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It is shown that the suppression of the ionization of an atom, known as stabilization, as the 
intensity of a strong external alternating field is increased can be explained on the basis of classical 
ideas about the motion of an electron in an atom. The conditions under which stabilization arises 
are determined. These conditions describe well the results of other quantum and classical 
calculations. 

1. INTRODUCTION 

It  is well known that the quasiclassical or classical de- 
scription is applicable for highly excited atomic states. In a 
number of papers'-3 the behavior of highly excited atoms in 
an electromagnetic field was investigated on the basis of clas- 
sical dynamics of the motion of an electron in two fields-an 
external field and the atomic field. For the external field 
characteristic frequencies w - n - 3 ,  where n is the principal 
quantum number of the atom, and intensities less than the 
intensities of the atomic field g 5 8', -0. In - 4  were studied 
(here and below the atomic system of units e = f i  = m = 1 is 
employed). New qualitative phenomena were discovered: 
stochastization and diffusion of electron motion along the 
energy levels, overlapping of resonances, etc. 

The range of parameters w > n -'%n - 3, 29 > $, is, 
however, no less interesting. Under these conditions the 
quantum  calculation^^^^ revealed an unexpected effect, 
termed stabilization of an atom in a strong field. It consists of 
an increase in the photoionization lifetime of an atom at a 
constant frequency w as the field strength $ increases. It is 
remarkable that stabilization arises in alternating fields 
which are much stronger than the atomic fields, while in a 
constant field of the same strength ionization occurs over 
shorter times, of the order of the Kepler period T,, = 2nn3 of 
revolution of an electron in a classical ~ r b i t . ~ ' , ~ '  

Although the fact of stabilization itself is confirmed by 
independent calculations, the mechanism and conditions 
under which this phenomenon appears have not been ade- 
quately studied. In particular, the following fundamental 
questions have thus far not been answered: 1 ) is the stabili- 
zation purely a quantum effect or do simpler "classical" ana- 
logs exist for it? 2) If "classical" stabilization is indeed possi- 
ble, then for what values of the parameters of the ionizing 
field can it be expected to arise? The last question is of direct 
practical value, since no work on the experimental observa- 
tion of stabilization has thus far been performed. It is ob- 
vious that in order for such experiments to be successful the 
correct regimes must be chosen. 

There are a few reports in which the problem of stabili- 
zation is studied on the basis of the classical de~cript ion. '~-~~ 
The main result of Refs. 23 and 24 is that suppression of 
ionization is possible only for highly excited states, if real 
fields, which can be achieved using modern sources of radia- 
tion, are employed. These results will be discussed in greater 
detail below (see Sec. 4).  An extension of the results of Refs. 
25 and 26 and new data are presented in the present paper. 

In Sec. 2 the problem of photoionization of a classical 

atom is formulated and a method for solving it is given. The 
computational results and possible regimes in which stabili- 
zation appears are discussed in Sec. 3. In Sec. 4 the results of 
this work are compared with the results of other work. 

2. FORMULATION OF THE PROBLEM AND METHOD OF 
CALCULATION 

The starting point of the classical analysis of photoioni- 
zation of an atom is the determination of the trajectory of an 
electron by numerically solving Newton's equation of mo- 
tion: 

In this equation r is the radius vector of an electron (the 
origin is located at the nucleus); 8, w, and p are the inten- 
sity, frequency, and initial phase of the external field. The 
first term on the right-hand side describes the Coulomb in- 
teraction with the nucleus; the second term describes the 
interaction of the electron with the electromagnetic field. It 
is assumed that the characteristic velocities of the electron 
are small compared with the velocity of light, so that the 
effect of the magnetic component of the field on the motion 
of the electron can be neglected. 

As the initial conditions for Eq. ( 1 ) we chose the coor- 
dinate r, and velocity v, of an electron at the time t = 0, 
when the field is turned on (it is assumed that at times t < 0 
there is no external field and that it is turned on instantan- 
eously at t = 0).  Only s-states are considered. 

