at a surface involve primarily a single 
surface atomic layer. A factor complicating efforts to study 
the magnetic properties of the FeNi, ( 11 1 ) surface is segre- 
gation, which has been shown15 to lead to a 60% enrichment 
of the surface atomic layer with iron. In the second atomic 
layer, the iron concentration is already essentially back at 
the stoichiometric level ( 30% ) . The surface ferromagne- 

tism of FeNi, ( 11 1 ) is probably due to an enrichment of a 
surface atomic layer with iron, as is indicated in particular 
by the agreement between the surface Curie temperature of a 
Permalloy-like alloy, T,, = 1050 + 20 K, and the Curie 
temperature of bulk iron, T, = 1043 K. 

If we wish to solve the problem of the magnetic struc- 
ture near a surface while maintaining complete consistency 
from layer to layer, we must solve a system of an infinite 
number of equations for the electron occupation numbers 
n,, of a site in layer z ( z  = 1,2, ...) with spins a = f . It is 
rather difficult to predict at the outset just how many layers 
need to be taken into consideration; even if the number has 
been provided by experiments [as it has in the case of, e.g., 
Cr ( loo), in which this number is N z  10 (Ref. 16) 1,  the 
problem is still extremely difficult. The length scale over 
which a significant change in the magnetization occurs is 
one atomic layer, so it is not totally legitimate to switch from 
the discrete variable z to a continuous variable and then 
minimize an energy functional, as is done in the density- 
functional method or in the method based on the use of a 
Ginzburg-Landau functional with z-gradient terms. In 
cases in which self-consistency is imposed by means of a 
computer with discrete z, it is difficult to interpret the re- 
sults. Furthermore, there would be strong suspicion that an 
inhomogeneous solution found in this manner would not be 
unique (Ref. 17, for example). 

It thus looks worthwhile to take a slightly simplified 
approach. Specifically, we will determine how a semi-infi- 
nite crystal in the simple strong-coupling model responds in 
the linear approximation to uniform and nonuniform mag- 
netic perturbations. These perturbations would be, for ex- 
ample, an external magnetic field (Sec. 2)  or the magnetism 
of a surface atomic layer (Sec. 3). This method leans on the 
"approximation of one atomic layer," which itself has a 
somewhat shaky foundation for metals in the middle of the d 
~ e r i e s , ~  if the discussion is limited to them alone. However, a 
calculation of the magnetic response in the surface layers to a 
surface magnetism also yields results for Cr (which lies in 
the middle of the 3d series) which agree qualitatively with 
experiments and also with other, more accurate calcula- 
tions, e.g., calculations carried out by the spin-fluctuation 
method.16 A study of the surface magnetism of Cr ( 100) by 
angle-resolved photoelectron spectroscopy with the help of 
synchrotron radiation has revealed that the magnetization 
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profile in the surface region has oscillations. These oscilla- 
tions decay with distance into the crystal. Their period is the 
same as the lattice constant, at least near the surface; i.e., it 
reverses its orientation in the transition from one atomic lay- 
er to the neighboring As was pointed out in Ref. 
19, it is the surface atomic layer of chromium which, having 
the maximum magnetization at T, < T< T,, "stabilizes" 
the magnetic structure in the atomic layers near the surface. 

The possibility of an antiparallel orientation of the sur- 
face and bulk magnetic moments of a metal along this ap- 
proach is suggested by results of research on the magnetic 
response of surface layers to a magnetism of a surface atomic 
layer: It turns out that the resultant (over the layers) mo- 
merit induced by the surface moment is antiparallel to this 
surface moment (Sec. 3) for certain positions of the Fermi 
level. If the temperature is lowered below the bulk Curie 
point, or if there is a formal increase in the Coulomb interac- 
tion in the system, the result is the appearance of a sponta- 
neous magnetization over the entire crystal. A further result 
is that this effect propagates over the entire crystal; i.e., the 
surface moment turns out to be antiparallel not only to the 
resultant moment of the surface layers but also to the mo- 
ments of all the inner layers (Sec. 4 )  which arise at T< T,,. 

With a further strengthening of the interaction [or with 
a further lowering of the temperature, as in some experi- 
ments' on FeNi, ( 11 I ) ] ,  a solution corresponding to an 
antiparallel orientation, which exists along with the solution 
corresponding to a parallel orientation, disappears: The 
strengthened Coulomb interaction in this system and the in- 
creased bulk moment become factors which unambiguously 
put the surface moment in an orientation parallel to the bulk 
moment of the metal. 