Here it is necessary to take into account the fact that at 
the moment the field is turned on the electron can be located 
at different points of its classical orbit, and the orbit itself can 
have various orientations in space. For this reason, the initial 
conditions are prescribed in accordance with the method of 
Monte Carlo traje~tories.~~'' The semi-major axis and the 
position of the plane of the orbit were chosen to be uniformly 
distributed in space, and the starting points on the trajectory 
were chosen to be uniformly distributed over the time of 
motion along the trajectory. The most complete characteris- 
tics of the process in this approach are stochastic and must 
be obtained by means of statistical analysis of the results of 
calculations performed with different initial conditions. 

The equation (1)  was solved numerically by the 
method of "splitting of physical processes," when the incre- 
ments to the coordinates and velocities over some time inter- 
val T are determined for the Coulomb and external fields 
separately, after which the results are added and the neces- 
sary corrections which take into account the nonlinearity of 
the problem are then introduced. In other words, at each 
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time t, + T the solution is sought in the form 

where r,  (t) ,  r2(t),  and r, ( t )  are determined by the following 
equations: 

r, (tn) SO, 

dr,ldt ( *,=0; 

For each trajectory the moment of ionization was deter- 
mined from the condition that the total energy of an elec- 
tron, averaged over a period of the external field, minus the 
average oscillatory energy tT2/4w2 be positive. 

In the numerical calculations the range of frequencies 
of the external field 0 5 w 5 l/n2 was scanned. For each fixed 
frequency in this range we sought relations between tT, w, 
and n for which there appeared electron trajectories with 
lifetime until ionization exceeding the Kepler period T,. 
Stabilization was regarded as arising if more than 50% of the 
trajectories from the statistical sample had lifetimes exceed- 
ing T, . 

3. COMPUTATIONAL RESULTS 

It is easy to see that adding Eqs. (2)-(4) indeed gives Eq. 
( 1 ) with the correct initial conditions for each time t, 

The well known solution of Eqs. (2)  is given in Ref. 28, 
and the solution of the system (3)  is obtained by elementary 
integration. To find r,(t, + T) from Eqs. (4) it is convenient 
to employ Pekar's method, in accordance with which an ex- 
pansion in a Taylor series in the form 

is employed. 
From Eqs. (4) and the initial conditions to Eqs. (2) and 

(3) it follows that a, = ... = a, = 0, and the ith component 
of the vector a, is determined by the relation 

3 

Here the external field 8' is directed along the x axis, 6, is a 
delta Kronecker, x, and x, are the x-components of the vec- 
tors r, and r,, and r,i is the ith component of the vector r,. 

In the calculations the series was truncated at the term 
a4r4, though the subsequent terms of the expansion can in 
principle be obtained by differentiating Eq. (4)  with respect 
to time. The method employed for the calculation gives, on 
the one hand, fourth-order accuracy in the step rand, on the 
other hand, an exact solution for purely Coulomb or purely 
electromagnetic field. In addition, problems associated with 
the singularity of the Coulomb field at the origin do not arise 
in the computational algorithm, since this singularity is au- 
tomatically taken into account when analytical formulas are 
employed for the purely Coulomb motion. 

The computational accuracy was monitored by com- 
paring the trajectories calculated forward and backward in 
time. The step T was chosen so that the error accumulated 
over times of the order of the Kepler period did not exceed 
0.1%. 

3.1. Ionization in a constant field 

The intensity of the Coulomb field decreases with dis- 
tance r according to the law 29, = - l / r  *. The ionizing 
field has the constant value $. From here it is easy to esti- 
mate the size r, of the "Coulomb" region in which the field 
of the nucleus is always greater than the external field: 
r, = 8 - I". If the electron at the moment the external con- 
stant field is turned on is located at a point of the orbit at a 
distance ro > r, from the nucleus, then at this point the exter- 
nal field is immediately stronger than the field of the nucleus 
from the moment of turn-on. For this reason the electron is 
trapped by the external field and escapes from the atom. We 
can say that for ro > r, ionization occurs instantaneously. 
The case when the external field pushes the electron in the 
direction toward the Coulomb region and the electron can 
approach to a distance r < r, from the nucleus is an excep- 
tion. Then the motion of the electron is similar to the motion 
arising if the external field is turned on at a moment when the 
electron is located at a distance r, < r, from the nucleus. In 
this case the electron can at first complete one revolution 
around the nucleus and only then will the electron, moving 
on a Kepler trajectory distorted by the external field, ap- 
proach the boundary of the Coulomb region after a time of 
order T,. After this the electron is trapped by the external 
field and the atom is ionized. 