Calculations carried out below for the ( 100) face of a 
simple cube show that the change in the orientation of the 
surface moment occurs abruptly. The reason lies in a change 
in the band structure near the surface: Tamm surface states 
abruptly disappear. Unfortunately, the errors of the 
measurements ' of the temperature dependence of the sur- 
face moment for FeNi, rule out a determination of whether 
the orientation of the surface moment changes abruptly. An- 
swering this question will require more-careful measure- 
ments of the temperature dependence of the surface moment 
near To = 730 K and also theoretical work with a more ap- 
propriate consideration of the crystal structure of the alloy 
and of the indices of the face. These factors largely determine 
the conditions for the appearance of, and also the nature of, 
surface bands." 

In Sec. 2 we examine the effect of a magnetic field on a 
semi-infinite nonmagnetic metal. In Sec. 3 we calculate, for 
the surface region, the magnetic response of a metal which is 
nonmagnetic in its interior to a magnetism of a surface atom- 
ic layer. In Sec. 4 we examine the effect of an antiparallel 
orientation of the surface and bulk moments. 

2. EFFECTOF A MAGNETIC FIELD ON A SEMI-INFINITE 
CRYSTAL 

To describe the effects outlined above on the basis of the 
strong-coupling model we consider a crystal with a simple 
cubic lattice, consisting of N, atomic layers z = 1,2, ..., N, 
and a surface corresponding to the ( 100) face. We write the 
Hubbard Hamiltonian in the form 

lo ff'o fc 

Here E ,  is the energy of a one-electron atomic state, 
n, = c,;t c,; c,;t (c, ) is the operator which creates (annihi- 
lates) an electron with a spin a = + at the site f = (p,Az), p 
is a two-dimensional vector in a layer parallel to the surface, 
B,, is the amplitude for the hop of an electron from site f to 
site f' (we assume that this amplitude is equal to B for sites 
which are nearest neighbors and zero otherwise), U is the 
energy of the intraatomic Coulomb repulsion of electrons 
with different spins, and A is the interatomic distance. 

For simplicity we are ignoring the dependence of the 
parameters E, , B, and Uon the distance to the surface, z. We 
are putting a subscript z on the chemical potential p and the 
magnetic field h to reflect the fact that these properties de- 
pend on the index of the atomic layer. We do this because we 
will be deriving equations for the electron occupation 
numbers in an atomic layer with an arbitrary z through a 
corresponding differentiation of the thermodynamic poten- 
tial with respect top, and h, (Sec. 4) .  We will then set all the 
p, and h, equal to each other, i.e., independent of z. In this 
sense the parameters of the Hamiltonian do not depend on 
the distance to the surface, and the variation of the resulting 
solutions along z stems exclusively from the fact that the 
crystal has a surface. 

For electrons without an interaction ( U = 0 )  it is a sim- 
ple matter to derive exact expressions for the one-particle 
Green's functions of layer z: 

i sin cp,z 
G,," (~f iO, k)s= ----- exp (Ticp,z) 

2nN,B sin cp, 

Here k is a two-dimensional wave vector, E is the energy, 
and the quantity p, is determined by the relations 
cosp, = wku, sinp, > 0, w,, = ( E  - &,)/2B - S,, 
E, = E' - oh, and S, = cosk, A + cosk,A. Hence we can 
derive expressions for the moment induced at an atom in 
layer z: 

We can also derive corresponding expressions for the sus- 
ceptibilities: 

These susceptibilities differ only by a dimensional factor 
from the local density of states. The summation over k in (3  ) 
and (4)  is over the first Brillouin zone of the square lattice. 
The quantity p, is given by cosp, = w, - S,, where 
w, = (E, - E, )/2B. 

One can verify that in the limit z- WJ the expression for 
x i s  the same as the corresponding expression which has been 
derived for an infinite (not semi-infinite) crystal, X, 
(sin2p,z-+ 1/2 as z- WJ . For Ax, = X ,  - X, we then have 
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FIG. 1. Deviation of the magnetic susceptibility in 
the zth atomic layer from the bulk value versus the 
position of the Fermi level in the band of the metal. 

",& 

It can be seen from (5)  that the susceptibility of a semi- 
infinite crystal is higher than that of a bulk crystal; the effect 
is on the order of l/N,. Figure 1 shows AX, and AX, versus 
the position of the Fermi level in the band, w,. We see that 
under the condition 1 < w, < 2 we have A x ,  > 0; i.e., for this 
position of the Fermi level, the surface atomic layer has a 
greater tendency to be in a magnetic state than the inner 
atomic layers do. For the same values of w,, we showed in 
Ref. 6 that a surface ferromagnetism exists at corresponding 
values of the Coulomb-interaction energy U. The difference 
AX, turns out to be smaller than A x , ,  and it has the other 
sign at 1 5 w, 5 2. In the case w, z 1, there are van Hove 
singularities, which are more prominent for AX, than for 
AX, We might add that these results were derived under the 
assumption that there are no surface bands, in accordance 
with the results of Refs. 6 and 7. It was shown in those stud- 
ies that surface ferromagnetism occurs in this model when 
surface bands are ignored. It stems from a distortion of the 
surface density of states in comparison with the bulk density 
of states. 