The characteristic size of the orbit is equal to 2n2, which 
corresponds to the maximum distance of the electron from 
the nucleus in the s state in the Bohr-Sommerfeld model of 
the atom. From this qualitative picture of ionization and 
from the results of numerical calculations it follows that for 
r, < 2n2 ionization of the atom occurs over a time of the 
order of the Kepler period T, of revolution of the electron on 
an undisturbed orbit. Since r, = - 'I2, we obtain from here 
the condition for the strength of the field for which an ioniza- 
tion time T, is realized: 

We shall call such a field strong. It agrees well in order of 
magnitude with the known quantum field [$  2O.lnp4 
(Ref. 21 ) 1 and the classical field [ $ 2  (0.13-0.38)n -4  

(Refs. 21 and 2 2 ) ]  corresponding to ionization within a 
time T, . 

From what we have said above it follows that stabiliza- 
tion is impossible in a strong constant field. 
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3.2. Classification of stable trajectories in an alternating field .Y 4 
Numerical calculations showed that in alternating 

fields there can exist two qualitatively different types of sta- 
ble trajectories. 

Trajectories of the Kepler type are shown in Fig. I. If 6 
the frequency of the external field is significantly lower than 
the Kepler frequency, then the trajectory is an open curve, x 
which between successive passes near the nucleus looks like 
a slightly distorted elliptic orbit (Fig. la) .  When the fre- 
quency of the external field is comparable to the Kepler fre- 
quency, the trajectory consists of appreciably distorted 
Kepler orbits which have irregularly varying sizes and orien- 
tation in space and which transform into one another (Fig. 
1 b) . If, however, the frequency of the external field is appre- 

FIG. 2. An example of a stable trajectory of the oscillatory type in the case 
ciably higher than the Kepler frequency, then small oscilla- = 3, g = 0,4, and = 0.15, corresponding to the conditions g,04/3 

tions in the external field are superposed on the Keplerian and a4 n - '. The upper and lower envelopes are shown by the dashed and 
motion of the electron (Fig. lc). The position of the plane of solid lines. The field is turned on adiabatically. The edges of the square 

the orbit usually changes after passage through the perihe- show the scale in atomic units. More than 20% of the trajectories had 
lifetimes exceeding ten Keplerian periods. 

lion, so that the trajectory is also open. On trajectories of the 
Keplerian type the average total energy of the electron ( E  ) is 
typically negative and equal in order of magnitude approxi- 
mately to the initial total energy in the undisturbed state: 

We can say that in the case of stabilization on Keplerian 
trajectories the external field plays the role of a small pertur- 
bation for the initial atomic state. Ionization occurs because 
the electron absorbs energy of the order of the binding en- 
ergy 1/2n2. This happens within one or several passes 
around the nucleus. After ionization the electron moves 
along a hyperbola distorted by oscillations in the external 
field. 

Stable trajectories of the oscillatory type, one of which 
is shown in Fig. 2, arise only in strong fields. One can see thqt 
the motion of the electron has the character of sharp oscilla- 
tions around the nucleus whose excursion is of the order of 
$/w2 and on which slow irregular drift in the Coulomb field 
is superposed. The Keplerian orbits are completely des- 
troyed. The average total energy is positive and approxima- 
tely corresponds to the average oscillatory energy: 

and in addition for 27 > w the energy can reach large values 
( E  ) ) 1, significantly higher than the binding energy of the 
undisturbed initial state. The motion is nonetheless finite. 
Ionization on trajectories-of the oscillatory type occurs if the 
electron enters the Coulomb region r < $ - 

The reasons why and the conditions under which Ke- 
plerian and oscillatory stable trajectories arise are discussed 
below. 