3. MAGNETIZATION OF THE SURFACE LAYERS OF A METAL 
WITH A FERROMAGNETIC SURFACE 

We now examine how a semi-infinite crystal is affected 
by a nonuniform perturbation consisting of a ferromagnetic 
state of a surface atomic layer. Our goal here is to calculate 
the magnetic moments at the atomic layers which lie below 
the surface layer and which are magnetized by this surface 
layer. The problem of the conditions for the appearance of a 
ferromagnetic state of a surface atomic layer in a metal 
which is nonmagnetic in its interior was solved in Ref. 6 by 
means of the same model which we are using here, in the 
approximation of a single atomic layer. We assume here that 
the condition that the surface is in a magnetic state, which is 
reached when the Coulomb interaction U exceeds a certain 
critical level Us (which depends on the position of the Fermi 
level in the band), is satisfied. On the other hand, we assume 
that the extent by which U exceeds Us is not too great. The 
latter assumption allows us to assume that the electron occu- 
pation numbers for the surface atoms differ only slightly 
from the bulk values, so we can ignore the surface bands in 

the calculations and thereby simplify the problem. 
The equation for the Green's function Gzz ( ~ , k )  is 

where y and I are N, x N, matrices, 

no is the number of electrons per atom for an atomic layer far 
from the surface, and n ,  , is the number of electrons with a 
spin - u for a surface atom. Using the notation 
w - S, = cosp, and assuming sinp > 0, we can easily derive 
expressions for the retarded and advanced Green's function 
of an arbitrary layer: 

i sin qz-x, sin rp (z-I) er,,r2 
GzZo(e_+iO, k)  = --- 

2nN1 5 (1 -x,eTQ) sin cp 
3 (7) 

We can also derive the corresponding density of states at 
layer z: 

1 [sin rpz-x, sin cp (2-1) 1' 
""(m)= & 3 $ ' \ 1 - 2 ~ ~  cos (8 )  

We can thus derive expressions for the electron occupation 
numbers in the layer: 

[sin c p z ~ x ,  sin cp(z--1) l 2  
nza=fkfw (1-22 cos rp+x:)sin rp 

(9)  

h A 

Here J, and J,  are the integral operators 

We see from (9)  that if the surface is nonmagnetic, i.e., if 
- ns+ -nS- or 3t + = x ._ , then we also have n, + = n,- , 

i.e., m, = 0 for arbitrary z. If, on the other hand, the condi- 
tion x + # x  - holds, the surface moment is m, +O, in accor- 
dance with the evolution of the band structure with distance 
into the crystal away from the surface. It "stabilizes" the 
magnetic structure near the surface, as was stated in Ref. 19. 
Expanding (9) in a series in the small parameter x,, and 
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FIG. 2. Magnetic moments at the atoms of the first five atomic 
layers (the curve labels) induced by a magnetic surface versus the 
posltion of the Ferm~ level in the metal band. 

using only the linear approximation, we find expressions for ture of the surface region. In this regard our method differs 
the moments induced by the magnetic surface at an arbitrary from previous calculations, e.g., by the spin-fluctuation 
layer z. After an integration over the energies w, the expres- method,16 which is apparently the most appropriate method 
sion for m, = n, + - n, becomes for describing the magnetic properties of transition metals. 

The question of a ground state thus does not arise. Further- 
sin (p,(2a--1) sin ( o F ( ~ z +  1) 

m,=pm.j .  [ " - 
23- 1 2 i - 2  

more, we have placed no restriction on the number (N) of 
layers incorporated in the self-consistent calculations, and 

( 11 the properties of these layers have been assumed to differ 
from those of the bulk layers (N = 10 was assumed in Ref. 
16). 

It is also a simple matter to calculate the resultant moment ANTIPARALLEL ORIENTATION OF THE SURFACE AND 
m, induced by the magnetic surface (the resultant over the BULK MOMENTS OFA METAL 
layers) : 

In this section of the paper we show that a state with 
m 

sin 3qr. antiparallel surface and bulk moments can arise as a solution 
m, = x m:=gm..fk _-.  (12) of a system of equations for the corresponding occupation 

.- > 3 
L-- numbers. Such a state is favored from the energy standpoint - - 

Figure 2 shows curves of m, versus the position of the Fermi for certain values of the parameters of the model-values 

level in the band; here w, represents the quantity. which are characteristic of FeNi,. For simplicity we will 
ignore the segregation-induced differences between the pa- 

(E, - E ~ ) / ~ B  - gn,/2. rameter values of the model for the surface and the interior. 
We see that if the Fermi level lies near the middle of the band 
the moments induced at the layers near the surface by a mag- 
netic surface change sign from one atomic layer to the next. 
The adherence to this behavior is stricter, the closer the Fer- 
mi level to the middle of the band. As we mentioned in the 
Introduction, this behavior has been observed experimental- 
ly1*,19 at temperatures above the NCel point T, in the sur- 
face layers of Cr, which is in the middle of the 3d series. 