3.3. Stabilization on Keplerian trajectories 

Analysis of the results of numerical calculations 
showed that in order for stabilization to appear on trajector- 
ies of the Keplerian type the following relation must be satis- 
fied: 

We shall discuss this result in greater detail. If the fre- 
quency w is low compared with the Kepler frequency n - 3, 

then the external field changes very little over times of the 
order of the Kepler period. For this reason, in order for sta- 
ble trajectories with lifetimes much longer than T,, to exist 
the external field must reach values within the first Kepler 
period from the start-up time which are much smaller than 
the atomic values 1/4n4. For this the condition 

must be satisfied. 

FIG. 1. Examples of stable Keplerian trajectories in a field 
8 <02'3/n2:o(n-3 (a) ,  o -n - '  (b),  andw,n-' (c).  The 
Coulomb region is hatched. 
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We note that the amplitude %' can be much larger than 
1/4n4. This value of the amplitude, however, is reached over 
times of the order of one-fourth the period T of the external 
field. For this reason, it is of great interest to estimate the 
external-field intensity for which stable trajectories exist 
over times of the order of T. This is easiest to illustrate for the 
example of one-dimensional motion (Fig. 3 ) .  An electron 
cannot pick up enough energy in one impact against the nu- 
cleus to escape from the nucleus, but the electron can do so 
over several passes, while the external field is oriented away 
from the nucleus. As a result, over each Kepler period the 
electron is displaced from the nucleus by a small distance 

in the direction of the field. The characteristic displacement 
over one-half the period T of the external field, when the 
external field is directed away from the nucleus, is 

Under conditions of stabilization the displacement x should 
not exceed the size g - ' I2 of the Coulomb region, when the 
estimate ( 5 ) is obtained. 

We note that for w 4 n  - 3  condition (5)  implies 
69 gn - 4, i.e., the field is not strong. Nonetheless, the excur- 
sion %'/w2 of the oscillations of the electron in a purely exter- 
nal field under the conditions studied could be much greater 
than the size of a Keplerian orbit. This does not happen be- 
cause of the stabilizing role of the Coulomb field. The char- 
acteristic trajectory in the three-dimensional case is shown 
in Fig. la. As one can see it lies wholly inside the Coulomb 
region. 

If the frequency w is comparable to the Kepler fre- 
quency n - 3, then in order for stable trajectories to arise the 
energy picked up by the electron in one pass near the nucleus 
must be less than the binding energy 1/2n2. The acquired 
energy can be estimated as follows: 

AE - I8 oos (ot) v ( t )d t -k  v ( f )d t - -Bn2-81~" .  

From the condition AE < 1/2n2 and from Eq. (6) we 
obtain the relation (5) .  

We note that for w - n - ' it follows from Eq. (5)  that 
this regime of stable trajectories corresponds to the condi- 

FIG. 3. An example of a one-dimensional stable motion in the case 
8 < wZ"/n2 and w < n  -'. The coordinate of the nucleus is x = 0. The 
dashed lines show the boundary of the Coulomb region. 

tion g < n -4, i.e., the field is not strong, and the trajectory 
lies in the Coulomb region (see Fig. lb).  

If the frequency o of the external field is significantly 
higher than the Kepler frequency n - 3, then, as in the case 
w -n - ', the relation (5) is obtained, if the condition that 
the energy absorbed by the electron from the external field 
and calculated from the relation (6)  is significantly smaller 
than the binding energy is taken into account. However 
there is a difference in the mechanisms of energy absorption. 

In the case of average frequencies w - n - the contribu- 
tion to the integral in Eq. (6) accumulates over times of the 
order of the Kepler period, i.e., energy is efficiently absorbed 
along the entire Keplerian orbit. 

In the high-frequency case w ) n - ' the function 
v(t)coswt in the integral ( 6 )  is rapidly oscillating, and the 
point t = 0 (the moment of passage through the perihelion 
of the orbit) is a point of stationary phase. Near this point 
the electron moves along a Keplerian orbit, and in addition 
we have r ( t )  -t 2/3 and v(t) -t  - - r -  'I2. The effective 
region of integration in time is t- l/w, and absorption of 
energy AE-- g w  - 2/3 occurs in a small region r, - w - */' 
<n2 near the nucleus. 