Figure 3 shows the behavior of the resultant (over the 
layers) moment induced by a magnetic surface, m,, as a 
function of the Fermi energy w,. We see from this figure that 
we have m, < 0 near the middle of the band and-the more 
important point-that this condition also holds at 
1 < w, < 2, i.e., at values of w, for which a surface ferromag- 
netism occurs. A magnetic surface thus creates a resultant 
moment of the opposite sign near the surface. This result 
suggests at the very least that an antiparallel orientation of 
the surface and bulk magnetic moments is possible upon the 
appearance of a spontaneous magnetization in the interior. 
This coincidence of the o, intervals in which the surface 
ferromagnetism occurs and in which the condition m, < 0 
holds also suggests that metals for which surface ferromag- 
netism occurs probably also have an antiparallel orientation 
of the bulk and surface moments. This combination has been 
manifested in experiments'32 on FeNi, ( 11 1)  and Gd 

This would correspond better to the experimental situation 
regarding FeNi, ( 1 1 1 ) in Ref. 1. We will show that an anti- 
parallel orientation of the surface and bulk moments can 
also occur when the values of these parameters are the same. 
To reach our goal, we again use Hamiltonian ( 1 ), now as- 
suming that the inner layers of the metal can be in a magnetic 
state. The difference between the surface and bulk occupa- 
tion numbers can then be substantial, and there is no justifi- 
cation for excluding surface bands from the analysis. Since 
an entire set of possible magnetic surface states is realized in 
this section, in contrast with the preceding sections of this 
paper, we must compare the thermodynamic potentials cor- 
responding to these states in order to decide which is the 
ground state. We will accordingly not use the Green's-func- 
tion method. We will instead calculate the thermodynamic 

(0001). 
FIG. 3. Resultant value, over the layers, of the magnetic moment induced To this we that we have made no by a magnetic surface in a nonmagnetic metal ( U = 0 )  versus the position 

special assumptions regarding an antiferromagnetic StruC- of the Fermi level in the metal band. 
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potential of the metal by solving the eigenvalue problem for 
Hamiltonian ( 1 ) for a semi-infinite crystal. 

Considering only magnetic states which are uniform 
along the surface, we take two-dimensional Fourier trans- 
forms in Hamiltonian ( 1 ) .  In the approximation of a self- 
consistent field we then find 

o,k0=2B (&,+Un,, -,-p,-ah.-Sk), 

-o,k,=2B(e,+Un, -,-p,,-ah,-Sk). 

It is convenient to break w,, up into two parts: 

sin cp(N,+1) 
f ~ ,  ((PI= = Xo. 

sin cpN, 

Figure 4 shows a plot of the function fNl (p ) .  We see that 
under the condition Ix, 19 ( N ,  + 1 ) / N ,  z 1 ,  Eq. ( 16) has 
N,  roots on the interval [O,a], while if the condition 

I K ,  I > ( N 1  + 1 ) / N l  holds Eq. ( 16) has N, - 1 roots on this 
interval. In other words, if (x, ( > 1 ,  then surface bands ap- 
pear. These bands are discussed below under the assumption 
A + a,,, > 1 or A + w,,, < - 1 .  The problem of finding 
the eigenvalues of Eq. ( 16) was solved in Ref. 8 by a method 
of successive approximations in the small parameter x,. In 
other words, the assumption Ix, I 4 1 was used. It was shown 
in particular that all the corrections to the Taylor series in xu 
for A are small quantities on the order of l / ( N ,  + 1 ) .  In the 
present paper we have succeeded in deriving an analytic 
expression for the eigenvalues A by making use of the small 
quantity l / ( N l  + I ) ,  without the further assumption that 
the quantity x, is small. In other words, we write 

In accordance with the discussion above, all the quantities in 
Sw, which correspond to the interior and the surface are set 
equal, except for n ,  - , and n ,  - , , which we intend to find in 
a self-consistent way. We will refer tow, as the "Fermi ener- 
gy" or "chemical potential." The first term in ( 13) is simply 
a number, since it contains nothing but expectation values of 
n,, . The equation for the eigenvalues A of Hamiltonian 
( 13) can thus be written 

detll-'lz61., (A-o,k0)6,. ,  z-1/26z-, z+ll(=O. ( 1 5 )  

The solutions of Eq. ( 1 5 )  differ substantially in the three 
cases~A+w, , ,~<1 ,A+w, , ,>1andA+w, , ,<  -1.  