We note that although Eq. (5)  gives an upper limit on 
the field strength the field can be strong, since for 6.1) n - 3  

the condition Z? < w2/3/n2 is not inconsistent with the condi- 
tion %' ) 1/4n4. 

The electron moves mainly in the region r-n2) %' - 
where the external field predominates. One can see from the 
condition (5),  however, that for w ) n - ' the excusion of the 
oscillations in the external field is much smaller than the 
dimensions of the Keplerian orbit: 

For this reason and owing to the long-range nature of the 
Coulomb field Keplerian motion is preserved even far from 
the nucleus (see Fig. lc) .  The average energy of the oscilla- 
tory motion on a Keplerian orbit is much smaller than the 
binding energy of an electron in an undisturbed atom: 

The numerical calculations showed that in order for 
stabilization to exist in a strong high-frequency field (which 
is possible for %' ) 1/4n4) under the conditions (5)  the ex- 
ternal field must be turned on with phase pzO [see Eq. 
( 1 ) 1. The reasons for this will be discussed below. 

3.4. Stabilization on oscillatory trajectories 

Analysis of the results of numerical calculations 
showed that in order for stable trajectories of the oscillatory 
type to appear (see Fig. 2) several conditions must be satis- 
fied. First, the external field must be strong, E9 ) 1/4n4. In 
addition, the field must reach its maximum value within 
times much shorter than the Kepler period of the motion of 
the electron on the initial orbit. This is necessary in order for 
the Keplerian motion to be destroyed immediately when the 
external field is turned on and in order for the electron to 
begin oscillating while gradually drifting toward the nu- 
cleus. Second, the amplitude 8/w2 of the oscillations of the 
electron in the external field must be much greater than the 
size Z? - of the Coulomb region. This gives the condition 
%' 9w4I3 
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Only is this case can the electron, because of the three- 
dimensional nature of its motion and the large amplitude of 
its oscillations in the external field, go around the Coulomb 
region as it approaches the nucleus. This is evident from Fig. 
2. In this case, ionization may not occur for a long time. But 
when the electron sooner or later nonetheless randomly 
enters the Coulomb region, in the overwhelming majority of 
the cases this results in ionization. Finally, the manner in 
which the external field is turned on is fundamentally impor- 
tant for the appearance of stabilization on oscillatory trajec- 
tories. In the numerical calculations stzble trajectories arise 
only when the field is turned on with the initial phase pzO 
[see Eq. ( 1 )  1. This effect is discussed in the next section. 

We note that on oscillatory trajectories with 8 % w4'3 
and o 2 n - the average energy of the electron is determined 
primarily by its oscillatory energy, which is significantly 
higher than the binding energy of the electron in the unper- 
turbed atom: 

3.5. Effect of the introduction of the external field on the 
photoionization process 

We shall first illustrate how the manner in which the 
ionizing field is turned on is manifested in the dynamics of 
the electron. We shall do this for the simplest case, when at 
the moment the field is switched on the electron is in a highly 
excited state far away from the nucleus. Under such condi- 
tions the effect of the Coulomb field of the nucleus can be 
neglected to a first approximation and the electron velocity 
as a function of time can be easily determined from Eq. ( 1 ) : 

k .  % .  
v=vo + - sln ( o t f  cp) - -sin cp. 

0 0 

It is obvious that together with oscillations of the electron 
with velocity amplitude 8 / o  there is also an "outbound" 
motion with velocity u = 8' sinp /w .  In other words, at the 
moment the external field is turned on the electron is given 
an impulse, which ultimately results in ejection of the elec- 
tron from the atom. In order for this not to happen, the field 
must be turned on in a special manner. For example, in the 
numerical calculations of trajectories in a strong field the 
electron did not escape when the field was turned on instan- 
taneously with the phase p z O ,  when the outbound velocity 
was also equal to zero. 

The results of the calculations and the conditions of 
stabilization, discussed above, were obtained assuming in- 
stantaneous turn-on. For this reason there arises the ques- 
tion of whether or not these results are applicable for real 
turn-on regimes. We shall now discuss this question in 
greater detail. 