Let us consider each case separately. If IA + up,, I < 1, 
then by introducing A + w,,, = cosq and assuming 
sinp > 0 we can rewrite Eq. ( 15) as 

sin cp ( N , + l )  -x ,  sin tpN,=O, x,=26m,, ( 1 6 )  

i 

x.. sin cp, 
arctg 

i --X, cos cp,, 

I )  

I 

n0 ( % , - I )  0 arccos - - y., ( .. 
+ '  

- n ~ ( - x . - i ) ~  (cp, - arccos-- 
\ 

where B ( x )  is the unit step function. 
We now assume A + w,,, > 1 .  Using the notation 

A + w,,, = chp, and assuming shq > 0, we find Eq. ( 15) in 

FIG. 4. Graphical solution of Eq. (16).  Under the condition 
(x, I < 1, there are N, solutions on the interval [0, P I ,  as num- 
bered in this figure. At x ,  > 1, the first root disappears. At 
x, < - 1, the N,th root disappears. 
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FIG. 5. Graphical solution of Eq. (18). At xu > 1, there is one solution, 
which satisfies the condition pa > 0 and which corresponds to a surface 
bandp; (o). 

the form 

For p > 0, this equation has roots only under the condition 
x u > + l .  Figure 5 shows curves of 
fn; (p) = shp(N, + 1 )/she, N,. Taking the limit N, -+ CC, 

we (p) - ev. In other words, the eigenvalue found in 
this case can be written in the form 

If A + w,,, < - 1, then by introducing the notation 
A + w,,, = - chp and assuming shp > 0, we find the 
equation 

shp (N, + 1 + x, sh pN, = 0, 

in the corresponding way. This equation has a solution only 
under the condition x, < - 1: 

Hamiltonian ( 13) can thus be written in diagonal form, 
with an accuracy to l/(Nl + by going over from the z 
representation of ( 3 )  to the q representation: 

The operators A,,,, and A,,,,, correspond to surface bands, 
i.e., to the first or N, th value of q, which specifies the partic- 
ular root of Eq. (15) under the condition x,  > + 1 or 
xu < - 1. The summation over q in the second term in (2  1 ) 
should be carried out under the condition that the total num- 
ber of states is conserved. In other words, if xu > + 1, then 
2<q<N,, and if xu < - 1 then 1 <q<N1 - 1. This approach 
reflects the introduction of the primed sum over q in (2 1 ). 
We might add that the last two terms in (21 ) are not mutual- 
ly exclusive, since the case with x + > + 1 and x - < - 1 or 
with x + < - 1 and x > + 1 is possible. In other words, 

there is the possibility in principle of a situation with two 
surface bands. 

Using ( 17), ( 19), and (20), we write an expression for 
the thermodynamic potential R at finite temperatures T: 

where t = T /2B. Introducing 

and taking the limit t - 0, we find an expression for the ther- 
modynamic potential of a semi-infinite crystal at absolute 
zero. This expression is broken up into a volume part 
( a Nil N, ) and a surface part ( cc NII ) : 

We introduce 

We can also write an expression for the function repre- 
senting the density of surface states, which we found by a 
Green's-function method and which consists of three contri- 
butions: 

The last two of these components exist by virtue of the exis- 
tence of surface bands. Here 
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We will need these expressions in order to determine the 
spectrum of the surface band structure. Equations for the 
occupation numbers of the surface, n,, = nj:' + n: + n,  , 
are found through an appropriate differentiation of the ther- 
modynamic potential a, or through an integration of ( 2 5 ) .  
We write the contributions n,, from the surface bands sepa- 
rately: 

Correspondingly, for the part of the surface moment asso- 
ciated with the surface bands we find 

In the limit t -0  we then find 

It can be seen from these expressions that a surface- 
band contribution to the occupation numbers exists only for 
x ,  > + 1 in the case of n$ or for x ,  < - 1 in the case of n,  . 
The expressions found for n z  through the integration of the 
density of states in ( 2 5 )  are the same as those given in ( 2 8 ) ,  
as they should be. The expression for nj:' is 

Adding ( 2 8 )  and ( 2 9 ) ,  we find a system of equations 
for the electron occupation numbers of a surface atom, n, + 

and n,- . This system of equations must be solved jointly 
with the system of equations for the electron occupation 

numbers for an atom from an interior layer of the metal, nu,: 

n,0=1/2jk (n-arccos w,ko) ,  ( 3 0 )  

The reason is that the quantity x ,  = 2 g ( n ,  -, - nu, _ , ) ap- 
pears in ( 2 8 )  and ( 2 9 ) .  

Unfortunately, in solving Eqs. (28)-(30)  for the elec- 
tron occupation numbers of a surface atom, n, + and n, - , 
we cannot use an expansion in x u ,  since to do so would im- 
mediately cause the formal disappearance of the surface 
bands. In addition, a joint numerical solution of Eqs. (28 )- 
( 3 0 )  leads, for certain values of the interaction j = U /  W 
( W = 12B is the width of the band of the metal), to magnetic 
solutions which correspond to \ x u  1 > + 1. In other words, 
surface bands would in fact exist. Figure 6a shows curves of 
the magnetic moments of surface atoms, m,, and of bulk 
atoms, mu, versus j for various solutions; the corresponding 
thermodynamic potentials a, for absolute zero are shown in 
Fig. 6b. 

Figure 7 illustrates the graphical method used to solve 
the system of equations for n, + and n, - . In other words, 
this figure shows n, + versus n, - and also n, - versus n, + 

for various values of the interaction j. At sufficiently small 
values j < j,, the surface and the interior are nonmagnetic: 
The n, + ( n ,  - ) and n, - ( n ,  + ) curves have only one inter- 
section point, on the diagonal ( n ,  + = n, - ) of the unit 
square O<n,, ( 1. This case is trivial and is therefore omit- 

FIG. 6 .  a: Magnetic moments ~~~rresponding to the first, second, and third 
solution for the surface versus the interaction j. The dashed line shows the 
surface moment realized in a weak magnetic field h > 0. b: Thermodynam- 
ic potentials corresponding to the first, second, and third solutions at 
T = 0 for the surface versus the interaction j. Under the conditions 
j, < j  < j,, the preferred solution has an antiparallel orientation of the sur- 
face and bulk moments, because of the relations a,, <a,,, a,,. 
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FIG. 7. Graphical solution of the equations for the electron occupation 
numbers n,, and n, of a surface atom. a: j, < j  < j,. There are two mag- 
netic solutions ( 1  and 3 )  and one nonmagnetic solution (2), 
m,, = - m,,. b: j, < j <  j,. Solution 2 has become magnetic. The points 
corresponding to solutions 2 and 3  approach each other with increasing j. . . 
c: J = j .  Solutions 2 and 3  have become coincident. m,,, < 0. d: j>  j,. 
Solutions 2 and 3  with m, < O  have disappeared. Only solution 1, with 
m, > 0, remains. \* 

ted from Fig. 7. When the strength of the interaction reaches 
j = j, + 0, the surface can be in either of two states, which 
are designated 1 and 3 in Fig. 7. Corresponding to state 1 is a 
moment m,, > 0, and cerresponding to state 3 is m,, <0. 
State 2 is nonmagnetic under the conditions j, < j< j ,  
(m,, = 0). With increasing j, the magnetic states appear 
smoothly, without discontinuities; i.e., a second-order phase 
transition occurs at the surface. In the interior, we have 
mu = 0, as before; i.e., we find a surface ferromagnetism. 
This effect cannot occur at arbitrary values of the Fermi 
en erg^.^ The curves in Figs. 6 and 7 were constructed for 
w, = 6. 

By virtue of the symmetry under time reversal, the state 
with a magnetic surface is degenerate with respect to the 
orientation of the moment m,, = - m,, <O and also 
R,, = R,, under the conditions j, < j < j, (Fig. 6b). Here we 
have R,, > R,,,, . At j >  j,, a moment mu #O appears in the 
interior. As can be seen from Fig. 6a, this event occurs 
through a first-order phase transition. This conclusion does 
not agree with the experimental situation, since the bulk 
magnetism appears in FeNi, through a second-order phase 
transition. 

In principle, the Hubbard model also allows the appear- 
ance of a bulk moment through a second-order phase transi- 
tion, at, for example, w, = 9. This point is not of really fun- 
damental importance, however, since a search for solutions 
which are magnetic for the interior in the Hubbard model in 
the mean-field approximation should be regarded as basical- 
ly a modeling of bulk magnetism followed by a resolution of 
the question of the state of the surface. The more favorable 
magnetic solution for the interior is also degenerate with 

respect to the orientation of the moment. Let us assume that 
we have turned on an i~finitely weak field h > 0. Under the 
conditions j, < j < j, , there will then be a magnetic state at the 
surface with m,, > 0. At j >  j,, of the two magnetic solutions 
for the interior, mu 30 ,  the state with m, > 0 will be realized. 
The latter conclusion is correct because the correction to the 
bulk solutions for the presence of a surface, which we are 
ignoring, is on the order of l/N,. The question of the surface 
state is thus solved for an unambiguously given bulk state 
(mu >O). 