The real turn-on process is smooth and is determined by 
some envelope. By adjusting the envelope it is possible to 
eliminate the impulse to the electron associated with the 
turning on of the external field. This will be analogous to 
using the condition of adiabatic switch-on, employed in 
quantum-mechanical problems. We shall give a classical for- 
mulation of the condition of adiabaticity. We assume that 
the envelope f(t) of the intensity of the external field reaches 
a constant value equal to unity within a time T. Then in order 
for the Coulomb field of the nucleus to prevent the electron 
from escaping, the kinetic energy u2/2  associated with the 
escape velocity u must be less than the absolute value of the 

characteristic potential energy of the electron 1/2n2 on the 
initial Keplerian orbit. This condition can be written in the 
following form: 

For instantaneous switch-on we must have f(t) = 1 and u 
= 8 sin p / w .  The condition of adiabaticity is satisfied if 
8 / w  < n - ' or if p -0 .  For linear switching-on the envelope 
has the form f(t) = t /T for t < T  and f(t) = 1 for t>r. The 
escape velocity is determined by the relation 

The condition of adiabaticity is satisfied for 8/ . rw2 < n - ' or 
when the turn-on time equals an integer number k of periods 
of the external field: r = 2n-k / w .  

If the amplitude of the external field reaches the value 
%' within a time T much shorter than the Kepler period of 
revolution of the electron along the orbit in the initial state, 
then for stabilization in a strong field 8 % 1/4n4 it is suffi- 
cient that the adiabaticity condition be satisfied. If, however, 
the amplitude of the field reaches maximum values over 
times shorter than the Kepler period T,, then in order to 
achieve stabilization the field must become strong over times 
of the order of T,. For this the relation 

must be satisfied. We note that here T is the time over which 
the maximum value of the field is established. For instantan- 
eous switch-on we have 0 < ~ < 1 ~ / 2 w .  

We emphasize that for w 4 n - and w - n - ' under the 
weak-field conditions (5)  the stabilized motion of the elec- 
tron occurs in the Coulomb region r 5 r, (see Figs. l a  and 
b),  where the field of the nucleus is stronger than the exter- 
nal field. For this reason the problem of the impulse to the 
electron at switch-on does not arise, since the field of the 
nucleus smooths out this impulse. The numerical calcula- 
tions confirmed that stable trajectories appear for 
$? < ~ 3 " ~  /n2 and w 5 n - 3, irrespective of the choice of phase 
P. 

A brief discussion of the role of the width of the exter- 
nal-field pulse is in order. i n  this work we studied only the 
case when the external field is present for a time much longer 
than the Kepler period. For highly excited atoms, however, 
conditions under which the external field will be present for 
a time significantly shorter than the Coulomb period can be 
realized. If the field is turned on and off adiabatically, then 
the impulses to the electron which are associated with turn- 
ing the field on and off will be suppressed. Since most of the 
time the electron is located far away from the nucleus, it is 
most likely to be far away from the nucleus when the exter- 
nal field is on. The Keplerian trajectory will be distorted on a 
short section when the external field is on, but a finite orbit is 
reestablished after the field is turned off. Thus photoioniza- 
tion will be suppressed in a field that is turned on and off 
adiabatically for a time interval much shorter than the 
Kepler period. 
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4. COMPARISON WITH THE RESULTS OF OTHER WORK Quantum  calculation^^^ of the photoionization of a hy- 
~ - 

From the numerical calculations and their analysis it 
can be concluded that stabilization of an atom with respect 
to photoionization occurs not only in the quantum case but 
also in the model of classical dynamics of an electron. Stabi- 
lization in an external field acting for a time much longer 
than the Kepler period is possible in two regimes: 

and adiabatic switching-on with w $  n - 3 ;  

and adiabatic switching-on. Here .r is the time over which the 
amplitude of the external field is established. 

We shall discuss how these regimes agree with the re- 
sults of other work. 