When a bulk magnetism ti> j, ) arises, the symmetry 
(with respect to the diagonal n, + = n, - ) in the positions of 
the magnetic solutions for the surface is disrupted, as can be 
seen from Figs. 7a and 7b. Points 1 and 3, which correspond 
to a magnetic solution for the surface with m,, >O and 
m,, < 0, begin to move toward the upper left corner in Fig. 
7b with an increase in jand with a consequent increase in the 
bulk moment, mu (j) > 0. In other words, the moment 
m,, > 0 increases, while the moment m,, < 0 decreases in 
magnitude, while remaining negative; i.e., the increasing 
bulk moment mu > 0 magnetizes the surface in its own di- 
rection. Solution 2, which was nonmagnetic in the case j < j,, 
initially moves away from the diagonal n, + = n, upward, 
in an abrupt jump. It then descends smoothly, intersects the 
diagonal, and takes a position below the diagonal at suffi- 
ciently large values o f j  (Fig. 6a). Points 2 and 3 in Fig. 7b 
thus move toward each other with increasing j >  j,. 

When the interactionjreaches a certain critical value j,, 
the points corresponding to solutions 2 and 3 coincide. This 
coincidence corresponds to a tangency of the curves in Fig. 
7c. The moment corresponding to them remains negative 
(Fig. 6a). Finally, at j> j ,  the curves intersect just once: 
Solutions 2 and 3 disappear, and we are left with only solu- 
tion 1, with m ,, > 0 (Fig. 7d). It can be seen from Fig. 6b 
that the magnetic solution with a negative moment for the 
surface corresponds to a lower thermodynamic potential for 
the magnetic interior, R,, < a , , ,  R,,, under the conditions 
j, < j < j, . The switch from solution 3 with m, < 0 to solution 
1 with m, > 0 at the pointj = j, is accompanied (Fig. 6a) by 
an abrupt change in the magnitude and sign of the surface 
moment. The dashed line in Fig. 6a shows the behavior of the 
surface moment which is realized in a weak magnetic field as 
the interaction j increases. 

Figure 8 shows curves of the "phase boundaries" j,, j,, 
and jo versus the temperature. The critical value increases 
with increasing tempera t~re .~  The quantity j, also increases 
with the temperature. In this case j, (T)  does not intersect 
j, ( T), although for certain positions of w, the j, ( T) curves 
can have a shallow rn in im~m.~ '  The quantity jo apparently 
also increases with the temperature. We now consider a 
semi-infinite crystal withj > jo at T # 0. At low temperatures 
T <  To, the surface and the interior are magnetized in paral- 
lel; i.e., we have m, > 0. When the temperature reaches the 
value To, which is the root of the equation j = j, ( T), the 
interaction j becomes smaller than j,, (T)  at T >  To. In this 
case (Fig. 6a), the surface moment changes abruptly in val- 
ue, going negative at To < T <  T,, (Fig. 8b). With a further 
increase in the temperature, the magnetic moment decreases 
at the Curie point T,,, and the surface moment becomes 
positive again, since the interaction j becomes weaker than 
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FIG. 8. a: Plots of j,, j,, and j, versus the temperature T. The Roman 
numerals mark the regions bounded by the curves j, ( T ) .  I-m, = 0, 
m, = 0; 11-m, > 0, m, = 0; 111-m, < 0, m, > 0; IV-m, > 0, m, > 0. b: 
The surface magnetic moment m, versus the temperature in a weak mag- 
netic field h > 0. 

j, ( T) (see Fig. 6a for j, < j < j, ) . Finally, at T >  T,, , the in- 
teraction j becomes weaker than j, ( T); i.e., the surface mo- 
ment disappears. 

The result is the temperature dependence of the surface 
moment, m, ( T), shown in Fig. 8b. This dependence precise- 
ly reproduces the experimental behavior' of the surface mo- 
ment of the alloy FeNi, ( 11 1 ) , with one exceptional point. 
At T = To, there is a jump in the moment on the theoretical 
curve. Judging from the accuracy of the temperature and 
moment measurements in Ref. 1, that jump could not have 
been detected experimentally. A final answer to the question 
regarding the jump in the surface moment at T = To will 
have to await more-accurate measurements as well as more- 
detailed calculations, incorporating the crystallographic 
structure of the FeNi, alloy, the indices of the face, the con- 
centration profile, etc. The qualitative picture which 
emerges from the simple model which we are discussing 
here, which systematically incorporates the evolution of the 
band structure as we approach the surface, probably reflects 
the experimental situation more accurately. 

In agreement with the experimental results3 on Gd 
(OOOl), the antiparallel orientation of m, and m, occurs at 
arbitrary T <  T,, (in Ref. 3, the lowest temperature studied 
was 200 K). Ifj,, j, < j < j, , then this effect (the antiparallel 
orientation) formally occurs down to T = 0 (Fig. 8a). This 
conclusion agrees qualitatively with the experimental results 
on Gd(0001) , although the approximation of collectivized 
electrons is not regarded as a good approximation of the 
band structure of rare earths. 

It is also interesting to follow the evolution of the band 
structure corresponding to the three solutions ( 1,2, and 3 in 
Figs. 6 and 7 )  for the surface as the interaction j strength- 
ens. When we fix the Fermi level, w, = 6, we find the follow- 
ing results. At j< j ,  = 0.887, the density of states is spin- 

FIG. 9. The band structure of the surface corresponding to the first (a),  
second (b) ,  and third (c)  solutions versus the strength of the interaction. 

degenerate p,, ( u )  =p,- (w), p,, ( 0 )  =p,- (w) and 
symmetric with respect to the middle of the band. This result 
is a consequence of our choice of a simple cubic lattice, 
which has no surface bands (Fig. 9) .  At j Z  j,, in addition to 
solution 2 for the density of states (this solution is symmetric 
with respect to the middle of the band) we find two other 
solutions, for which there are peaks inp, + (w ) and p, - (w) 
above and below the middle of the band (Fig. 9, a and c). 
The interval of energies w again coincides with the bulk in- 
terval; if j is not too large, there are no surface bands. 

For the first solution in Fig. 9a, p,, (w) has a peak at 
the bottom of the band, and p, - (w ) has one at the top. We 
thus have n ,, + > n,, - and m,, > 0 (Fig. 9a). For the third 
solution, we find the opposite situation: p, + (a) has a peak 
at the top of the band, and p, - (w) has one at the bottom. 
We thus have n,,, <n,, and m,, <O (Fig. 9c). With a 
further strengthening of the interaction, jsj, = 0.92, the 
first and third solutions contain surface bands: For the first 
solution, a surface bandp, (w) splits off from the top of the 
bulk band, and a surface band p,f, (w) splits off from the 
bottom, because of the relation (x, * ( > 1 (Fig. 10a). We 
thus find that p,- ( o )  shifts upward, and p,, (w) down- 
ward. The number of electrons n , , ,  become even greater 
than n,,- , and the moment m,, increases (Fig. 6a). For the 
third solution, in contrast, a surface band p L  (w) splits off 
from the top of the bulk band (x3,+ > + 1 in Fig. lob), 
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FIG. 10. Dependence of the surface perturbations x ,  = 2g 
X (n, , - n, _ , ) on the interaction j (g  = 6j). a-Corresponding to the 
first solution; b--corresponding to the second and third solutions. 

while a surface band p, (w) splits off from the bottom 
(x,, - < - 1 in Fig. lob). The negative moment m,, in- 
creases in magnitude, since the number of electrons n,,- 
increases, while n,, , decreases. 

At j < j,, the surface perturbations x * for the first and 
third solutions are not particularly large (maxlx, 1 z 1.2). 
In other words, these perturbations do not make particularly 
large excursions from the interval ( - 1, + 1 1. Consequent- 
ly, the number of electrons in the surface bands is low, and 
their role negligible. The situation changes when the interac- 
tion j becomes greater than j , ,  and a moment m, > 0 appears 
in the interior of the metal. The bulk band p, + (o) shifts 
downward, and p,- (w) upward; i.e., the changes are the 
same as for the surface densities ofstates pi? w andpfO! (w). 
For the first solution we have m,, > 0, and the two surface 
bands disappear entirely (Figs. 9a and lOa), because of the 
relation Ix, + I < 1. For the third solution (Fig. 9c), the role 
of the surface bands increases substantially, since x, + in- 

creases from 1.2 to 2.1, and x, - decreases from - 1.2 to 
- 1.9 (Fig. lob). 

With a further strengthening of the interaction, x, + 

increases to z 3, while x,  - remains essentially the same at 
xj- z - 2. The top of the surface band p, (w) corre- 
sponding to the perturbation x,- reaches the Fermi level 
from below a t j  = jo . At this time, the thermodynamic poten- 
tials R,, and R,, become comparable (Fig. 6b), and a first- 
order phase transition occurs from the third solution, with 
m,, < 0, to the first, with m,, > 0. This transition at j = jo is 
accompanied by the abrupt disappearance of the surface 
bands p, (w ) and p A  (w ) . 
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