Classical calculations3 of the total probability of ioniza- 
tion of an arbitrary state n when the external field is on for 
150 Keplerian periods ( t  = 1 50Tn ) were performed for 
weak fields with intensity 0.06n - 4  < %' 90.2n - 4  and fre- 
quency 0.01n - 3<w< For w = O.OlnW3 total ioniza- 
tion over the time t occurred with %' = 0.2n - 4 .  We note that 
at this frequency w the time t corresponds to one and a half 
periods of the external field. The ionization probability de- 
creased as the field strength decreased and for %' - 0. ln - 
the probability was close to zero. In a field with frequency 
w -n - ionization was suppressed for %' - 0.06n - 4, while 
in a field with frequency w - lOn - ionization was already 
suppressed for 8 -0.2n - 4. It is easy to see that these condi- 
tions of ionization suppression correspond to the regime 
Z? 4w2/3 /n2 .  

Numerical  calculation^^^'^^ based on classical electron 
dynamics were performed for the ground state of the hydro- 
gen atom (n = 1) in a field with fixed strength %' = 2 and 
variable frequency w = 1-40. Stabilization was observed 
only for w-40 (all trajectories had lifetimes longer than 
one-half the Keplerian period). It is obvious that this case 
satisfies the condition $ & ~ ~ / ~ / n * .  Stabilization in a field 
with $ ) w4'3 could not be observed, since this requires fre- 
quencies w & 1. 

Quantum  calculation^^^ of the lifetime of the ground 
state (n = 1) of a hydrogen atom in a strong field were per- 
formed in connection with the problem of determining the 
quasi-energy spectrum of the electrons. This approach ob- 
viously corresponds to adiabatic switching-on of the exter- 
nal field. The frequency of the field was equal to w = 0.65 
and the field strength 8' ranged from zero to 1.5. The mini- 
mum lifetime, equal to approximately the Kepler period, 
was achieved for 8 -0.6. As the field strength was further 
increased the lifetime started to increase and at %' - 1.5 it 
was already equal to approximately three Kepler periods. 
Stabilization at 8 - 1.5 corresponds to the condition 
% ' $ o I ~ / ~ .  The shortness of the lifetime could be connected 
with the fact that the conditions %' j 1/4n4 and $ $ w4/3 are 
satisfied only weakly. 

drogen atom in the ground state (n = 1 ) were performed for 
a field with frequency w = 1 and strengths % = 3.4,6.8, and 
13.5. The switching-on regime was set by an envelope which 
varied linearly over five optical cycles and then remained 
constant for ten cycles. This corresponds in the classical ap- 
proach to adiabatic switching-on. The ionization probability 
after 15 ~eriods of the external field was equal to 0.9 18.0.69, 
and 0.485, respectively, for the three values of the field 
strength. It is obvious that stabilization at % = 13.5 is satis- 
factorily described by the condition % % w4l3. It is also inter- 
esting that stabilization was not observed when the field was 
turned on instantaneously and nonadiabatically according 
to the law 

8 ( t )  =8 sin at. 

Finally, we shall analyze the quantum calculations of 
Ref. 19, which were performed by numerical methods in a 
one-dimensional formulation of the problem with the poten- 
tial 

The fundamental property of this potential is that it is "tran- 
sparent" in the sense that an electron incident on the nucleus 
freely passes through it and is not reflected backwards, as 
should happen in the field U ( x )  = - l/lxl. In order to de- 
termine the reasons for stabilization in the "transparent" 
potential classical calculations of the electron trajectories in 
the field U(x) = - l/(xl were performed in one case with a 
boundary condition corresponding to reflection from the nu- 
cleus (i.e., with the true potential) and in another case when 
the electron passed through the nucleus (i.e., with a "tran- 
sparent" potential). 

The results of the calculations are presented in Fig. 4. 
One can see that in the second case the trajectories are indeed 
stable, though for the true potential ionization occurs within 
one Kepler period. Thus the use of the "transparent" poten- 
tial is the same as introducing stabilization into the model 
artificially. In addition, in one-dimensional models the addi- 
tional channel for electrons to escape in lateral directions is 
neglected while numerical calculations have shown that this 
is the main channel for ionization of the atom. 

FIG. 4. Typical electron motion in models with the one-dimensional po- 
tential U ( x )  = - l//~/: I) boundary condition corresponding to reflec- 
tion at the nucleus and 2) boundary condition corresponding to passage 
through the nucleus. The coordinate of the nucleus is x = 0. 
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